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Recommended Books and Resources

• Tom Kibble and Frank Berkshire, “Classical Mechanics”

• Douglas Gregory, “Classical Mechanics”

Both of these books are well written and do an excellent job of explaining the funda-

mentals of classical mechanics. If you’re struggling to understand some of the basic

concepts, these are both good places to turn.

• S. Chandrasekhar, “Newton’s Principia (for the common reader)”

Want to hear about Newtonian mechanics straight from the horse’s mouth? This is

an annotated version of the Principia with commentary by the Nobel prize winning

astrophysicist Chandrasekhar who walks you through Newton’s geometrical proofs.

Although, in fairness, Newton is sometimes easier to understand than Chandra.

• A.P. French, “Special Relativity”

A clear introduction, covering the theory in some detail.

• Wolfgang Pauli, “Theory of Relativity”

Pauli was one of the founders of quantum mechanics and one of the great physicists of

the last century. Much of this book was written when he was just 21. It remains one

of the most authoritative and scholarly accounts of special relativity. It’s not for the

faint of heart. (But it is cheap).

A number of excellent lecture notes are available on the web. Links can be found on

the course webpage: http://www.damtp.cam.ac.uk/user/tong/relativity.html



Contents

1. Newtonian Mechanics 1

1.1 Newton’s Laws of Motion 2

1.1.1 Newton’s Laws 3

1.2 Inertial Frames and Newton’s First Law 4

1.2.1 Galilean Relativity 5

1.3 Newton’s Second Law 8

1.4 Looking Forwards: The Validity of Newtonian Mechanics 9

2. Forces 11

2.1 Potentials in One Dimension 11

2.1.1 Moving in a Potential 13

2.1.2 Equilibrium: Why (Almost) Everything is a Harmonic Oscillator 16

2.2 Potentials in Three Dimensions 18

2.2.1 Central Forces 20

2.2.2 Angular Momentum 21

2.3 Gravity 22

2.3.1 The Gravitational Field 22

2.3.2 Escape Velocity 24

2.3.3 Inertial vs Gravitational Mass 25

2.4 Electromagnetism 26

2.4.1 The Electric Field of a Point Charge 27

2.4.2 Circles in a Constant Magnetic Field 28

2.4.3 An Aside: Maxwell’s Equations 31

2.5 Friction 31

2.5.1 Dry Friction 31

2.5.2 Fluid Drag 32

2.5.3 The Damped Harmonic Oscillator 33

2.5.4 Terminal Velocity with Quadratic Friction 34

3. Interlude: Dimensional Analysis 40

– 1 –



4. Central Forces 48

4.1 Polar Coordinates in the Plane 48

4.2 Back to Central Forces 50

4.2.1 The E↵ective Potential: Getting a Feel for Orbits 52

4.2.2 The Stability of Circular Orbits 53

4.3 The Orbit Equation 55

4.3.1 The Kepler Problem 56

4.3.2 Kepler’s Laws of Planetary Motion 60

4.3.3 Orbital Precession 62

4.4 Scattering: Throwing Stu↵ at Other Stu↵ 63

4.4.1 Rutherford Scattering 65

5. Systems of Particles 67

5.1 Centre of Mass Motion 67

5.1.1 Conservation of Momentum 68

5.1.2 Angular Momentum 68

5.1.3 Energy 69

5.1.4 In Praise of Conservation Laws 70

5.1.5 Why the Two Body Problem is Really a One Body Problem 71

5.2 Collisions 72

5.2.1 Bouncing Balls 73

5.2.2 More Bouncing Balls and the Digits of ⇡ 74

5.3 Variable Mass Problems 76

5.3.1 Rockets: Things Fall Apart 77

5.3.2 Avalanches: Stu↵ Gathering Other Stu↵ 80

5.4 Rigid Bodies 81

5.4.1 Angular Velocity 82

5.4.2 The Moment of Inertia 82

5.4.3 Parallel Axis Theorem 85

5.4.4 The Inertia Tensor 87

5.4.5 Motion of Rigid Bodies 88

6. Non-Inertial Frames 93

6.1 Rotating Frames 93

6.1.1 Velocity and Acceleration in a Rotating Frame 94

6.2 Newton’s Equation of Motion in a Rotating Frame 95

6.3 Centrifugal Force 97

6.3.1 An Example: Apparent Gravity 97

– 2 –



6.4 Coriolis Force 99

6.4.1 Particles, Baths and Hurricanes 100

6.4.2 Balls and Towers 102

6.4.3 Foucault’s Pendulum 103

6.4.4 Larmor Precession 106

7. Special Relativity 107

7.1 Lorentz Transformations 108

7.1.1 Lorentz Transformations in Three Spatial Dimensions 111

7.1.2 Spacetime Diagrams 112

7.1.3 A History of Light Speed 113

7.2 Relativistic Physics 115

7.2.1 Simultaneity 115

7.2.2 Causality 117

7.2.3 Time Dilation 118

7.2.4 Length Contraction 122

7.2.5 Addition of Velocities 124

7.3 The Geometry of Spacetime 125

7.3.1 The Invariant Interval 125

7.3.2 The Lorentz Group 128

7.3.3 A Rant: Why c = 1 131

7.4 Relativistic Kinematics 132

7.4.1 Proper Time 133

7.4.2 4-Velocity 134

7.4.3 4-Momentum 136

7.4.4 Massless Particles 138

7.4.5 Newton’s Laws of Motion 140

7.4.6 Acceleration 141

7.4.7 Indices Up, Indices Down 144

7.5 Particle Physics 145

7.5.1 Particle Decay 146

7.5.2 Particle Collisions 147

7.6 Spinors 150

7.6.1 The Lorentz Group and SL(2,C) 151

7.6.2 What the Observer Actually Observes 154

7.6.3 Spinors 159

– 3 –



Acknowledgements

I inherited this course from Stephen Siklos. His excellent set of printed lecture notes

form the backbone of these notes and can be found at:

http://www.damtp.cam.ac.uk/user/stcs/dynamics.html

I’m grateful to the students, and especially Henry Mak, for pointing out typos and

corrections. My thanks to Alex Considine for putting up with the lost weekends while

these lectures were written.

– 4 –



1. Newtonian Mechanics

Classical mechanics is an ambitious theory. Its purpose is to predict the future and

reconstruct the past, to determine the history of every particle in the Universe.

In this course, we will cover the basics of classical mechanics as formulated by Galileo

and Newton. Starting from a few simple axioms, Newton constructed a mathematical

framework which is powerful enough to explain a broad range of phenomena, from

the orbits of the planets, to the motion of the tides, to the scattering of elementary

particles. Before it can be applied to any specific problem, the framework needs just a

single input: a force. With this in place, it is merely a matter of turning a mathematical

handle to reveal what happens next.

We start this course by exploring the framework of Newtonian mechanics, under-

standing the axioms and what they have to tell us about the way the Universe works.

We then move on to look at a number of forces that are at play in the world. Nature is

kind and the list is surprisingly short. Moreover, many of forces that arise have special

properties, from which we will see new concepts emerging such as energy and conserva-

tion principles. Finally, for each of these forces, we turn the mathematical handle. We

turn this handle many many times. In doing so, we will see how classical mechanics is

able to explain large swathes of what we see around us.

Despite its wild success, Newtonian mechanics is not the last word in theoretical

physics. It struggles in extremes: the realm of the very small, the very heavy or the

very fast. We finish these lectures with an introduction to special relativity, the theory

which replaces Newtonian mechanics when the speed of particles is comparable to the

speed of light. We will see how our common sense ideas of space and time are replaced

by something more intricate and more beautiful, with surprising consequences. Time

goes slow for those on the move; lengths get smaller; mass is merely another form of

energy.

Ultimately, the framework of classical mechanics falls short of its ambitious goal to

tell the story of every particle in the Universe. Yet it provides the basis for all that

follows. Some of the Newtonian ideas do not survive to later, more sophisticated,

theories of physics. Even the seemingly primary idea of force will fall by the wayside.

Instead other concepts that we will meet along the way, most notably energy, step to

the fore. But all subsequent theories are built on the Newtonian foundation.

Moreover, developments in the past 300 years have confirmed what is perhaps the

most important legacy of Galileo and Newton: the laws of Nature are written in the
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language of mathematics. This is one of the great insights of human civilisation. It

has ushered in scientific, industrial and technological revolutions. It has given us a new

way to look at the Universe. And, most crucially of all, it means that the power to

predict the future lies in hands of mathematicians rather than, say, astrologers. In this

course, we take the first steps towards grasping this power.

1.1 Newton’s Laws of Motion

Classical mechanics is all about the motion of particles. We start with a definition.

Definition: A particle is an object of insignificant size. This means that if you

want to say what a particle looks like at a given time, the only information you have

to specify is its position.

During this course, we will treat electrons, tennis balls, falling cats and planets as

particles. In all of these cases, this means that we only care about the position of the

object and our analysis will not, for example, be able to say anything about the look on

the cat’s face as it falls. However, it’s not immediately obvious that we can meaningfully

assign a single position to a complicated object such as a spinning, mewing cat. Should

we describe its position as the end of its tail or the tip of its nose? We will not provide

an immediate answer to this question, but we will return to it in Section 5 where we

will show that any object can be treated as a point-like particle if we look at the motion

of its centre of mass.

To describe the position of a particle we need a reference

y

x

z

Figure 1:

frame. This is a choice of origin, together with a set of axes which,

for now, we pick to be Cartesian. With respect to this frame, the

position of a particle is specified by a vector x, which we denote

using bold font. Since the particle moves, the position depends on

time, resulting in a trajectory of the particle described by

x = x(t)

In these notes we will also use both the notation x(t) and r(t) to describe the trajectory

of a particle.

The velocity of a particle is defined to be

v ⌘
dx(t)

dt
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Throughout these notes, we will often denote di↵erentiation with respect to time by a

“dot” above the variable. So we will also write v = ẋ. The acceleration of the particle

is defined to be

a ⌘ ẍ =
d
2x(t)

dt2

A Comment on Vector Di↵erentiation

The derivative of a vector is defined by di↵erentiating each of the components. So, if

x = (x1, x2, x3) then

dx

dt
=

✓
dx1

dt
,
dx2

dt
,
dx3

dt

◆

Geometrically, the derivative of a path x(t) lies tangent to the path (a fact that you

will see in the Vector Calculus course).

In this course, we will be working with vector di↵erential equations. These should

be viewed as three, coupled di↵erential equations – one for each component. We will

frequently come across situations where we need to di↵erentiate vector dot-products

and cross-products. The meaning of these is easy to see if we use the chain rule on each

component. For example, given two vector functions of time, f(t) and g(t), we have

d

dt
(f · g) =

df

dt
· g + f ·

dg

dt

and

d

dt
(f ⇥ g) =

df

dt
⇥ g + f ⇥

dg

dt

As usual, it doesn’t matter what order we write the terms in the dot product, but

we have to be more careful with the cross product because, for example, df/dt ⇥ g =

�g ⇥ df/dt.

1.1.1 Newton’s Laws

Newtonian mechanics is a framework which allows us to determine the trajectory x(t)

of a particle in any given situation. This framework is usually presented as three axioms

known as Newton’s laws of motion. They look something like:

• N1: Left alone, a particle moves with constant velocity.

• N2: The acceleration (or, more precisely, the rate of change of momentum) of a

particle is proportional to the force acting upon it.
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• N3: Every action has an equal and opposite reaction.

While it is worthy to try to construct axioms on which the laws of physics rest, the

trite, minimalistic attempt above falls somewhat short. For example, on first glance,

it appears that the first law is nothing more than a special case of the second law. (If

the force vanishes, the acceleration vanishes which is the same thing as saying that the

velocity is constant). But the truth is somewhat more subtle. In what follows we will

take a closer look at what really underlies Newtonian mechanics.

1.2 Inertial Frames and Newton’s First Law

Placed in the historical context, it is understandable that Newton wished to stress the

first law. It is a rebuttal to the Aristotelian idea that, left alone, an object will naturally

come to rest. Instead, as Galileo had previously realised, the natural state of an object

is to travel with constant speed. This is the essence of the law of inertia.

However, these days we’re not bound to any Aristotelian dogma. Do we really need

the first law? The answer is yes, but it has a somewhat di↵erent meaning.

We’ve already introduced the idea of a frame of reference: a Cartesian coordinate

system in which you measure the position of the particle. But for most reference frames

you can think of, Newton’s first law is obviously incorrect. For example, suppose the

coordinate system that I’m measuring from is rotating. Then, everything will appear

to be spinning around me. If I measure a particle’s trajectory in my coordinates as

x(t), then I certainly won’t find that d2x/dt2 = 0, even if I leave the particle alone. In

rotating frames, particles do not travel at constant velocity.

We see that if we want Newton’s first law to fly at all, we must be more careful about

the kind of reference frames we’re talking about. We define an inertial reference frame

to be one in which particles do indeed travel at constant velocity when the force acting

on it vanishes. In other words, in an inertial frame

ẍ = 0 when F = 0

The true content of Newton’s first law can then be better stated as

• N1 Revisited: Inertial frames exist.

These inertial frames provide the setting for all that follows. For example, the second

law — which we shall discuss shortly — should be formulated in inertial frames.
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One way to ensure that you are in an inertial frame is to insist that you are left alone

yourself: fly out into deep space, far from the e↵ects of gravity and other influences,

turn o↵ your engines and sit there. This is an inertial frame. However, for most

purposes it will su�ce to treat axes of the room you’re sitting in as an inertial frame.

Of course, these axes are stationary with respect to the Earth and the Earth is rotating,

both about its own axis and about the Sun. This means that the Earth does not quite

provide an inertial frame and we will study the consequences of this in Section 6.

1.2.1 Galilean Relativity

Inertial frames are not unique. Given one inertial frame, S, in which a particle has

coordinates x(t), we can always construct another inertial frame S 0 in which the particle

has coordinates x0(t) by any combination of the following transformations,

• Translations: x 0 = x+ a, for constant a.

• Rotations: x 0 = Rx, for a 3⇥3 matrix R obeying R
T
R = 1. (This also allows for

reflections if detR = �1, although our interest will primarily be on continuous

transformations).

• Boosts: x 0 = x+ vt, for constant velocity v.

It is simple to prove that all of these transformations map one inertial frame to another.

Suppose that a particle moves with constant velocity with respect to frame S, so that

d
2x/dt2 = 0. Then, for each of the transformations above, we also have d

2x 0
/dt

2 = 0

which tells us that the particle also moves at constant velocity in S
0. Or, in other

words, if S is an inertial frame then so too is S 0. The three transformations generate a

group known as the Galilean group.

The three transformations above are not quite the unique transformations that map

between inertial frames. But, for most purposes, they are the only interesting ones!

The others are transformations of the form x 0 = �x for some � 2 R. This is just a

trivial rescaling of the coordinates. For example, we may choose to measure distances

in S in units of meters and distances in S
0 in units of parsecs.

We have already mentioned that Newton’s second law is to be formulated in an

inertial frame. But, importantly, it doesn’t matter which inertial frame. In fact, this

is true for all laws of physics: they are the same in any inertial frame. This is known

as the principle of relativity. The three types of transformation laws that make up the

Galilean group map from one inertial frame to another. Combined with the principle

of relativity, each is telling us something important about the Universe
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• Translations: There is no special point in the Universe.

• Rotations: There is no special direction in the Universe.

• Boosts: There is no special velocity in the Universe

The first two are fairly unsurprising: position is relative; direction is relative. The third

perhaps needs more explanation. Firstly, it is telling us that there is no such thing as

“absolutely stationary”. You can only be stationary with respect to something else.

Although this is true (and continues to hold in subsequent laws of physics) it is not

true that there is no special speed in the Universe. The speed of light is special. We

will see how this changes the principle of relativity in Section 7.

So position, direction and velocity are relative. But acceleration is not. You do

not have to accelerate relative to something else. It makes perfect sense to simply say

that you are accelerating or you are not accelerating. In fact, this brings us back to

Newton’s first law: if you are not accelerating, you are sitting in an inertial frame.

The principle of relativity is usually associated to Einstein, but in fact dates back

at least as far as Galileo. In his book, “Dialogue Concerning the Two Chief World

Systems”, Galileo has the character Salviati talk about the relativity of boosts,

Shut yourself up with some friend in the main cabin below decks on some

large ship, and have with you there some flies, butterflies, and other small

flying animals. Have a large bowl of water with some fish in it; hang up a

bottle that empties drop by drop into a wide vessel beneath it. With the

ship standing still, observe carefully how the little animals fly with equal

speed to all sides of the cabin. The fish swim indi↵erently in all directions;

the drops fall into the vessel beneath; and, in throwing something to your

friend, you need throw it no more strongly in one direction than another,

the distances being equal; jumping with your feet together, you pass equal

spaces in every direction. When you have observed all these things carefully

(though doubtless when the ship is standing still everything must happen

in this way), have the ship proceed with any speed you like, so long as the

motion is uniform and not fluctuating this way and that. You will discover

not the least change in all the e↵ects named, nor could you tell from any of

them whether the ship was moving or standing still.

Galileo Galilei, 1632
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Absolute Time

There is one last issue that we have left implicit in the discussion above: the choice of

time coordinate t. If observers in two inertial frames, S and S
0, fix the units – seconds,

minutes, hours – in which to measure the duration time then the only remaining choice

they can make is when to start the clock. In other words, the time variable in S and

S
0 di↵er only by

t
0 = t+ t0

This is sometimes included among the transformations that make up the Galilean

group.

The existence of a uniform time, measured equally in all inertial reference frames,

is referred to as absolute time. It is something that we will have to revisit when we

discuss special relativity. As with the other Galilean transformations, the ability to

shift the origin of time is reflected in an important property of the laws of physics. The

fundamental laws don’t care when you start the clock. All evidence suggests that the

laws of physics are the same today as they were yesterday. They are time translationally

invariant.

Cosmology

Notably, the Universe itself breaks several of the Galilean transformations. There was

a very special time in the Universe, around 13.7 billion years ago. This is the time of

the Big Bang (which, loosely translated, means “we don’t know what happened here”).

Similarly, there is one inertial frame in which the background Universe is stationary.

The “background” here refers to the sea of photons at a temperature of 2.7 K which

fills the Universe, known as the Cosmic Microwave Background Radiation. This is the

afterglow of the fireball that filled all of space when the Universe was much younger.

Di↵erent inertial frames are moving relative to this background and measure the radi-

ation di↵erently: the radiation looks more blue in the direction that you’re travelling,

redder in the direction that you’ve come from. There is an inertial frame in which this

background radiation is uniform, meaning that it is the same colour in all directions.

To the best of our knowledge however, the Universe defines neither a special point,

nor a special direction. It is, to very good approximation, homogeneous and isotropic.

However, it’s worth stressing that this discussion of cosmology in no way invalidates

the principle of relativity. All laws of physics are the same regardless of which inertial

frame you are in. Overwhelming evidence suggests that the laws of physics are the
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same in far flung reaches of the Universe. They were the same in first few microseconds

after the Big Bang as they are now.

1.3 Newton’s Second Law

The second law is the meat of the Newtonian framework. It is the famous “F = ma”,

which tells us how a particle’s motion is a↵ected when subjected to a force F. The

correct form of the second law is

d

dt
(mẋ) = F(x, ẋ) (1.1)

This is usually referred to as the equation of motion. The quantity in brackets is called

the momentum,

p ⌘ mẋ

Here m is the mass of the particle or, more precisely, the inertial mass. It is a measure

of the reluctance of the particle to change its motion when subjected to a given force

F. In most situations, the mass of the particle does not change with time. In this case,

we can write the second law in the more familiar form,

mẍ = F(x, ẋ) (1.2)

For much of this course, we will use the form (1.2) of the equation of motion. However,

in Section 5.3, we will briefly look at a few cases where masses are time dependent and

we need the more general form (1.1).

Newton’s second law doesn’t actually tell us anything until someone else tells us what

the force F is in any given situation. We will describe several examples in the next

section. In general, the force can depend on the position x and the velocity ẋ of the

particle, but does not depend on any higher derivatives. We could also, in principle,

consider forces which include an explicit time dependence, F(x, ẋ, t), although we won’t

do so in these lectures. Finally, if more than one (independent) force is acting on the

particle, then we simply take their sum on the right-hand side of (1.2).

The single most important fact about Newton’s equation is that it is a second order

di↵erential equation. This means that we will have a unique solution only if we specify

two initial conditions. These are usually taken to be the position x(t0) and the velocity

ẋ(t0) at some initial time t0. However, exactly what boundary conditions you must

choose in order to figure out the trajectory depends on the problem you are trying to

solve. It is not unusual, for example, to have to specify the position at an initial time

t0 and final time tf to determine the trajectory.
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The fact that the equation of motion is second order is a deep statement about

the Universe. It carries over, in essence, to all other laws of physics, from quantum

mechanics to general relativity to particle physics. Indeed, the fact that all initial

conditions must come in pairs — two for each “degree of freedom” in the problem

— has important ramifications for later formulations of both classical and quantum

mechanics.

For now, the fact that the equations of motion are second order means the following:

if you are given a snapshot of some situation and asked “what happens next?” then

there is no way of knowing the answer. It’s not enough just to know the positions of

the particles at some point of time; you need to know their velocities too. However,

once both of these are specified, the future evolution of the system is fully determined

for all time.

1.4 Looking Forwards: The Validity of Newtonian Mechanics

Although Newton’s laws of motion provide an excellent approximation to many phe-

nomena, when pushed to extreme situation they are found wanting. Broadly speaking,

there are three directions in which Newtonian physics needs replacing with a di↵erent

framework: they are

• When particles travel at speeds close to the speed light, c ⇡ 3 ⇥ 108 ms
�1,

the Newtonian concept of absolute time breaks down and Newton’s laws need

modification. The resulting theory is called special relativity and will be described

in Section 7. As we will see, although the relationship between space and time

is dramatically altered in special relativity, much of the framework of Newtonian

mechanics survives unscathed.

• On very small scales, much more radical change is needed. Here the whole frame-

work of classical mechanics breaks down so that even the most basic concepts,

such as the trajectory of a particle, become ill-defined. The new framework that

holds on these small scales is called quantum mechanics. Nonetheless, there are

quantities which carry over from the classical world to the quantum, in particular

energy and momentum.

• When we try to describe the forces at play between particles, we need to introduce

a new concept: the field. This is a function of both space and time. Familiar

examples are the electric and magnetic fields of electromagnetism. We won’t have

too much to say about fields in this course. For now, we mention only that the

equations which govern the dynamics of fields are always second order di↵erential
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equations, similar in spirit to Newton’s equations. Because of this similarity, field

theories are again referred to as “classical”.

Eventually, the ideas of special relativity, quantum mechanics and field theories are

combined into quantum field theory. Here even the concept of particle gets subsumed

into the concept of a field. This is currently the best framework we have to describe

the world around us. But we’re getting ahead of ourselves. Let’s firstly return to our

Newtonian world....
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