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Professor David Tong, February 2014

1. In a system of particles, the ith particle has mass mi and position vector xi with

respect to a fixed origin. The centre of mass of the system is at R. Show that L, the

total angular momentum of the system about the origin, and LCoM, the total angular

momentum of the system about the centre of mass, are related by

LCoM = L−R×P

where P is the total linear momentum of the system.

Given that dP/dt = F where F is the total external force and dL/dt = τ where τ

is the total external torque about the origin, show that

dLCoM

dt
= τCoM ,

where τCoM is the total external torque about the centre of mass.

2. A system of particles with masses mi and position vectors xi, i = 1, . . . , n, moves

under its own mutual gravitational attraction alone. Write down the equation of motion

for xi. Show that a possible solution of the equations of motion is given by xi = t2/3ai,

where the vectors ai are constant vectors satisfying

ai =
9G

2

∑

j 6=i

mj(ai − aj)

|ai − aj |3
.

Show that, for this system, the total angular momentum about the origin and the total

momentum both vanish. What is the angular momentum about any other fixed point?

3. A rocket, moving vertically upwards, ejects gas vertically downwards at speed u

relative to the rocket. Derive the equation of motion

m
dv

dt
= −u

dm

dt
− gm

where v and m are the speed and total mass of the rocket (including fuel) at time t. If

u is constant and the rocket starts from rest with total mass m0, show that

m = m0e
−(gt+v)/u.
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4. A firework of initial mass m0 is fired vertically upwards from the ground. The rate

of burning of fuel dm/dt = −α and the fuel is ejected at constant speed u relative to

the firework. Show that the speed of the firework at time t, where 0 < t < m0/α, is

v(t) = −gt− u log
(

1− αt

m0

)

and that this is positive provided u > m0g/α.

Suppose now that nearly all of the firework consists of fuel, the mass of the containing

shell being negligible. Show that the height attained by the shell when all of the fuel

is burnt is

m0

α

(

u− m0g

2α

)

5a. Thin circular discs of radius a and b are made of uniform materials with mass per

unit area ρa and ρb, respectively. They lie in the same plane. Their centres A and B

are connected by a light rigid rod of length c. Find the moment of inertia of the system

about an axis through B perpendicular to the plane of the discs.

b. A thin uniform circular disc of radius a and centre A has a circular hole cut in

it of radius b and centre B, where AB = c < a − b. The disc is free to oscillate in a

vertical plane about a smooth fixed horizontal circular rod of radius b passing through

the hole. Using the result of part (i), with ρb suitably chosen, show that the period of

small oscillations is 2π
√

l/g, where l = c+ (a4 − b4)/(2a2c).

6. A yo-yo consists of two uniform discs, each of mass M and radius R, connected by

a short light axle of radius a around which a portion of a thin string is wound. One

end of the string is attached to the axle and the other to a fixed point P . The yo-yo

is held with its centre of mass vertically below P and then released.

Assuming that the unwound part of the string remains approximately vertical, use

the principle of conservation of energy to find the equation of motion of the centre of

mass of the yo-yo. Find the tension in the string as the yoyo falls.

If the string has length L, what is the speed of the yoyo just before it reaches the

end? Explain what happens next. What is the impulse due to the tension in the string

at this time?
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7. A uniform circular cylinder of mass M and radius a is free to turn about its axis

which is horizontal. A thin uniform cylindrical shell of mass M/2 and radius a is fitted

over the cylinder. At time t = 0 the angular velocity of the cylinder is Ω, while the shell

is at rest. The shell exerts a frictional torque on the cylinder of magnitude k(ω −̟),

where ω(t) and ̟(t) are the angular velocities of the cylinder and shell respectively at

time t about the axis. Prove that

ω(t) =
1

2
Ω
(

1 + e−4kt/Ma2
)

and find the corresponding expression for ̟(t).

8. A bullet of mass m is fired from a point r0 with velocity u in a frame which rotates

with constant angular velocity ω relative to an inertial frame. The bullet is subject

to a gravitational force mg which is constant in the rotating frame. Using the vector

equation of motion and neglecting terms of order |ω|2, show that the bullet’s position

vector measured in the rotating frame is approximately

r0 + ut + (
1

2
g − ω × u)t2 +

1

3
g × ωt3

at time t. Suppose that the bullet is projected from sea level on the Earth at latitude

θ in the Northern hemisphere, at an angle π/4 from the upward vertical and in a

Northward direction. Show that when the particle returns to sea level (neglecting

the curvature of the Earth’s surface), it has been deflected to the East by an amount

approximately equal to

√
2ω|u|3
3g2

(3 sin θ − cos θ)

where ω is the angular speed of the Earth. Evaluate the approximate size of this

deflection at latitude 52◦N for |u| = 1000m/s.

9. A square hoop ABCD is made of fine smooth wire and has side length 2a. The

hoop is horizontal and rotating with constant angular speed ω about a vertical axis

through A. A small bead which can slide on the wire is initially at rest at the midpoint

of the side BC. Choose axes fixed relative to the hoop, and let x be the distance of

the bead from the vertex B on the side BC. Write down the position vector of the

bead in the rotating frame.

Using the standard expression for acceleration in a rotating frame, show that

ẍ− ω2x = 0
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Hence show that the time which the bead takes to reach a corner of the hoop is

ω−1 cosh−1 2. Using dimensional analysis, explain why this time is independent of a.

Obtain an expression for the magnitude of the force exerted by the hoop on the

bead.

10. In these sequence of questions on the Coriolis force, use ω for the angular speed

of the Earth, assume that events take place at latitude θ in the northern hemisphere

and ignore centrifugal forces.

(a) Are bath-plug vortices in the northern hemisphere likely, on average, to be

clockwise or anticlockwise?

(b) A straight river flows with speed v in a direction α degrees East of North. Show

that the effect of the coriolis force is to erode the right bank. Calculate the magnitude

of the force.

(c) A plumb line is attached to the ceiling inside one of the carriages of a train and

hangs down freely, at rest relative to the train. When the train is travelling at speed

V in the north-easterly direction the plumb line hangs at an angle φ to the direction

in which it hangs when the train is at rest. Ignoring centrifugal forces, show that

φ ≈ (2ωV sin θ)/g. Why can the centrifugal force be ignored?
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