Dynamics and Relativity: Example Sheet 1

Professor David Tong, January 2013

1. In one spatial dimension, two frames of reference S and S^{\prime} have coordinates (x, t) and $\left(x^{\prime}, t^{\prime}\right)$ respectively. The coordinates are related by $t^{\prime}=t$ and

$$
x^{\prime}=f(x, t)
$$

Viewed from frame S, a particle follows a trajectory $x=x(t)$. It has velocity $v=\dot{x}$ and acceleration $a=\ddot{x}$. Viewed from S^{\prime}, the trajectory is $x^{\prime}=f(x(t), t)$. Using the chain rule, show that the speed and acceleration of the particle in S^{\prime} are given by

$$
\begin{aligned}
\frac{d x^{\prime}}{d t^{\prime}} & =v \frac{\partial f}{\partial x}+\frac{\partial f}{\partial t} \\
\frac{d^{2} x^{\prime}}{d t^{\prime 2}} & =a \frac{\partial f}{\partial x}+v^{2} \frac{\partial^{2} f}{\partial x^{2}}+2 v \frac{\partial^{2} f}{\partial x \partial t}+\frac{\partial^{2} f}{\partial t^{2}}
\end{aligned}
$$

Suppose now that both S and S^{\prime} are inertial frames. Explain why the function f must obey $\partial^{2} f / \partial x^{2}=\partial^{2} f / \partial x \partial t=\partial^{2} f / \partial t^{2}=0$. What is the most general form of f with these properties? Interpret this result.
2. A particle at position \mathbf{r} experiences a force

$$
\mathbf{F}=\left(-\frac{a}{r^{2}}+\frac{2 b}{r^{3}}\right) \hat{\mathbf{r}}
$$

where $\hat{\mathbf{r}}$ is the unit vector in the radial direction and a and b are positive constants. Show, by finding a potential $V(r)$ such that $\mathbf{F}=-\nabla V$, that \mathbf{F} is conservative. (Hint: you will need the result $\nabla r=\hat{\mathbf{r}})$.

Sketch the potential $V(r)$ and describe qualitatively the possible motions of the particle moving in the radial direction, considering different starting positions and speeds. If the particle starts at the point $r=2 b / a$, what is the minimum speed that the particle must have in order to escape to infinity?
3. A satellite falls freely towards the Earth starting from rest at a distance R, much larger than the Earth's radius. Treating the Earth as a point of mass M, use dimensional analysis to show that the time T taken by the satellite to reach the Earth is given by

$$
T=C\left(\frac{R^{3}}{G M}\right)^{\frac{1}{2}}
$$

where G is the gravitational constant and C is a dimensionless constant. (You will need the fact that the acceleration due to the Earth's gravitational field at a distance r from the centre of the Earth is $\left.G M / r^{2}\right)$.

What is the conserved energy of the satellite? By integrating this equation, show that $C=\pi / 2 \sqrt{2}$.
4. A long time ago, in a galaxy far far away, a Death Star was constructed. Its surrounding force field caused a particle at distance r relative to the Death Star to experience an acceleration

$$
\ddot{\mathbf{r}}=\lambda \mathbf{r} \times \dot{\mathbf{r}}
$$

where λ is a constant. Show that particles move in this field with constant speed. Show, moreover, that the magnitude of acceleration is also constant.
(a) A particle is projected radially with speed v from a point $\mathbf{r}=R \hat{\mathbf{r}}$ on the surface of the Death Star. Show that its trajectory is given by

$$
\mathbf{r}=(v t+R) \hat{\mathbf{r}}
$$

(b) By considering the second derivative of $\mathbf{r} \cdot \mathbf{r}$ show that, for any particle moving in the force field, the distance r to the centre of the Death Star is given by

$$
r^{2}=v^{2}\left(t-t_{0}\right)^{2}+r_{0}^{2}
$$

where t_{0} and r_{0} are constants and v is the speed of the particle. Obtain an expression for $\mathbf{r} \cdot \dot{\mathbf{r}}$ and show that $|\ddot{\mathbf{r}}|=\lambda v r_{0}$.
5. A particle of mass m, charge q and position \mathbf{x} moves in a constant, uniform magnetic field \mathbf{B} which points in a horizontal direction. The particle is also under the influence of gravity, \mathbf{g}, acting vertically downwards. Write down the equation of motion and show that it is invariant under translations $\mathbf{x} \rightarrow \mathbf{x}+\mathbf{x}_{0}$. Obtain

$$
\dot{\mathbf{x}}=\alpha \mathbf{x} \times \mathbf{n}+\mathbf{g} t+\mathbf{a}
$$

where $\alpha=q B / m, \mathbf{n}$ is a unit vector in the direction of \mathbf{B} and \mathbf{a} is a constant vector. Show that, with a suitable choice of origin, a can be written in the form $\mathbf{a}=a \mathbf{n}$.

By choosing suitable axes, show that the particle undergoes a helical motion with a constant horizontal drift.

Suppose that you now wish to eliminate the drift by imposing a uniform electric field E. Determine the direction and magnitude of \mathbf{E}.
6. At time $t=0$, an insect of mass m jumps from a point O on the ground with velocity \mathbf{v}, while a wind blows with velocity \mathbf{u}. The gravitational acceleration is \mathbf{g} and the air exerts a retarding force on the insect equal to $m k$ times the velocity of the wind relative to the insect.
(a) Show that the path of the insect is given by

$$
\mathbf{x}=(\mathbf{u}+\mathbf{g} / k) t+\frac{1-e^{-k t}}{k}(\mathbf{v}-\mathbf{u}-\mathbf{g} / k)
$$

(b) In the case where the insect jumps vertically in a horizontal wind, show that the time T that elapses before it returns to earth satisfies

$$
\left(1-e^{-k T}\right)=\frac{k T}{1+\gamma}
$$

where $\gamma=k v / g$. Find an expression for the range R in terms of γ, u and T. (Here $v=|\mathbf{v}|, g=|\mathbf{g}|$, and $u=|\mathbf{u}|$.)
7. A ball of mass m moves in a resisting medium that produces a friction force of magnitude $k v^{2}$, where v is the ball's speed. If the ball is projected vertically upwards with initial speed u, show by dimensional analysis that when the ball returns to its point of projection, its speed w can be written in the form

$$
w=u f(\lambda),
$$

where $\lambda=k u^{2} / m g$.

Integrate the equations of motion to show that $f(\lambda)=(1+\lambda)^{-1 / 2}$. Discuss what happens in the two extremes $\lambda \gg 1$, and $\lambda \ll 1$.

8*. The temperature $\theta(x, t)$ in a very long rod is governed by the one-dimensional diffusion equation

$$
\frac{\partial \theta}{\partial t}=D \frac{\partial^{2} \theta}{\partial x^{2}}
$$

where D is a constant (the thermal diffusivity of the rod). At time $t=0$, the point $x=0$ is heated to a high temperature. At all later times, the conservation of heat energy implies that

$$
Q=\int_{-\infty}^{\infty} \theta(x, t) d x
$$

is constant. Use dimensional analysis to show that $\theta(x, t)$ can be written in the form

$$
\theta(x, t)=\frac{Q}{\sqrt{D t}} F(z)
$$

where $z=x / \sqrt{D t}$ and show further that

$$
\frac{d^{2} F}{d z^{2}}+\frac{z}{2} \frac{d F}{d z}+\frac{1}{2} F=0
$$

Integrate this equation once directly to obtain a first order differential equation. Evaluate the constant of integration by considering either the symmetry of the problem or the behaviour of the solution as $z \rightarrow \pm \infty$. Hence show that

$$
\theta(x, t)=\frac{Q}{\sqrt{4 \pi D t}} e^{-x^{2} / 4 D t}
$$

