
7. Special Relativity

Although Newtonian mechanics gives an excellent description of Nature, it is not uni-

versally valid. When we reach extreme conditions — the very small, the very heavy or

the very fast — the Newtonian Universe that we’re used to needs replacing. You could

say that Newtonian mechanics encapsulates our common sense view of the world. One

of the major themes of twentieth century physics is that when you look away from our

everyday world, common sense is not much use.

One such extreme is when particles travel very fast. The theory that replaces New-

tonian mechanics is due to Einstein. It is called special relativity. The e↵ects of special

relativity become apparent only when the speeds of particles become comparable to

the speed of light in the vacuum. The speed of light is

c = 299792458 ms
�1

This value of c is exact. It may seem strange that the speed of light is an integer

when measured in meters per second. The reason is simply that this is taken to be

the definition of what we mean by a meter: it is the distance travelled by light in

1/299792458 seconds. For the purposes of this course, we’ll be quite happy with the

approximation c ⇡ 3⇥ 108 ms
�1.

The first thing to say is that the speed of light is fast. Really fast. The speed of

sound is around 300 ms
�1; escape velocity from the Earth is around 104 ms

�1; the

orbital speed of our solar system in the Milky Way galaxy is around 105 ms
�1. As we

shall soon see, nothing travels faster than c.

The theory of special relativity rests on two experimental facts. (We will look at the

evidence for these shortly). In fact, we have already met the first of these: it is simply

the Galilean principle of relativity described in Section 1. The second postulate is more

surprising:

• Postulate 1: The principle of relativity: the laws of physics are the same in all

inertial frames

• Postulate 2: The speed of light in vacuum is the same in all inertial frames

On the face of it, the second postulate looks nonsensical. How can the speed of light

look the same in all inertial frames? If light travels towards me at speed c and I run

away from the light at speed v, surely I measure the speed of light as c � v. Right?

Well, no.
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This common sense view is encapsulated in the Galilean transformations that we

met in Section 1.2.1. Mathematically, we derive this “obvious” result as follows: two

inertial frames, S and S
0, which move relative to each with velocity v = (v, 0, 0), have

Cartesian coordinates related by

x
0 = x� vt , y

0 = y , z
0 = z , t

0 = t (7.1)

If a ray of light travels in the x direction in frame S with speed c, then it traces out

the trajectory x/t = c. The transformations above then tell us that in frame S
0 the

trajectory if the light ray is x
0
/t

0 = c � v. This is the result we claimed above: the

speed of light should clearly be c � v. If this is wrong (and it is) something must be

wrong with the Galilean transformations (7.1). But what?

Our immediate goal is to find a transformation law that obeys both postulates above.

As we will see, the only way to achieve this goal is to allow for a radical departure in

our understanding of time. In particular, we will be forced to abandon the assumption

of absolute time, enshrined in the equation t
0 = t above. We will see that time ticks at

di↵erent rates for observers sitting in di↵erent inertial frames.

7.1 Lorentz Transformations

We stick with the idea of two inertial frames, S and S
0, moving with relative speed v.

For simplicity, we’ll start by ignoring the directions y and z which are perpendicular to

the direction of motion. Both inertial frames come with Cartesian coordinates: (x, t)

for S and (x0
, t

0) for S
0. We want to know how these are related. The most general

possible relationship takes the form

x
0 = f(x, t) , t

0 = g(x, t)

for some function f and g. However, there are a couple of facts that we can use to

immediately restrict the form of these functions. The first is that the law of inertia

holds; left alone in an inertial frame, a particle will travel at constant velocity. Drawn

in the (x, t) plane, the trajectory of such a particle is a straight line. Since both S and

S
0 are inertial frames, the map (x, t) 7! (x0

, t
0) must map straight lines to straight lines;

such maps are, by definition, linear. The functions f and g must therefore be of the

form

x
0 = ↵1x+ ↵2t , t

0 = ↵3x+ ↵4t

where ↵i, i = 1, 2, 3, 4 can each be a function of v.
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Secondly, we use the fact that S 0 is travelling at speed v relative t

x

S’

Figure 43:

to S. This means that an observer sitting at the origin, x0 = 0,

of S 0 moves along the trajectory x = vt in S shown in the figure.

Or, in other words, the points x = vt must map to x
0 = 0. (There

is actually one further assumption implicit in this statement: that

the origin x
0 = 0 coincides with x = 0 when t = 0). Together with

the requirement that the transformation is linear, this restricts

the coe�cients ↵1 and ↵2 above to be of the form,

x
0 = �(x� vt) (7.2)

for some coe�cient �. Once again, the overall coe�cient � can be a function of the

velocity: � = �v. (We’ve used subscript notation �v rather than the more standard �(v)

to denote that � depends on v. This avoids confusion with the factors of (x�vt) which

aren’t arguments of � but will frequently appear after � like in the equation (7.2)).

There is actually a small, but important, restriction on the form of �v: it must be

an even function, so that �v = ��v. There are a couple of ways to see this. The first

is by using rotational invariance, which states that � can depend only on the direction

of the relative velocity v, but only on the magnitude v
2 = v · v. Alternatively, if this

is a little slick, we can reach the same conclusion by considering inertial frames S̃ and

S̃
0 which are identical to S and S

0 except that we measure the x-coordinate in the

opposite direction, meaning x̃ = �x and x̃
0 = �x0. While S is moving with velocity

+v relative to S
0, S̃ is moving with velocity �v with respect to S̃

0 simply because we

measure things in the opposite direction. That means that

x̃
0 = ��v

�
x̃+ vt̃

�

Comparing this to (7.2), we see that we must have �v = ��v as claimed.

We can also look at things from the perspective of S 0, relative to t’

x’

S

Figure 44:

which the frame S moves backwards with velocity �v. The same

argument that led us to (7.2) now tells us that

x = �(x0 + vt
0) (7.3)

Now the function � = ��v. But by the argument above, we know

that �v = ��v. In other words, the coe�cient � appearing in (7.3)

is the same as that appearing in (7.2).
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At this point, things don’t look too di↵erent from what we’ve seen before. Indeed, if

we now insisted on absolute time, so t = t
0, we’re forced to have � = 1 and we get back

to the Galilean transformations (7.1). However, as we’ve seen, this is not compatible

with the second postulate of special relativity. So let’s push forward and insist instead

that the speed of light is equal to c in both S and S
0. In S, a light ray has trajectory

x = ct

While, in S
0, we demand that the same light ray has trajectory

x
0 = ct

0

Substituting these trajectories into (7.2) and (7.3), we have two equations relating t

and t
0,

ct
0 = �(c� v)t and ct = �(c+ v)t0

A little algebra shows that these two equations are compatible only if � is given by

� =

s
1

1� v2/c2
(7.4)

We’ll be seeing a lot of this coe�cient � in what follows. Notice that for v ⌧ c, we

have � ⇡ 1 and the transformation law (7.2) is approximately the same as the Galilean

transformation (7.1). However, as v ! c we have � ! 1. Furthermore, � becomes

imaginary for v > c which means that we’re unable to make sense of inertial frames

with relative speed v > c.

Equations (7.2) and (7.4) give us the transformation law for the spatial coordinate.

But what about for time? In fact, the temporal transformation law is already lurking in

our analysis above. Substituting the expression for x0 in (7.2) into (7.3) and rearranging,

we get

t
0 = �

⇣
t�

v

c2
x

⌘
(7.5)

We shall soon see that this equation has dramatic consequences. For now, however, we

merely note that when v ⌧ c, we recover the trivial Galilean transformation law t
0
⇡ t.

Equations (7.2) and (7.5) are the Lorentz transformations.
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7.1.1 Lorentz Transformations in Three Spatial Dimensions

In the above derivation, we ignored the transformation of the coordinates y and z

perpendicular to the relative motion. In fact, these transformations are trivial. Using

the above arguments for linearity and the fact that the origins coincide at t = 0, the

most general form of the transformation is

y
0 = y

But, by symmetry, we must also have y = y
0. Clearly, we require  = 1. (The other

possibility  = �1 does not give the identity transformation when v = 0. Instead, it is

a reflection).

With this we can write down the final form of the Lorentz transformations. Note

that they look more symmetric between x and t if we write them using the combination

ct,

x
0 = �

⇣
x�

v

c
ct

⌘

y
0 = y

z
0 = z (7.6)

ct
0 = �

⇣
ct�

v

c
x

⌘

where � is given by (7.4). These are also known as Lorentz boosts. Notice that for

v/c⌧ 1, the Lorentz boosts reduce to the more intuitive Galilean boosts that we saw

in Section 1. (We sometimes say, rather sloppily, that the Lorentz transformations

reduce to the Galilean transformations in the limit c!1).

It’s also worth stressing again the special properties of these transformations. To be

compatible with the first postulate, the transformations must take the same form if we

invert them to express x and t in terms of x0 and t
0, except with v replaced by �v.

And, after a little bit of algebraic magic, they do.

Secondly, we want the speed of light to be the same in all inertial frames. For light

travelling in the x direction, we already imposed this in our derivation of the Lorentz

transformations. But it’s simple to check again: in frame S, the trajectory of an object

travelling at the speed of light obeys x = ct. In S
0, the same object will follow the

trajectory x
0 = �(x� vt) = �(ct� vx/c) = ct

0.

– 111 –



ct

x

P

ct

x

Figure 45: The worldline of a particle Figure 46: Light rays travel at 45�

What about an object travelling in the y direction at the speed of light? Its trajectory

in S is y = ct. From (7.6), its trajectory in S
0 is y0 = ct

0
/� and x

0 = �vt0. Its speed in

S
0 is therefore v

0 2 = v
2
x + v

2
y , or

v
0 2 =

✓
x
0

t0

◆2

+

✓
y
0

t0

◆2

= v
2 +

c
2

�2
= c

2

7.1.2 Spacetime Diagrams

We’ll find it very useful to introduce a simple spacetime diagram to illustrate the physics

of relativity. In a fixed inertial frame, S, we draw one direction of space — say x —

along the horizontal axis and time on the vertical axis. But things look much nicer if

we rescale time and plot ct on the vertical instead. In the context of special relativity,

space and time is called Minkowski space. (Although the true definition of Minkowski

space requires some extra structure on space and time which we will meet in Section

7.3).

This is a spacetime diagram. Each point, P , represents an event. In the following,

we’ll label points on the spacetime diagram as coordinates (ct, x) i.e. giving the coor-

dinate along the vertical axis first. This is backwards from the usual way coordinates

but is chosen so that it is consistent with a later, standard, convention that we will

meet in Section 7.3.

A particle moving in spacetime traces out a curve called a worldline as shown in

the figure. Because we’ve rescaled the time axis, a light ray moving in the x direction

moves at 45�. We’ll later see that no object can move faster than the speed of light

which means that the worldlines of particles must always move upwards at an angle

steeper than 45�.
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The horizontal and vertical axis in the spacetime diagram are the coordinates of the

inertial frame S. But we could also draw the axes corresponding to an inertial frame

S
0 moving with relative velocity v = (v, 0, 0). The t

0 axis sits at x0 = 0 and is given by

x = vt

Meanwhile, the x0 axis is determined by t
0 = 0 which, from

ct

x

x’

ct’

Figure 47:

the Lorentz transformation (7.6), is given by the equation

ct =
v

c
x

These two axes are drawn on the figure to the right. They

can be the thought of as the x and ct axes, rotated by an

equal amount towards the diagonal light ray. The fact

the axes are symmetric about the light ray reflects the

fact that the speed of light is equal to c in both frames.

7.1.3 A History of Light Speed

The first evidence that light does not travel instantaneously was presented by the

Danish Astronomer Ole Rømer in 1676. He noticed that the periods of the orbits of Io,

the innermost moon of Jupiter, are not constant. When the Earth is moving towards

Jupiter, the orbits are a few minutes shorter; when the Earth moves away, the orbits

are longer by the same amount. Rømer correctly deduced that this was due to the

finite speed of light and gave a rough estimate for the value of c.

By the mid 1800s, the speed of light had been determined fairly accurately using

experiments involving rotating mirrors. Then came a theoretical bombshell. Maxwell

showed that light could be understood as oscillations of the electric and magnetic

fields. He related the speed of light to two constants, ✏0 and µ0, the permittivity and

permeability of free space, that arise in the theory of electromagnetism,

c =

r
1

✏0µ0
(7.7)

But, as we have seen, Newtonian physics tells us that speeds are relative. If Maxwell’s

equations predict a value for the speed of light, it was thought that these equations must

be valid only in a preferred reference frame. Moreover, this does not seem unreasonable;

if light is a wave then surely there is something waving. Just as water waves need

water, and sound waves need air, so it was thought that light waves need a material

to propagate in. This material was dubbed the luminiferous ether and it was thought

that Maxwell’s equations must only be valid in the frame at rest with respect to this

ether.
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In 1881, Michelson and Morley performed an experiment to detect the relative motion

of the Earth through the ether. Since the Earth is orbiting the Sun at a speed of

3 ⇥ 104 ms
�1, even if it happens to be stationary with respect to the ether at some

point, six months later this can no longer be the case.

Suppose that at some moment the Earth is moving in the x-direction relative to

the ether with some speed v. The Newtonian addition of velocities tells us that light

propagating in the x-direction should have speed c+ v going one way and c� v going

the other. The total time to travel backwards and forwards along a length L should

therefore be

Tx =
L

c+ v
+

L

c� v
=

2cL

c2 � v2

Meanwhile, light making the same journey in the y-direction will have to travel (by

Pythagoras) a total distance of
p

L2 + v2(Ty/2)2 on each leg of the journey. It makes

this journey at speed c, meaning that we can equate

cTy

2
=
q

L2 + v2(Ty/2)2 ) Ty =
2L

p
c2 � v2

The goal of the Michelson-Morley experiment was to measure the time di↵erence be-

tween Ty and Tx using interference patterns of light ray making the two journeys.

Needless to say, the experiment didn’t work: there seemed to be no di↵erence in the

time taken to travel in the x direction and y direction.

Towards the end of the 1800s, the null result of the Michelson-Morley experiment

had become one of the major problems in theoretical physics. Several explanations

were proposed, including the idea that the ether was somehow dragged along with the

Earth. The Dutch physicist, Hendrik Lorentz, went some way to finding the correct

solution. He had noticed that Maxwell’s equations had the peculiar symmetry that we

now call the Lorentz transformations. He argued that if a reason could be found that

would allow distances between matter to change as

x
0 = �(x� vt)

then lengths would be squeezed in the direction parallel to the ether, explaining why

no di↵erence is seen between Tx and Ty. (We will shortly derive this contraction of

lengths using special relativity). Lorentz set to work trying to provide a mechanical

explanation for this transformation law.
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Figure 48: Simultaneity is relative

Although Lorentz had put in place much of the mathematics, the real insight came

from Einstein in 1905. He understood that there is no mechanical mechanism un-

derlying the Lorentz transformations. Nor is there an ether. Instead, the Lorentz

transformations are a property of space and time themselves.

With Einstein’s new take on the principle of relativity, all problems with Maxwell’s

equation evaporate. There is no preferred inertial frame. Instead, Maxwell’s equations

work equally well in all inertial frames. However, they are not invariant under the

older transformations of Galilean relativity; instead they are the first law of physics

to be invariant under the correct transformations (7.6) of Einstein/Lorentz relativity.

It’s worth pointing out that, from this perspective, we could dispense with the second

postulate of relativity all together. We need only insist that the laws of physics – which

include Maxwell’s equations – hold in all inertial frames. Since Maxwell’s equations

predict (7.7), this implies the statement that the speed of light is the same in all inertial

frames. But since we haven’t yet seen the relationship between Maxwell’s equations,

light and relativity, it’s perhaps best to retain the second postulate for now.

7.2 Relativistic Physics

In this section we will explore some of the more interesting and surprising consequences

of the Lorentz transformations.

7.2.1 Simultaneity

We start with a simple question: how can we be sure that things happen at the same

time? In Newtonian physics, this is a simple question to answer. In that case, we have

an absolute time t and two events, P1 and P2, happen at the same time if t1 = t2.

However, in the relativistic world, things are not so easy.
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We start with an observer in inertial frame S, with time coordinate t. This observer

sensibly decides that two events, P1 and P2, occur simultaneously if t1 = t2. In the

spacetime diagram on the left of Figure 48 we have drawn lines of simultaneity for this

observer.

But for an observer in the inertial frame S
0, simultaneity of events occurs for equal

t
0. Using the Lorentz transformation, lines of constant t0 become lines described by the

equation t� vx/c
2 = constant. These lines are drawn on the spacetime diagram on the

right of Figure 48.

The upshot of this is that two events simultaneous in one inertial frame are not

simultaneous in another. An observer in S thinks that events P1 and P2 happen at the

same time. All other observers disagree.

A Train Story

v

Figure 49: Lights on Trains: Simultaneity is Relative

The fact that all observers cannot agree on what events are simultaneous is a

direct consequence of the fact that all observers do agree on the speed of light. We

can illustrate this connection with a simple gedankenexperiment. (An ugly German

word for “thought experiment”, a favourite trick of theoretical physicists who can’t be

bothered to do real experiments). Consider a train moving at constant speed, with a

lightbulb hanging from the middle of one of the carriages. A passenger on the train

turns on the bulb and, because the bulb is equidistant from both the front and back

wall of the carriage, observes that the light hits both walls at the same time.

However, a person standing on the platform as the train passes through disagrees.

The light from the bulb travels at equal speed ±c to the left and right, but the back of

the train is rushing towards the point in space where the light first emerged from. The

person on the platform will see the light hit the back of the train first.
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It is worth mentioning that although the two people disagree on whether the light

hits the walls at the same time, this does not mean that they can’t be friends.

A Potential Confusion: What the Observer Observes

We’ll pause briefly to press home a point that may lead to confusion. You might

think that the question of simultaneity has something to do with the finite speed of

propagation. You don’t see something until the light has travelled to you, just as you

don’t hear something until the sound has travelled to you. This is not what’s going on

here! A look at the spacetime diagram in Figure 48 shows that we’ve already taken

this into account when deciding whether two events occur simultaneously. The lack of

simultaneity between moving observers is a much deeper issue, not due to the finiteness

of the speed of light but rather due to the constancy of the speed of light.

The confusion about the time of flight of the signal is sometimes compounded by

the common use of the word observer to mean “inertial frame”. This brings to mind

some guy sitting at the origin, surveying all around him. Instead, you should think of

the observer more as a Big Brother figure: a sea of clocks and rulers throughout the

inertial frame which can faithfully record and store the position and time of any event,

to be studied at some time in the future.

Of course, this means that there is a second question we can ask which is: what

does the guy sitting at the origin actually see? Now we have to take into account

both the relative nature of simultaneity and the issues related with the finite speed of

propagation. This adds an extra layer of complexity which we will discuss in Section

7.6.

7.2.2 Causality

We’ve seen that di↵erent observers disagree on the temporal ordering of two events.

But where does that leave the idea of causality? Surely it’s important that we can say

that one event definitely occurred before another. Thankfully, all is not lost: there are

only some events which observers can disagree about.

To see this, note that because Lorentz boosts are only possible for v < c, the lines of

simultaneity cannot be steeper than 45�. Take a point P and draw the 45� light rays

that emerge from P . This is called the light cone. (For once, in the figure, I’ve drawn

this with an extra spatial dimension present to illustrate how this works in spatial

dimensions bigger than one). The light cone is really two cones, touching at the point

P . They are known as the future light cone and past light cone.
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For events inside the light cone of P , there is no dif-

x

ct

R

P

Q

Figure 50:

ficulty deciding on the temporal ordering of events. All ob-

servers will agree that Q occurred after P . However, for events

outside the light cone, the matter is up for grabs: some ob-

servers will see R as happening after P ; some before.

This tells us that the events which all observers agree can

be causally influenced by P are those inside the future light

cone. Similarly, the events which can plausibly influence P

are those inside the past light cone. This means that we can

sleep comfortably at night, happy in the knowledge that causality is preserved, only if

nothing can propagate outside the light cone. But that’s the same thing as travelling

faster than the speed of light.

The converse to this is that if we do ever see particles that travel faster than the

speed of light, we’re in trouble. We could use them to transmit information faster than

light. But another observer would view this as transmitting information backwards in

time. All our ideas of cause and e↵ect will be turned on their head. You will therefore

be relieved to learn that we will show in Section 7.3 why it is impossible to accelerate

particles past the light speed barrier.

There is a corollary to the statement that events outside the lightcone cannot influ-

ence each other: there are no perfectly rigid objects. Suppose that you push on one

end of a rod. The other end cannot move immediately since that would allow us to

communicate faster than the speed of light. Of course, for real rods, the other end does

not move instantaneously. Instead, pushing on one end of the rod initiates a sound

wave which propagates through the rod, telling the other parts to move. The state-

ment that there is no rigid object is simply the statement that this sound wave must

travel slower than the speed of light.

Finally, let me mention that when we’re talking about waves, as opposed to point

particles, there is a slight subtlety in exactly what must travel slower than light. There

are at least two velocities associated to a wave: the group velocity is (usually) the speed

at which information can be communicated. This is less than c. In contrast, the phase

velocity is the speed at which the peaks of the wave travel. This can be greater than

c, but transmits no information.

7.2.3 Time Dilation

We’ll now turn to one of the more dramatic results of special relativity. Consider a

clock sitting stationary in the frame S 0 which ticks at intervals of T 0. This means that
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the tick events in frame S 0 occur at (ct01, 0) then (ct01 + cT
0
, 0) and so on. What are the

intervals between ticks in frame S?

We can answer immediately from the Lorentz transformations (7.6). Inverting this

gives

t = �

✓
t
0 +

vx
0

c2

◆

The clock sits at x0 = 0, so we immediately learn that in frame S, the interval between

ticks is

T = �T
0

This means that the gap between ticks is longer in the stationary frame. A moving

clock runs more slowly. But the same argument holds for any process, be it clocks,

elementary particles or human hearts. The correct interpretation is that time itself

runs more slowly in moving frames.

Another Train Story

v

Figure 51: More Lights on Trains: Time Dilation

Let’s go back to our lightbulb and gedankenbahn. If the train has height h, a

passenger on the train will measure time t
0 = h/c for the light to travel from the

light bulb to the middle of the floor (i.e. the point directly below the light bulb).

What about for the guy on the platform? After the light turns on, the train has moved

forward at speed v. To hit the same point on the floor, the light has to travel a distancep
h2 + (vt)2. The time taken is therefore

t =

p
h2 + (vt)2

c
) t =

h

c

s
1

1� v2/c2
= �t

0

This gives another, more pictorial, derivation of the time dilation formula.
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On Muons and Planes

Away from the world of gedankenexperiments, there are a couple of real experimental

consequences of time dilation. Certainly the place that this phenomenon is tested most

accurately is in particle accelerators where elementary particles routinely reach speeds

close to c. The protons spinning around the LHC have � ⇡ 3500. The previous collider

in CERN, called LEP, accelerated electrons and positrons to � ⇡ 2 ⇥ 105. (Although

the electrons in LEP were travelling faster than the protons in LHC, the greater mass

of the protons means that there is substantially more energy in the LHC collisions).

The e↵ect of time dilation is particularly vivid on unstable particles which live much

longer in the lab frame than in their own rest frame. An early demonstration was seen

in muons in 1941. These are heavier, unstable, versions of the electron. They decay

into an electron, together with a couple of neutrinos, with a half-life of ⌧ ⇡ 2⇥ 10�6
s.

Muons are created when cosmic rays hit the atmosphere, and subsequently rain down

on Earth. Yet to make it down to sea level, it takes about t = 7 ⇥ 10�6
s, somewhat

longer than their lifetime. Given this, why are there any muons detected on Earth

at all? Surely they should have decayed. The reason that they do not is because the

muons are travelling at a speed v ⇡ 0.99c, giving � ⇡ 10. From the muon’s perspective,

the journey only takes t0 = t/� ⇡ 7⇥ 10�7
s, somewhat less than their lifetime.

Note that elementary particles are, by definition, structureless. They’re certainly

not some clock with an internal machinery. The reason that they live longer can’t be

explained because of some mechanical device which slows down: it is time itself which

is running slower.

A more direct test of time dilation was performed in 1971 by Hafele and Keating.

They flew two atomic clocks around the world on commercial airliners; two more were

left at home. When they were subsequently brought together, their times di↵ered by

about 10�7
s. There are actually two contributions to this e↵ect: the time dilation

of special relativity that we’ve seen above, together with a related e↵ect in general

relativity due to the gravity of the Earth.

Twin Paradox

Two twins, Luke and Leia, decide to spend some time apart. Leia stays at home while

Luke jumps in a spaceship and heads at some speed v to the planet Tatooine. With

sadness, Leia watches Luke leave but is relieved to see — only a time T later from her

perspective — him safely reach the planet.
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However, upon arrival, Luke finds that he doesn’t like Tatooine so much. It is a

dusty, violent place with little to do. So he turns around and heads back to Leia at the

same speed v as before. When he returns, he finds that Leia has aged by TLeia = 2T .

And yet, fresh faced Luke has only aged by TLuke = 2T/�. We see, that after the

journey, Luke is younger than Leia. In fact, for large enough values of �, Luke could

return to find Leia long dead.

This is nothing more than the usual time dilation story. So why is it a paradox?

Well, things seem puzzling from Luke’s perspective. He’s sitting happily in his inertial

spaceship, watching Leia and the whole planet flying o↵ into space at speed v. From

his perspective, it should be Leia who is younger. Surely things should be symmetric

between the two?

The resolution to this “paradox” is that there is no symmetry between Luke’s journey

and Leia’s. Leia remained in an inertial frame for all time. Luke, however, does not.

When he reaches Tatooine, he has to turn around and this event means that he has to

accelerate. This is what breaks the symmetry.

We can look at this in some detail. We draw the space- ct

x’

x

X

Y

Luke

P=Arrival

Figure 52:

time diagram in Leia’s frame. Luke sits at x = vt, or x0 = 0.

Leia sits at x = 0. Luke reaches Tatooine at point P . We’ve

also drawn two lines of simultaneity. The point Y is when

Leia thinks that Luke has arrived on Tatooine. The point X

is where Luke thinks Leia was when he arrived at Tatooine.

As we’ve already seen, it’s quite ok for Luke and Leia to dis-

agree on the simultaneity of these points. Let’s figure out the

coordinates for X and Y .

Event Y sits at coordinate (cT, 0) in Leia’s frame, while P is at (cT, vT ). The time

elapsed in Luke’s frame is just the usual time dilation calculation,

T
0 = �

✓
T �

v
2
T

c2

◆
=

T

�

We can also work out the coordinates of the event X. Clearly this takes place at x = 0

in Leia’s frame. In Luke’s frame, this is simultaneous with his arrival at Tatooine, so

occurs at t0 = T
0 = T/�. We can again use the Lorentz transformation

t
0 = �

✓
t�

v
2
x

c2

◆
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now viewed as an equation for t given x and t
0. This gives us

t =
T

0

�
=

T

�2

So at this point, we see that everything is indeed symmetric. When Luke reaches

Tatooine, he thinks that Leia is younger than him by a factor of �. Meanwhile, Leia

thinks that Luke is younger than her by the same factor .

Things change when Luke turns around. To illustrate this, let’s first consider a

di↵erent scenario where he doesn’t return from Tatooine. Instead, as soon as he arrives,

he synchronises his clock with a friend – let’s call him Han – who is on his way to meet

Leia. Now things are still symmetric. Luke thinks that Leia has aged by T/�
2 on the

outward journey; Han also thinks that Leia has aged by T/�
2 on the inward journey.

So where did the missing time go?

We can see this by looking at the spacetime diagram of

Tatooine

x’

x

X

Y

ct

Z

Luke

Han

Figure 53:

Han’s journey. We’ve again drawn lines of simultaneity. From

Han’s perspective, he thinks that Leia is sitting at point Z

when he leaves Tatooine, while Luke is still convinced that

she’s sitting at point X. It’s not hard to check that at point

Z, Leia’s clock reads t = 2T � T/�
2.

From this perspective, we can also see what happens if Luke

does return home. When he arrives at Tatooine, he thinks

Leia is at point X. Yet, in the time he takes to turn around

and head home, the acceleration makes her appear to rapidly

age, from point X to point Z.

7.2.4 Length Contraction

We’ve seen that moving clocks run slow. We will now show that moving rods are

shortened. Consider a rod of length L
0 sitting stationary in the frame S

0. What is its

length in frame S?

To begin, we should state more carefully something which seems obvious: when we

say that a rod has length L
0, it means that the distance between the two end points

at equal times is L
0. So, drawing the axes for the frame S

0, the situation looks like

the picture on the left. The two, simultaneous, end points in S
0 are P1 and P2. Their

coordinates in S
0 are (ct0, x0) = (0, 0) and (0, L0) respectively.
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P1 P2 P1

P2

ct’

x’

x’

ct

x

L’
L

Figure 54: Length Contraction

Now let’s look at this in frame S. This is drawn in right-hand picture. Clearly P1

sits at (ct, x) = (0, 0). Meanwhile, the Lorentz transformation gives us the coordinate

for P2

x = �L
0 and t =

�vL
0

c2

But to measure the rod in frame S, we want both ends to be at the same time. And

the points P1 and P2 are not simultaneous in S. We can follow the point P2 backwards

along the trajectory of the end point to Q2, which sits at

x = �L
0
� vt

We want Q2 to be simultaneous with P1 in frame S. This means we must move back

a time t = �vL
0
/c

2, giving

x = �L
0
�

�v
2
L
0

c2
=

L
0

�

This is telling us that the length L measured in frame S is

L =
L
0

�

It is shorter than the length of the rod in its rest frame by a factor of �. This phe-

nomenon is known as Lorentz contraction.

Putting Ladders in Barns

Take a ladder of length 2L and try to put it in a barn of length L. If you run fast enough,

can you squeeze it? Here are two arguments, each giving the opposite conclusion
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• From the perspective of the barn, the ladder contracts to a length 2L/�. This

shows that it can happily fit inside as long as you run fast enough, with � � 2

• From the perspective of the ladder, the barn has contracted to length L/�. This

means there’s no way you’re going to get the ladder inside the barn. Running

faster will only make things worse

What’s going on? As usual, to reconcile these two points of view we need to think more

carefully about the question we’re asking. What does it mean to “fit a ladder inside

a barn”? Any observer will agree that we’ve achieved this if the back end gets in the

door before the front end hits the far wall. But we know that simultaneity of events

is not fixed, so the word “before” in this definition suggests that it may be something

di↵erent observers will disagree on. Let’s see how this works.

The spacetime diagram in the frame of the barn is ct

x

door wall

Figure 55:

drawn in the figure with � > 2. We see that, from the

barn’s perspective, both back and front ends of the ladder

are happily inside the barn at the same time. We’ve also

drawn the line of simultaneity for the ladder’s frame. This

shows that when the front of the ladder hits the far wall, the

back end of the ladder has not yet got in the door. Is the

ladder in the barn? Well, it all depends who you ask.

7.2.5 Addition of Velocities

A particle moves with constant velocity u
0 in frame S

0 which, in turn, moves with

constant velocity v with respect to frame S. What is the velocity u of the particle as

seen in S?

The Newtonian answer is just u = u
0 + v. But we know that this can’t be correct

because it doesn’t give the right answer when u
0 = c. So what is the right answer?

The worldline of the particle in S
0 is

x
0 = u

0
t
0 (7.8)

So the velocity of the particle in frame S is given by

u =
x

t
=

�(x0 + vt
0)

�(t0 + vx0/c2)

which follows from the Lorentz transformations (7.6). (Actually, we’ve used the inverse

Lorentz transformations since we want S coordinates in terms of S 0 coordinates, but
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these di↵er only changing �v to v). Substituting (7.8) into the expression above, and

performing a little algebra, gives us the result we want:

u =
u
0 + v

1 + u0v/c2
(7.9)

Note that when u
0 = c, this gives us u = c as expected.

We can also show that if |u0
| < c and |v| < c then we necessarily have �c < u < c.

The proof is simple algebra, if a little fiddly

c� u = c�
u
0 + v

1 + u0v/c2
=

c(c� u
0)(c� v)

c2 + u0v
> 0

where the last equality follows because, by our initial assumptions, each factor in the

final expression is positive. An identical calculation will show you that �c < u as well.

We learn that if a particle is travelling slower than the speed of light in one inertial

frame, it will also be travelling slower than light in all others.

7.3 The Geometry of Spacetime

The views of space and time which I wish to lay before you have sprung from

the soil of experimental physics, and therein lies their strength. They are

radical. Henceforth space by itself, and time by itself, are doomed to fade

away into mere shadows, and only a kind of union of the two will preserve

an independent reality.

Hermann Minkowski, 1908

We have seen that time is relative, length is relative, simultaneity is relative. Is

nothing sacred anymore? Well, the answer is yes: there is one measurement that all

observers will agree on.

7.3.1 The Invariant Interval

Let’s start by considering a spacetime with just a single spatial coordinate, x. In

frame S, two events P1 and P2 have coordinates (ct1, x1) and (ct2, x2). The events are

separated by �t = t1 � t2 in time and �x = x1 � x2 in space.

We define the invariant interval �s
2 as a measure of the distance between these two

points:

�s
2 = c

2�t
2
��x

2
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The advantage of the invariant interval is that it is something all observers agree upon.

In frame S
0, we have

�s
2 = �

2

✓
c�t

0 +
v�x

0

c

◆2

� �
2 (�x

0 + v�t
0)2

= �
2(c2 � v

2)�t
0 2
� �

2

✓
1�

v
2

c2

◆
�x

0 2 (7.10)

= c
2�t

0 2
��x

0 2

where, in going from the first line to the second, we see that the cross-terms �t
0�x

0

cancel out.

Including all three spatial dimensions, the definition of the invariant interval is

�s
2 = c

2�t
2
��x

2
��y

2
��z

2 (7.11)

which, again, is the same in all frames. (The only non-trivial part of the calculation is

(7.10) above since y and z are invariant under a boost in the x direction).

The spacetime of special relativity is topologically R4. When endowed with the

measure of distance (7.11), this spacetime is referred to as Minkowski space. Although

topologically equivalent to Euclidean space, distances are measured di↵erently. To

stress the di↵erence between the time and spatial directions, Minkowski space is some-

times said to have dimension d = 1 + 3. (For once, it’s important that you don’t do

this sum!).

In later courses — in particular General Relativity — you will see the invariant

interval written as the distance between two infinitesimally close points. In practice

that just means we replace all the �(something)s with d(something)s.

ds
2 = c

2
dt

2
� dx

2
� dy

2
� dz

2

In this infinitesimal form, ds2 is called the line element.

The invariant interval provides an observer-independent characterisation of the dis-

tance between any two events. However, it has a strange property: it is not positive

definite. Two events whose separation is �s
2
> 0 are said to be timelike separated.

They are closer together in space than they are in time. Pictorially, such events sit

within each others light cone.
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In contrast, events with �s
2
< 0 are said to be spacelike separated. They sit outside

each others light cone. From our discussion in Section 7.2.2, we know that two observers

can disagree about the temporal ordering of spacelike separated events. However,

they agree on the ordering of timelike separated events. Note that since �s
2
< 0 for

spacelike separated events, if you insist on talking about �s itself then it must be

purely imaginary. However, usually it will be perfectly fine if we just talk about �s
2.

Finally, two events with �s
2 = 0 are said to be lightlike separated. Notice that this

is an important di↵erence between the invariant interval and most measures of distance

that you’re used to. Usually, if two points are separated by zero distance, then they are

the same point. This is not true in Minkowski spacetime: if two points are separated

by zero distance, it means that they can be connected by a light ray.

A Rotational Analogy

There’s a simple analogy to understand the meaning of the invariant interval. Let’s go

back to consider three dimensional Euclidean space with coordinates x = (x, y, z). An

observer measures the position of a stationary object — let’s say a helicopter — and

proudly announces the x and y and z coordinates of the helicopter.

Meanwhile, a second observer shares the same origin as the first, but has rotated his

axes to use coordinates x 0 = (x0
, y

0
, z

0) where x 0 = Rx for some rotation matrix R. He

too sees the helicopter, and declares that it sits at coordinates x0, y0 and z
0.

Of course, there’s no reason why the coordinates of the two observers should agree

with each other. However, there is one quantity that should be invariant: the distance

from the origin (which is shared by both observers) to the helicopter. In other words,

we should find that

s
2
Euclidean = x

2 + y
2 + z

2 = x
0 2 + y

0 2 + z
0 2 (7.12)

And, of course, this is indeed true if the rotation matrix obeys RT
R = 1.

The essence of special relativity is nothing more than an extrapolation of the dis-

cussion above. The Lorentz boosts can be should be thought of as a rotation between

space and time. The individual spatial and temporal coordinates are di↵erent for the

two observers, but there remains an invariant distance. The only thing that’s di↵erent

is that the time and space directions in this invariant distance (7.11) come with di↵er-

ent minus signs. We’ll now explore this relationship between boosts and rotations in

some detail.
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7.3.2 The Lorentz Group

We have defined the interval (7.11) as the measure of distance which is invariant under

Lorentz transformations. However, it is actually better to look at things the other way:

the invariant interval is the primary object. This is a property of spacetime which

defines the Lorentz transformations. Let’s see how the argument runs this way around.

If we sit at the origin in a fixed frame S, the coordinates of an event can be written

as a four vector X. We won’t denote that this is a vector by bold font or squiggly

underlines (which we’re really saving for three-dimensional spatial vectors). We’re just

getting sophisticated now and just the capital letter will have to su�ce. However, we

will sometimes use index notation, in which the components of the 4-vector are

X
µ = (ct, x, y, z) µ = 0, 1, 2, 3

Note that we write the indices running from µ = 0 to µ = 3 rather than starting at 1.

The zeroth component of the vector is time (multiplied by c). The invariant distance

between the origin and the point P can be written as an inner product, defined as

X ·X ⌘ X
T
⌘X = X

µ
⌘µ⌫X

⌫ (7.13)

In the first expression above we are using matrix-vector notation and in the second we

have resorted to index notation, with the summation convention for both indices µ and

⌫. The matrix ⌘ is given by

⌘ =

0

BBBB@

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1

CCCCA

This matrix is called the Minkowski metric. With this expression for the Minkowski

metric, the inner product becomes

X ·X = c
2
t
2
� x

2
� y

2
� z

2

which is indeed the invariant distance (7.11) between the origin and the point X as

promised.

Following our characterisation of distances using the invariant interval, a four vector

obeying X · X > 0 is said to be timelike; one with X · X < 0 is said to be spacelike;

and one with X ·X = 0 is said to be lightlike or, alternatively, null.
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The Lorentz transformation can be thought of as a 4 ⇥ 4 matrix ⇤, rotating the

coordinates in frame S to coordinates in frame S
0, such that the four vector becomes

X
0 = ⇤X

This can also be written index notation as X 0µ = ⇤µ
⌫X

⌫ . The Lorentz transformations

are defined to be those matrices which leave the inner product invariant. This means

that

X
0
·X

0 = X ·X

From our definition (7.13), we see that this is true only if ⇤ obeys the matrix equation

⇤T
⌘⇤ = ⌘ (7.14)

Let’s try to understand the solutions to this. We can start by counting how many we

expect. The matrix ⇤ has 4 ⇥ 4 = 16 components. Both sides of equation (7.14) are

symmetric matrices, which means that the equation only provides 10 constraints on

the coe�cients of ⇤. We therefore expect to find 16� 10 = 6 independent solutions.

The solutions to (7.14) fall into two classes. The first class is very familiar. Let’s

look at solutions of the form

⇤ =

0

BBBB@

1 0 0 0

0

0 R

0

1

CCCCA
(7.15)

where R is a 3⇥ 3 matrix. These transformations change space, but leave time intact.

The condition (7.14) reduces to a condition for the matrix R,

R
T
R = 1

where the right-hand side is understood to be the 3 ⇥ 3 unit matrix. But this is

something that we’ve seen before: it is the requirement for R to be a rotation matrix.

There are three such independent matrices, corresponding to rotations about the three

di↵erent spatial axes.
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The remaining three solutions to (7.14) are the Lorentz boosts that have preoccupied

us for much of this Section. The boost along the x axis is given by

⇤ =

0

BBBB@

� ��v/c 0 0

��v/c � 0 0

0 0 1 0

0 0 0 1

1

CCCCA
(7.16)

These are precisely the Lorentz transformations (7.6). Two further solutions to (7.14)

come from boosting along the y and z directions.

The set of all matrices ⇤ obeying (7.14) form the Lorentz group, denoted O(1, 3). You

can easily check that they indeed obey all axioms of a group. Taking the determinant

of both sides of (7.14), we see that det⇤2 = 1, so the Lorentz group splits into two

pieces with det⇤ = ±1. The subgroup with det⇤ = 1 is called the proper Lorentz

group and is denoted SO(1, 3).

There is one further decomposition of the Lorentz group. Any element can either flip

the direction of time or leave it invariant. Those transformations which preserve the

direction of time are called orthochronous. The group of proper orthochronous Lorentz

transformations is denoted SO
+(1, 3) although people like me are usually lazy and just

refer to it as SO(1, 3).

Rapidity

We previously derived the velocity addition law (7.9). Let’s see how we get this from

the matrix approach above. We can focus on the 2 ⇥ 2 upper-left hand part of the

matrix in (7.16). We’ll write this as

⇤[v] =

 
� ��v/c

��v/c �

!

If we combine two boosts, both in the x direction, the resulting Lorentz transformation

is

⇤[v1]⇤[v2] =

 
�1 ��1v1/c

��1v1/c �1

! 
�2 ��2v2/c

��2v2/c �2

!

It takes a little bit of algebra, but multiplying out these matrices you can show that

⇤[v1]⇤[v2] = ⇤


v1 + v2

1 + v1v2/c
2

�

which is again the velocity addition rule (7.9), now for the composition of boosts.
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The algebra involved in the above calculation is somewhat tedious; the result some-

what ugly. Is there a better way to see how this works? We can get a clue from the

rotation matrices R. Recall that the 2⇥ 2 matrix which rotates a plane by angle ✓ is

R[✓] =

 
cos ✓ sin ✓

� sin ✓ cos ✓

!

If we perform two rotations in succession, we have

R[✓1]R[✓2] = R[✓1 + ✓2]

But the nice addition rule only worked because we were clever in parameterising our

rotation by an angle. In the case of Lorentz boosts, there is a similarly clever parame-

terisation. Instead of using the velocity v, we define the rapidity ' by

� = cosh'

We can see one of the nice things about this definition if we look at

sinh' =
q

cosh2
'� 1 =

p
�2 � 1 =

v�

c

This is the other component of the Lorentz boost matrix. We can therefore write

⇤['] =

 
cosh' � sinh'

� sinh' cosh'

!
(7.17)

Looking again at the composition of two Lorentz boosts, we see that the rapidities add,

just like the angles of rotation

⇤['1]⇤['2] = ⇤['1 + '2]

The matrix description of the Lorentz boost (7.17) shows most clearly the close rela-

tionship between rotations and boosts.

7.3.3 A Rant: Why c = 1

We started this section by mentioning that the speed of light, c = 299792458 ms
�1 is

exact. The only reason that this fundamental constant is exactly an integer is because

the meter is defined to be the distance travelled by light in 1/299792458 seconds.

– 131 –



In our everyday world, the meter is a very useful unit. It is roughly the size of most

things in my house. But viewed from the perspective of fundamental physics, it is

rather parochial. If we’re going to pick the speed of light to be an integer, we should

probably pick one that is easier to remember. Like c = 1. We can do this by picking a

di↵erent unit of length, namely

c = 1 (light second) s�1

where a light second is the distance travelled by light in one second.

There’s a better way of thinking about this: the existence of a universal speed of light

is Nature’s way of telling us that space and time are more similar than our ancestors

realised. We only labelled space and time with di↵erent units because we were unaware

of the relationship between them.

We can illustrate this by going back to the rotational analogy. Suppose that you

decided that all distances in the x-direction should be measured in centimeters, while

all distances in the y-direction should be measured in inches. You then declared that

there was a new, fundamental constant of Nature – let’s call it � – given by

� ⇡ 2.54 cm (inch)�1

Why is this a dumb thing to do? The reason it’s dumb is because of the rotational

symmetry of the laws of physics: di↵erent observers have di↵erent x and y coordinates

and can quite happily pick the same unit of measurement for both. But we’ve learned

in this section that there is also a symmetry between space and time. Insisting that we

retain the conversion factor c in the fundamental laws of physics is no more sensible

than retaining �.

Despite my rant, in these lectures, we will retain c in all equations. (Although we

will use units which allow us to set � = 1). But in future courses, it is common practice

to work with the convention c = 1. The equations look simpler and the only price you

pay is that the units of time and space are equivalent. If, at the end of the day, you

want to get your answer in terms of meters or seconds or whatever then you can always

put the factors of c back in by dimensional analysis.

7.4 Relativistic Kinematics

So far, our discussion has been focussed on what the world looks like to di↵erent

observers. Let’s now return to the main theme of these lectures: the motion of particles.

Remember that our ultimate goal is to construct laws of physics which look the same
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to all inertial observers. For this reason, we will start by defining some of the basic

elements that go into the laws of physics: velocity, momentum and acceleration. We

want to define these in such a way that they have nice transformation properties when

viewed from di↵erent inertial frames.

7.4.1 Proper Time

We started these lectures in Section 1 by describing the trajectory of particle in an

inertial frame in terms of a curve x(t) and velocity u = dx/dt. There’s nothing incorrect

with this description in special relativity but, as we will see, there’s a much better way

to parameterise the trajectory of a particle.

Let’s start by considering a particle at rest at the origin of frame S
0 with x 0 = 0.

The invariant interval between two di↵erent points on the worldline of the particle is

�s
2 = c

2�t
0 2

We see that the invariant interval between two points on the worldline is proportional

to the time experienced by the particle. But this must be true in all frames. The time

experienced by the particle is called the proper time, ⌧ . In all frames, it is given by

�⌧ =
�s

c

where �s is real as long as the particle doesn’t travel faster than the speed of light, so

it sits on a timelike trajectory. (We keep promising to prove that a particle is unable

to travel faster than light...we are almost there!)

Proper time provides a way to parameterise the trajectory of a particle in a manner

that all inertial observers will agree on. Consider the trajectory of a general particle, not

necessarily travelling in a straight line. Viewed from an inertial frame S, the worldline

can be parameterised by x(⌧) and t(⌧). This has several advantages.

For example, we can use this formulation to determine the time experienced by a

particle moving along a general trajectory. Along a small segment of its trajectory, a

particle experiences proper time

d⌧ =

r
dt2 �

dx 2

c2
= dt

s

1�
1

c2

✓
dx

dt

◆2

= dt

r
1�

u2

c2

from which we have

dt

d⌧
= � (7.18)
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Note that � here is a function of the speed, u, of the particle seen by the observer in S.

From this, the total time T experienced by a particle as it travels along its worldline is

simply the sum of the proper times associated to each small segment,

T =

Z
d⌧ =

Z
dt

�
(7.19)

7.4.2 4-Velocity

We’ll now explain why it’s useful to parameterise the trajectory of a particle in terms

of proper time ⌧ . We can write a general trajectory in spacetime using the 4-vector:

X(⌧) =

 
ct(⌧)

x(⌧)

!

From this, we can define the 4-velocity,

U =
dX

d⌧
=

 
c dt/d⌧

dx/d⌧

!

Using the relationship (7.18) between the proper time of the particle ⌧ and the ob-

server’s time t we can write this as

U =
dt

d⌧

 
c

u

!
= �

 
c

u

!
(7.20)

where u = dx/dt. This definition of the 4-velocity has a nice property: if an observer

in frame S measures a particle’s 4-velocity as U , then an observer in frame S
0 with

X
0 = ⇤X will measure the 4-velocity

U
0 = ⇤U (7.21)

This transformation holds only because d⌧ is invariant, meaning that it is the same for

all observers. In contrast, if we had tried to define a 4-velocity by, say, V = dX/dt then

both X and t would change under a Lorentz transformation and we would be left with

a messy, complicated expression for V in frame S
0. Our definition of U di↵ers from V

by the extra factor of � in (7.20). This is all important!

We now have two objects which transform nicely under Lorentz transformations: the

coordinates X ! ⇤X and the 4-velocity U ! ⇤U . Quantities like this are called

4-vectors. It’s a name that we’ve already used to label points in spacetime. More

generally, the definition of a 4-vector is any 4-component object A which transforms as

A! ⇤A under a Lorentz transformation.
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Because of the simple transformation law (7.21), we can immediately import some of

the things that we learned from our previous discussion of Lorentz groups. In particular,

from the definition of ⇤ given in (7.14), we know that the inner product

U · U = U
T
⌘U

is invariant. It is the same for all observers: U · U = U
0
· U

0.

Let’s look at a simple example. A particle which is stationary in frame S has 4-

velocity

U
µ = (c, 0, 0, 0)

and so U · U = c
2. But this must be true in all frames. We can check this explicitly

from (7.20) (we’ll take the middle equation to illustrate the point) which gives us

U · U =

✓
dt

d⌧

◆2 �
c
2
� u

2
�
=

✓
dt

d⌧

◆2
c
2

�2
= c

2

This result also helps answer a puzzle. In Newtonian mechanics, if we want to specify

the velocity, we only have to give three numbers u. But in special relativity, the velocity

is a 4-vector U . Nonetheless, we still only need specify three variables because U is not

any 4-vector: it is constrained to obey U · U = c
2.

Addition of Velocities Revisited

In Section 7.2.5, we derived the rule for the addition of velocities in one-dimension.

But what if the velocity of a particle is not aligned with the relative velocity between

S and S
0? The addition of velocities in this case is simple to compute using 4-vectors.

We start with a particle in frame S travelling with 4-velocity

U =

0

BBBB@

�uc

u�u cos↵

u�u sin↵

0

1

CCCCA

Here we’ve added the subscript to �u = (1 � u
2
/c

2)�1/2 to distinguish it from the �-

factor arising between the two frames. Frame S 0 moves in the x-direction with speed v

relative to S. The Lorentz boost is given in (7.16). In frame S
0, the 4-velocity is then

U
0 = ⇤U = �u

0

BBBBB@

⇣
1� (uv/c2) cos↵

⌘
�vc

(u cos↵� v)�v

u sin↵

0

1

CCCCCA
⌘

0

BBBB@

�u0c

u
0
�u0 cos↵0

u
0
�u0 sin↵0

0

1

CCCCA
(7.22)
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Dividing the t and x components of this 4-vector, we recover the velocity transformation

law (7.9) for the speed in the x-direction, namely

u
0 cos↵0 =

u cos↵� v

1� uv cos↵/c2

Meanwhile, dividing the y component by the x component gives us a formula for the

angle ↵
0 that the particles trajectory makes with the x

0-axis,

tan↵0 =
u sin↵

�v(u cos↵� v)
(7.23)

7.4.3 4-Momentum

The 4-momentum is defined by

P = mU =

 
mc�

m�u

!
(7.24)

where m is the mass of the particle, usually referred to as the rest mass. Importantly,

it will turn out that P is the quantity that is conserved in the relativistic context. The

spatial components give us the relativistic generalisation of the 3-momentum,

p = m�u (7.25)

Notice that as the particle approaches the speed of light, u! c, the momentum diverges

p ! 1. Since momentum is conserved in all processes, this is really telling us that

massive particles cannot break the speed of light barrier. (Here the word “massive”

doesn’t mean “really really big”: it just means “not massless”, or m 6= 0). This is

sometimes interpreted by viewing the quantity m� as a velocity-dependent relativistic

mass. In these terms, the relativistic mass of the particle diverges m� ! 1 as the

particle approaches the speed of light. The words may be di↵erent, but the maths (and

underlying physics) is the same: particles are bound by Nature’s speed limit. Nothing

can travel faster than the speed of light.

What is the interpretation of the time-component of the momentum 4-vector, P 0.

We can get a hint of this by Taylor expanding the � factor,

P
0 =

mcp
1� u2/c2

=
1

c

✓
mc

2 +
1

2
mu

2 + . . .

◆
(7.26)

The first term is just a constant. But the second term is something familiar: it is the

non-relativistic kinetic energy of the particle. This, coupled with the fact that all four
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components of P are conserved, strongly suggests that the right interpretation of P 0 is

the energy of the particle (divided by c), so

P =

 
E/c

p

!
(7.27)

To show that P
0 is indeed related to the energy in this way requires a few more

techniques than we will develop in this course. The cleanest way is to use Noether’s

theorem – which we mentioned briefly in Section 5.1.4 – for relativistic systems and see

that P 0 is the quantity that follows from time translational invariance7.

The expansion of (7.26) shows that both the mass and the kinetic energy contribute

to the energy of a particle. These combine to give

E = m�c
2 (7.28)

Notice that as the particle approaches the speed of light, its energy diverges. Yet again,

we see a barrier to breaking the speed limit: as we approach the speed of light, the

energy required to make a particle go just a little faster gets bigger and bigger.

For a stationary particle, all its energy is contained in its rest mass, giving us the

famous slogan

E = mc
2

There’s a nice way to rearrange (7.28), to replace the u in the � factor with p defined

in (7.25). But the algebra is laborious. Instead there’s a cute trick that gives the result

much more quickly: we look at the inner product P ·P . In the rest frame of the particle,

P = (mc, 0, 0, 0) and we have

P · P = m
2
c
2 (7.29)

But the inner product is an invariant, holding in any frame. From (7.27), we have

P · P =
E

2

c2
� p 2

Equating these two expressions gives

E
2 = p 2

c
2 +m

2
c
4 (7.30)

This is the generalisation of E = mc
2 to include the kinetic energy. This equation can

also be derived the hard way by playing around with (7.28) and (7.25).

7You can read more about this for particle mechanics in the Classical Dynamics lecture notes and,
for relativistic field theories, in the Quantum Field Theory lecture notes.
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The identification P
0 = E/c has dramatic consequences. In Newtonian mechanics,

we boasted about the conservation of energy, but implicit in everything we did was the

more elementary fact that mass is conserved. Even in the variable mass problems of

Section 5.3, the mass never disappered: it just left our rocket ship. However, relativity

teaches us that the conservation of mass is subsumed into the conservation of energy.

There is nothing that guarantees that they are individually conserved. Just as potential

energy can be converted into kinetic energy, so too can mass be converted into kinetic

energy. In Japan, in 1945, this fact was vividly demonstrated.

7.4.4 Massless Particles

Until now, we built our discussion of particle trajectories on proper time. But, looking

back at Section 7.4.1, proper time is only defined for time-like trajectories. This is

fine for massive particles. But what about for massless particles? We can sidestep the

need for proper time by looking at the invariant of the 4-momentum (7.29) which, for

particles with m = 0, tells us that the 4-momentum must be null,

P · P = 0

This means that the 4-momentum of a massless particle necessarily lies along a light

ray.

This fact also allows us to clarify one of our original postulates of special relativity:

that the speed of light is the same for all inertial frames. You may wonder why the

propagation of light, an electromagnetic phenomenon, is singled out for special treat-

ment. The answer is: because the photon – the particle of light – is massless. In fact,

a better way of stating the postulate is to say that there is an upper speed limit in the

Universe, which is the same for all inertial observers. Any massless particle must travel

at this speed limit. All massive particles must go slower.

We know of only two types of massless particles in the Universe: the photon and the

graviton. Both of these owe their particle-like nature to quantum mechanics (actually,

this is true of all particles) and have a classical analog as light waves and gravity waves

respectively. You’ve all seen light waves (literally!) and individual photons have been

routinely measured in experiments for more than a century. Gravitational waves were

observed for the first time in 2015, although compelling indirect evidence had existed

for decades. There appears to be no hope at all of detecting an individual graviton, at

least within our lifetimes.
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Until the late 1990s, it was thought that neutrinos were also massless. It is now

known that they have a small, but finite mass. (Actually, there’s a caveat here: there

are three di↵erent types of neutrino: an electron neutrino, a muon neutrino and a tau

neutrino. The di↵erences between their masses are known to be of order of 0.01 - 0.1 eV

and there are constraints which limit the sum of their masses to be no greater than

0.3 eV or so. But the absolute scale of their masses has not yet been determined. In

principle, one of the three neutrinos may be massless).

From (7.30), the energy and momentum of a massless particle are related by E
2 =

p
2
c
2. The four momentum takes the form

P =
E

c

 
1

p̂

!

where p̂ is a unit vector in the direction of the particle’s motion.

To get an expression for the energy, we need a result from quantum mechanics which

relates the energy to the wavelength � of the photon or, equivalently, to the angular

frequency ! = 2⇡c/�,

E = ~! =
2⇡~c
�

There’s something rather nice about how this equation ties in with special relativity.

Suppose that in your frame, the photon has energy E. But a di↵erent observer moves

towards the light with velocity v. By the Lorentz transformation, he will measure the 4-

momentum of the photon to be P 0 = ⇤P and, correspondingly, will see a bigger energy

E
0
> E. From the above equation, this implies that he will see a smaller wavelength.

But this is nothing other than Lorentz contraction.

The phenomenon of di↵erent observers observing di↵erent wavelengths of light is

called the Doppler e↵ect. You will derive this in the problem sheet.

Tachyons and Why They’re Nonsense

It is sometimes stated that a particle which has imaginary mass, so that m
2
< 0,

will have P · P < 0 and so travel consistently at speeds u > c. Such particles are

called tachyons. They too would be unable to cross Nature’s barrier at u = c and are

consigned to always travel on spacelike trajectories.
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Although, consistent within the framework of classical relativistic particle mechanics,

the possibility of tachyons does not survive the leap to more sophisticated theories

of physics. All our current best theories of physics are written in the framework of

quantum field theory. Here particles emerge as ripples of fields, tied into small lumps

of energy by quantum mechanics. But in quantum field theory, it is not unusual to

have fields with imaginary mass m
2
< 0. The resulting particles do not travel faster

than the speed of light. Instead, imaginary mass signals an instability of the vacuum.

7.4.5 Newton’s Laws of Motion

Finally, we are in a position to write down Newton’s law of motion in a manner that

is consistent with special relativity: it is

dP
µ

d⌧
= F

µ (7.31)

where F
µ are the components of a 4-vector force. It is not di�cult to anticipate that

the spatial components of F should be related to the 3-vector force f . (This is the same

thing that we’ve been calling F up until now, but we’ll lower its standing to a small f

to save confusion with the 4-vector). In fact, we need an extra factor of �, so

F =

 
F

0

�f

!

With this factor of � in place, the spatial components of Newton’s equation (7.31) agree

with the form that we’re used to in the reference frame S,

dp

dt
=

d⌧

dt

dp

d⌧
=

1

�

dp

d⌧
= f

Similarly, a quick calculation shows that the temporal component F 0 is related to the

power: the rate of change of energy with time

F
0 =

dP
0

d⌧
=

�

c

dE

dt

With these definitions, we can derive a familiar equation, relating the change in energy

to the work done. Consider a particle with constant rest mass m, so that P ·P = m
2
c
2

is unchanging. Using P
0 = m�c and p = m�u, we have

d

d⌧
(P · P ) = 2P 0 dP

0

d⌧
� 2p ·

dp

d⌧
= 2�2

m

✓
dE

dt
� u · f

◆
= 0

All of this is just to show how the familiar laws of Newtonian physics sit within special

relativity.
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Electromagnetism Revisited

Ironically, equation (7.31) is rarely used in relativistic physics! The reason is that by

the time we are in the relativistic realm, most of the forces that we’ve come across are

no longer valid. The one exception is the electromagnetic force law for a particle of

charge q that we met in Section 2.4. This does have a relativistic formulation, with the

equation of motion given by

dP
µ

d⌧
=

q

c
G

µ
⌫U

⌫

where U ⌫ is the 4-velocity of the particle and G
µ
⌫ is the electromagnetic tensor, a 4⇥ 4

matrix which contains the electric and magnetic fields,

G
µ
⌫ =

0

BBBB@

0 E1 E2 E3

E1 0 cB3 �cB2

E2 �cB3 0 cB1

E3 cB2 �cB1 0

1

CCCCA

(This tensor often goes by the name F µ
⌫ , but we’ve chosen to call it G to save confusion

with the force 4-vector). The spatial components of the four-vector equation gives rise

to the familiar Lorentz force law (2.19). The temporal component gives the rate of

work done, dE/dt = qE · u.

7.4.6 Acceleration

We can construct a four-vector for acceleration simply by

A ⌘
dU

d⌧

Note that because U · U = c
2, we must have that A is always orthogonal to U in the

Minkowski sense: A · U = 0.

Suppose that the velocity of a particle in frame S is u. Then, in this frame, the

Newtonian notion of 3-acceleration is a = du/dt. Recalling our expression relating

time and proper time, dt/d⌧ = �, we see that the four acceleration actually depends

on both u and a; it is

A = �

 
�̇c

�̇u+ �a

!

with �̇ ⌘ d�/dt.
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Let’s now suppose that we sit in an inertial frame S
0 in which, at a fixed moment of

time t, the particle is instantaneously at rest. Obviously, if the particle is accelerating,

this will not coincide with the particle’s rest frame an instant later, but momentarily

this will do fine. Since u0 = 0 in this frame, the 4-acceleration is

A
0 =

 
0

a0

!

with a0 = du0
/dt

0. (Note that you need to do a small calculation here to check that

�̇(u = 0) = 0). But, since we have constructed our acceleration as a 4-vector, A and

A
0 must be related by a Lorentz transformation. To make matters easy for ourselves,

let’s take both u and a to lie in the x-direction so that we can consistently ignore the

y and z-directions. Then the Lorentz transformation tells us

A = �

 
�̇c

�̇u+ �a

!
=

 
� u�/c

u�/c �

! 
0

a
0

!
=

 
u�a

0
/c

�a
0

!

From the top component, we can determine the relationship between the accelerations

a and a
0 seen in the two frames,

a ⌘ u̇ =
�
1� u

2
/c

2
�3/2

a
0

Suppose now that the particle undergoes constant acceleration. As with everything

in special relativity, we need to be more careful about what we mean by this. The

natural interpretation is that the acceleration in the frame of the particle is constant.

Mathematically, this means that a0 is constant. In contrast, viewed from frame S, the

acceleration is not constant. Indeed, for constant a
0, we can integrate our equation

above to get u, the velocity seen in frame S as a function of time. If we assume that

u = 0 when t = 0, we have

u =
a
0
ct

p
c2 + a0 2t2

) �(t) =

r
1 +

a0 2t2

c2
(7.32)

Since u = ẋ, integrating the first of these equations once more gives us the position in

the frame S as a function of time,

x =
c

a0

⇣p
c2 + a0 2t2 � c

⌘
(7.33)

where we’ve picked an integration constant so that x = 0 at time t = 0. We see that

the particle moves on the hyperbola shown in the figure. Viewed from S, the particle

approaches, but never reaches, the speed of light.
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Notice that a particle at point P in the diagram

x

ct

P

Figure 56:

can only receive information from within its own past

lightcone, denoted by the red dotted lines in the figure.

However, if it continues along its accelerated trajectory,

it can never receive any information from the whole part

of spacetime to the left of the null line x = ct. This

part of the Universe will forever remain a mystery to an

accelerated observer. The null cone, defined by, x = ct,

which forms the boundary of the mysterious region is

called the Rindler event horizon. It has many things

in common with the event horizon of a black hole and,

indeed, the Rindler horizon is often used as a toy model to understand some of the

stranger aspects of black hole physics. Of course, if an accelerated observer really

wants to see what’s behind the horizon, it’s easy: he just stops accelerating. If an

observer in the background of a black hole wants to see what’s behind the horizon, he

must be somewhat braver.

We can look at what the accelerated observer feels. His time is simply the proper

time of the particle. To compute this, the form of �(t) given in (7.32) is particularly

useful. From (7.19), if time t elapses in the stationary frame S, then the particle feels

⌧ =

Z t

0

cdt̃p
c2 + a0 2t̃2

=
c

a0
sinh�1

✓
a
0
t

c

◆

This analysis gives us a more quantitative way to view

x

ct

Luke Leia

Figure 57:

the twin paradox. Suppose that Luke undertakes his

trip to Tatooine on a trajectory of constant acceleration.

He leaves Leia at the time t < 0 where their worldlines

intersects, arrives at Tatooine at t = 0 and x = c
2
/a

0,

and returns back to Leia as shown. Leia experiences

time t; Luke time ⌧ < t.

Finally, we can look at how far the accelerated ob-

server thinks he has travelled. Of course, this observer

is not in an inertial frame, but at any time t we can con-

sider the inertial frame that is momentarily at rest with

respect to the accelerated particle. This allows us to simply use the Lorentz contraction

formula. Using our results (7.32) and (7.33), we have

x
0 =

x

�
=

c
2

a0

✓
1�

c
p
c2 + a0 2t2

◆
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Curiously, x0
! c

2
/a

0 is finite as t ! 1 or, equivalently, as ⌧ ! 1. Despite all that

e↵ort, an accelerated observer doesn’t think he has got very far! This again, is related

to the presence of the horizon.

7.4.7 Indices Up, Indices Down

The minus signs in the Minkowski metric ⌘ means that it’s useful to introduce a slight

twist to the usual summation convention of repeated indices. For all the 4-vectors that

we introduced above, we were careful always place the spacetime index µ = 0, 1, 2, 3 as

a superscript (i..e up) rather than a subscript.

X
µ = (ct,x)

This is because the same object with an index down, Xµ, will mean something subtley

di↵erent!

Xµ = (ct,�x)

With this convention, the Minkowski inner product can be written using the usual

convention of summing over repeated indices as

X
µ
Xµ = c

2
t
2
� x · x

In contrast, writing X
µ
X

µ = c
2
t
2+x2 is a dumb thing to write in the context of special

relativity since it looks very di↵erent to observers in di↵erent inertial frames. In fact,

we will shortly declare it illegal to write things like X
µ
X

µ.

There is a natural way to think of Xµ in terms of Xµ. If we write the Minkowski

metric as the diagonal matrix ⌘µ⌫ = diag(+1,�1,�1,�1) then we can raise and lower

indices using ⌘µ⌫ and the summation convention, so

Xµ = ⌘µ⌫X
⌫

Moreover, we will insist that all objects with indices up and down are similarly related

by contracting with ⌘. For example, we could write the electromagnetic tensor as

G
µ⌫ = G

µ
⇢⌘

⇢⌫ =

0

BBBB@

0 �E1 �E2 �E3

E1 0 �cB3 cB2

E2 cB3 0 �cB1

E3 �cB2 cB1 0

1

CCCCA

The object Gµ⌫ is actually somewhat more natural than G
⇢
⌫ since the former is anti-

symmetric.
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To raise indices back up, we need the inverse of ⌘µ⌫ which, fortunately, is the same

matrix: ⌘µ⌫ = diag(+1,�1,�1,�1). We have

⌘
µ⇢
⌘⇢⌫ = �

µ
⌫

This trick of distinguishing between indices up and indices down provides a simple

formalism to ensure that all objects have nice transformation properties under the

Lorentz group. We insist that, just as in the usual summation convention, repeated

indices only ever appear in pairs. But now we further insist that pairs always appear

with one index up and the other down. The result will be an object with is invariant

under Lorentz transformations.

In future courses (like General Relativity) you will learn that there is somewhat

deeper mathematics lying behind distinguishing X
µ and X⌫ : formally, these objects

live in di↵erent spaces (sometimes called dual spaces). Objects such as Xµ are said to

be contravariant vectors, while Xµ is said to be a covariant vector.

7.5 Particle Physics

”Oh, that stu↵. We never bother with that in our work”

Ernest Rutherford, the first particle physicist, discussing relativity

Our goal in this section is to describe various relativistic phenomena that arise in

particle physics. All these processes occur in the absence of external forces, so F = 0

and we will rely only on conservation of 4-momentum, meaning

dP

d⌧
= 0

Of course, conservation of 4-momentum includes both conservation of 3-momentum

and conservation of energy.

The calculations that follow are similar in spirit to the collision calculations of Section

5.2. Before we proceed, there are a couple of hints that may help when solving these

problems. Firstly, we need to choose a frame of reference in which to calculate: the

smart frame to choose is nearly always the centre of mass of the system. (Which should

more correctly be called the centre of momentum frame, for it is the one with vanishing

spatial 3-momentum). Secondly, you will often be presented with a situation where

there is one particle with momentum P about which you know nothing. A good way

to eliminate this is often to rearrange your equation so it takes the form P = . . . and

then square it to get the right-hand side to be P · P = m
2
c
2. Let’s now see how this

works in a few examples.
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7.5.1 Particle Decay

Consider a single particle with rest mass m1 which decays into two particles with rest

masses m2 and m3. Conservation of 4-momentum tells us

P1 = P2 + P3

or, equivalently,

E1 = E2 + E3 and p1 = p2 + p3

In the rest frame of the decaying particle, we can write (using (7.30)),

E1 = m1c
2 =

q
p22c

2 +m2
2c

4 +
q

p23c
2 +m2

3c
4 � m2c

2 +m3c
2

which tells us the unsurprising result that a particle can only decay if its mass is greater

than that of its decay products. In the problem sheet, you will be asked to compute

the velocities v2 and v3 of the decay products in the centre of mass frame and show

that they are given by

�2 =
m

2
1 +m

2
2 �m

2
3

2m1m2
and �3 =

m
2
1 +m

2
3 �m

2
2

2m1m3

Here we will instead look at some slightly di↵erent problems.

An Example: Higgs Decay

The LHC has taught us that the Higgs boson has mass mhc
2
⇡ 125 GeV . It mostly

decays into two photons. In particle physics, photons are always denoted by �. Do

not confuse them with the Lorentz contraction factor! The “equations” in which the

photon �’s appear are more like chemical reactions than true equations. The decay of

the Higgs into two photons is written as

h! ��

Similar decays occur for other particles, most notably the neutral pion, a meson (mean-

ing that it is made of a quark and anti-quark) with mass m⇡c
2
⇡ 140 MeV . This too

decays as ⇡0
! ��.

To be concrete (and more relevant!) we’ll focus on the Higgs. Conservation of 4-

momentum tells us (in, hopefully, obvious notation) that

Ph = P� + P
0
�

If we sit in the rest frame of the Higgs, so P
µ
h = (mhc, 0), the photons must have equal

and opposite 3-momentum, and therefore equal energy E� = 1
2mhc

2. The photons must

be emitted back-to-back but, because the problem is rotationally symmetric, can be

emitted at any angle.
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What if we’re not sitting in the rest frame of the Higgs?. Suppose that the Higgs

has energy Eh and the energy of one of the photons is measured to be E�. What is the

angle ✓ that this photon makes with the path of the Higgs?

We’ll use the strategy that we described above. We have no information about the

second photon, with 4-momentum P
0
�. So we rearrange the conservation of momentum

to read P
0
� = Ph � P�. Upon squaring this, we have P

0
� · P

0
� = 0, so

0 = (Ph � P�) · (Ph � P�) = Ph · Ph + P� · P� � 2Ph · P�

= m
2
hc

2
�

2EhE�

c2
+ 2ph · p�

= m
2
hc

2
�

2EhE�

c2
+

2E�

c
cos ✓

q
E2

h/c
2 �m2

hc
2

where, in the last equation, we have used E
2 = p

2
c
2 +m

2
c
4 (which is just E = pc for

the photon). This can now be rearranged to give the answer for ✓.

7.5.2 Particle Collisions

Let’s now look at the physics of relativistic collisions. We’ll collide two particles to-

gether, both of mass m. They will interact in some manner, preserving both energy

and 3-momentum, and scatter at an angle ✓.

P1 + P2 = P3 + P4

As we mentioned previously, it’s easiest to see what happens in the centre of mass frame.

Without loss of generality, we’ll take the initial momenta to be in the x-direction. After

the collision, the particles must have equal and opposite momenta, which means they

must also have equal energy. This, in turn, ensures that in the centre of mass frame,

the speed v after the collision is the same as before. We can choose our axes so that

the initial and final momenta are given by

P
µ
1 = (mc�v,mv�v, 0, 0) , P

µ
2 = (mc�v,�mv�v, 0, 0)

P
µ
3 = (mc�v,mv�v cos ✓,mv�v sin ✓, 0) , P

µ
4 = (mc�v,�mv�v cos ✓,�mv�v sin ✓, 0)

where we’ve put the subscript on �v to denote its argument. We can also look at the

same collision in the lab frame. This refers to the situation where one of the particles is

initially at rest. (Presumably in your lab). By the velocity addition formula, the other

particle must start with speed

u =
2v

1 + v2/c2

You can also derive this result by writing down the momenta P
0
1 and P

0
2 in the lab

frame and equating (P1 + P2)2 = (P 0
1 + P

0
2)

2
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Figure 58: Collisions in the centre of mass frame on the left and the lab frame on the right

In the lab frame, the angles � and ↵ at which the particles scatter are not equal.

They can be easily determined using the addition of 4-velocities that we saw in Section

7.4.2 . Set u = �v in equation (7.23) and use the identity tan(x/2) = sin x/(1 + cos x)

to get

tan� =
1

�v
tan ✓/2 and tan↵ =

1

�v
tan(✓/2 + ⇡/2)

One of the more interesting examples of collisions is Compton Scattering, in which the

colour of light changes after scattering o↵ an electron (because it changes its energy

and therefore its frequency). You will derive this result in the examples sheet.

Particle Creation

Just as mass can be converted into kinetic energy, so kinetic energy can be converted

into mass through the creation of new particles. Roughly speaking, this is the way we

discover new particles of Nature.

Suppose we collide two particles, each of mass m. After the collision, we hope to

be left with these two particles, together with a third of mass M . How fast must the

original two particles collide?

Conservation of momentum gives us

P1 + P2 = P3 + P4 + P5

where P 2
1 = P

2
2 = P

2
3 = P

2
4 = m

2
c
2, while P 2

5 = M
2
c
2. Let’s work in the centre of mass

frame of the colliding particles, each of which has speed v. In this case, we have

(P1 + P2)
2 = 4m2

�
2
vc

2 = (P3 + P4 + P5)
2 (7.34)

Since we’re in the centre of mass frame, the final momenta must take the form P3 +

P4 + P5 = ((E1 + E2 + E3)/c,0) so that

(P3 + P4 + P5)
2 =

1

c2
(E1 + E2 + E3)

2
�

1

c2
(2mc

2 +Mc
2)2
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where, for each particle, we’ve used the fact that E =
p
m2c4 + p2c2 � mc

2. Substi-

tuting this into (7.34) gives

4m2
�
2
vc

2
� 4m2

c
2 +M

2
c
2 + 4Mmc

2
) �v � 1 +

M

2m
(7.35)

This makes sense. The amount of minimum amount of kinetic energy per particle is

T = �vmc
2
�mc

2 = 1
2Mc

2. With this minimum amount, the two colliding particles can

combine their kinetic energies to form the new particle. After the collision, all three

particles are then at rest.

It’s worth mentioning another way to do the above computation. Suppose that you

hadn’t noticed that the three-momentum of P3+P4+P5 vanished and instead expanded

out the right-hand side of (7.34) to end up with nine terms. Things are a bit harder

this way, but all is not lost. We can apply a Cauchy-Schwarz-like inequality to each of

these terms. For any massive particles with 4-momenta P and Q, such that P 2 = m
2
1c

2

and Q
2 = m

2
2c

2, we necessarily have P · Q � m1m2c
2. It is simplest to prove this by

working in a frame in which one particle is stationary. Then we have

P ·Q =

 
m1c

0

!
·

 
E2/c

p2

!
= m1E2 = m1

q
m2

2c
4 + p22c

2 � m1m2c
2

Applied to (7.34) this once again gives (7.35).

What if we re-do this experiment in the lab frame, in which of the original particles is

at rest and the other has speed u? Now we have P1 = (m�uc,m�uu) and P2 = (mc, 0),

so

(P1 + P2)
2 = P

2
1 + P

2
2 + 2P1 · P2 = 2m2

c
2 + 2m2

�uc
2

But we don’t have to compute (P3 + P4 + P5)2 again since the beauty of taking the

square of the 4-momenta is that the result is frame independent. We have

2m2
c
2 + 2m2

�uc
2
� 4m2

c
2 +M

2
c
2 + 4Mmc

2
) �u � 1 +

2M

m
+

M
2

2m2

Now we see it’s not so easy to create a particle. It’s certainly not enough to give the

incoming particle kinetic energy T = 1
2Mc

2 as one might intuitively expect. Instead,

if you want to create very heavy particles, M � m, you need to give your initial

particle a kinetic energy of order T ⇡ M
2
c
2
/2m. This scales quadratically with M ,

rather than the linear scaling that we saw in the centre of mass frame. The reason

for this simple: there’s no way that the end products can be at rest. The need to
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Figure 59:

conserve momentum means that much of the kinetic energy of the incoming particle

goes into producing kinetic energy of the outgoing particles. This is the reason that

most particle accelerators have two colliding beams rather than a single beam and a

stationary target.

The LHC primarily collides protons in its search to discover new elementary particles.

However, for one month a year, it switches to collisions of lead nuclei in an attempt to

understand a new form of matter known as the quark-gluon plasma. Each lead nuclei

contains around 200 protons and neutrons. The collision results in a dramatic demon-

stration of particle creation, with the the production of many thousands of particles –

protons, neutrons, mesons and baryons. Here’s a very pretty picture. It’s one of the

first collisions of lead nuclei at LHC in 2010, shown here in all its glory by the ALICE

detector.

7.6 Spinors

In this final section, we return to understand more of the mathematical structure

underlying spacetime and the Lorentz group. Ultimately, the new structure that we

will uncover here has very important implications for the way the Universe works. But

we will also see a nice application of our new tools.

Let’s start by recalling our definition of the Lorentz group. We introduced elements

of the group as 4⇥ 4 real matrices satisfying

⇤T
⌘⇤ = ⌘
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where ⌘ = diag(1,�1,�1,�1) is the diagonal Minkowski metric. Elements with det⇤ =

1 define the group SO(1, 3). If we further restrict to elements with the upper-left

component ⇤0
0 > 0, which ensures that the transformation does not flip the direction

of time, then we have the sub-group SO
+(1, 3). As we will now see, there’s some rather

beautiful subtleties associated with this group.

7.6.1 The Lorentz Group and SL(2,C)

The Lorentz group SO
+(1, 3) is (almost) the same as the rather di↵erent looking group

SL(2,C), the group of 2⇥ 2 complex matrices with determinant one. We will start by

providing the map between these two groups, and explaining what the word “almost”

means.

Before we talk about Lorentz transformations, let’s first go back to think about the

points in Minkowski space themselves. So far, we’ve been labelling these by the 4-

vector Xµ = (ct, x, y, z). But there is alternative way of labelling these points, not by

a 4-vector but instead by a 2⇥ 2 Hermitian matrix. Given a 4-vector X, we can write

down such a matrix X̂ by

X̂ =

 
ct+ z x� iy

x+ iy ct� z

!

which clearly satisfies X̂ = X̂
†. Moreover, this is the most general form of a 2 ⇥ 2

Hermitian matrix. This means that there is a one-to-one map between 4-vectors X

and 2⇥ 2 Hermitian matrices. We can equally well take the latter to define a point in

Minkowski space.

We learned earlier that Minkowski space comes equipped with an inner product

structure on 4-vectors. The inner product X · X measures the distance in spacetime

between the origin and the point X. But this is very natural in terms of the matrix

language: it is simply the determinant

X ·X = det X̂ = c
2
t
2
� x

2
� y

2
� z

2

With this new way of labelling points in Minkowski space using the matrices X̂,

we can return to think about Lorentz transformations. Recall that, by definition, a

Lorentz transformation is a linear map which preserves the inner-product structure on

Minkowski space. Let’s consider a general matrix A 2 SL(2,C). We can use this to

define a linear map

X̂ ! X̂
0 = AX̂A

† (7.36)

– 151 –



By construction, if X̂ = X̂
† then we also have X̂

0 = (X̂ 0)†, so X̂
0 also defines a point

in Minkowski space. Moreover,

det X̂ 0 = det(AX̂A
†) = detA detX detA† = detX

where the last equality follows because detA = 1. This means that the map (7.36)

preserves the inner product on Minkowski space and therefore defines a Lorentz trans-

formation.

We may wonder if all Lorentz transformations can be implemented by suitable choices

of A. The answer is yes. We’ll exhibit the map explicitly below, but first let’s just count

the dimension of the two groups to make sure we stand a chance of it working. A general

complex 2 ⇥ 2 matrix has 4 complex entries. The requirement that its determinant is

1 reduces this to 3 complex parameters, or 6 real parameters. This agrees with the

dimension of the Lorentz group: 6 = 3 rotations + 3 boosts.

Although the dimensions of SO+(1, 3) and SL(2,C) are equal, they are not quite the

same groups. In some sense, SL(2,C) is twice as big. The reason is that the matrices

A and �A both implement the same Lorentz transformation in (7.36). We say that

SL(2,C) is the double cover of SO+(1, 3) or, alternatively,

SO
+(1, 3) ⇠= SL(2,C)/Z2

Mathematically, there is a 2:1 group homomorphism between SL(2,C) and SO
+(1, 3).

The word “homomorphism” means that the group structure is preserved under this

map. The existence of this double cover leads to some quite extraordinary consequences.

But, before we get to these, let’s first just look at how the map works in more detail.

Rotations

We’ve seen that points in Minkowski space can be written as a 4-vector X or Hermitian

matrix X̂. Meanwhile, Lorentz transformations act as X ! ⇤X or X̂ ! AX̂A
†. Here

we would like to be more explicit about which matrices A correspond to the di↵erent

Lorentz transformations.

We start with rotations. By definition, these are the transformations which leave

time untouched. From (7.36), this means that we want matrices A which map X̂ = ct 1

(where 1 here is the unit 2⇥ 2 matrix) to itself. In other words, rotations should obey

AA
† = 1

But such matrices are familiar unitary matrices. We learn that rotations sit in the

subgroup A 2 SU(2) ⇢ SL(2,C). You may be used to thinking of the rotation group
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as SO(3) rather than SU(2). But these are almost the same thing: SU(2) is the double

cover of SO(3),

SO(3) ⇠= SU(2)/Z2

Let’s see how this equivalence between matrices R 2 SO(3) matrices and A 2 SU(2)

works. For rotations around the x-axis, we have

R =

0

BB@

1 0 0

0 cos ✓ sin ✓

0 � sin ✓ cos ✓

1

CCA  ! A = ±

 
cos(✓/2) i sin(✓/2)

i sin(✓/2) cos(✓/2)

!

To see this, you just need to substitute the matrix A into the map (7.36) and check

that it reproduces the same rotation as the matrix R. Note the ± possibility on A

which reflects the fact that SL(2,C) is the double cover of the Lorentz group. This is

also related to the fact that the angle in A is ✓/2 rather than ✓: we will return to this

shortly. For rotations about the y-axis, we have

R =

0

BB@

cos ✓ 1 sin ✓

0 1 0

� sin ✓ 1 cos ✓

1

CCA  ! A = ±

 
cos(✓/2) sin(✓/2)

� sin(✓/2) cos(✓/2)

!

Finally, for rotations about the z-axis, we have

R =

0

BB@

cos ✓ sin ✓ 0

� sin ✓ cos ✓ 0

0 0 1

1

CCA  ! A = ±

 
e
i✓/2 0

0 e
�i✓/2

!

There’s a somewhat nicer way of writing these matrices which makes their structure

clearer. To see this, we first need to introduce the Pauli matrices,

�
1 =

 
0 1

1 0

!
, �

2 =

 
0 �i

i 0

!
, �

3 =

 
1 0

0 �1

!
(7.37)

Together with the unit matrix, these form a basis of 2 ⇥ 2 Hermitian matrices. They

have the nice property that �
i
�
j = �

ij + i✏
ijk
�
k. In general, a rotation by angle ✓

around an axis with unit vector ~n is associated to the unitary matrix

A = ± exp

✓
i✓

2
n
i
�
i

◆
(7.38)

Of course, the discussion above also tells us how the rotations fit within the Lorentz

group. The matrix A remains unchanged, while the Lorentz transformation ⇤ is con-

structed by embedding the orthogonal matrix R in the lower-right block as shown in

(7.15).
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Boosts

The Pauli matrices also provide a simple way to describe the A 2 SL(2,C) corre-

sponding to Lorentz boosts. A boost with rapidity ' in the direction ~n is associated

to

A = ± exp
⇣
�
'

2
n
i
�
i
⌘

(7.39)

Unlike rotations, these matrices are not unitary. This ensures that they a↵ect the time

component. Again, you can check that this reproduce the Lorentz boosts of the form

(7.17) simply by substituting this expression for A into the map (7.36). For example,

a boost in the z-direction is given by the matrix

A =

 
e
�'/2 0

0 e
+'/2

!
) AX̂A

† = X̂
0 =

 
e
�'(t+ z) x� iy

x+ iy e
+'(t� z)

!

This tells us that x and y are left unchanged, while t
0 + z

0 = e
�'(t + z) and t

0
� z

0 =

e
+'(t� z). Doing the algebra gives

t
0 = cosh' t� sinh' z , z

0 = cosh' z � sinh' t

which indeed agrees with the usual form of the Lorentz transformation (7.17) written

in terms of the rapidity.

7.6.2 What the Observer Actually Observes

There’s a rather nice application of the above formalism. In Section 7.2, when we

first encountered relativistic phenomena such as length contraction, we stressed that

di↵erent observers ascribe di↵erent coordinates to spacetime events. But this is not the

same thing as what the observer actually sees, for this also involves the time that the

light took to travel from the event to the observer. So this leaves open the question:

what does an observer observe? What do Lorentz contracted objects really look like?

As we will now show, writing the Lorentz group as SL(2,C) gives a wonderfully elegant

way to answer this question. Moreover, what we will find is somewhat surprising.

What an observer actually sees are, of course, light rays. As objects move through

Minkowski space, they emit light which then propagates to the position of the observer.

We’ve drawn this in the diagrams, both of which have the observer placed at the origin

of Minkowski space. We’ve also drawn the future and past lightcones emitted from the

origin.
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t=0

celestial
sphere

t’=0

celestial
sphere

Figure 60: The celestial sphere for one

observer...

Figure 61: ...and for another

In the left-hand figure, the observer is assumed to be stationary with time coordinate

t. At each fixed moment in time, t, the light rays form a sphere S2. This is drawn as

the red circle in the past lightcone of the diagram. If we assume that no other object

comes between this sphere and the observer, then the light rays intersecting the sphere

are a good representation of what the observer actually sees. If he takes a snapshot of

everything around him with some really super-dooper fancy camera, he would record

the image on this sphere. This is sometimes given the name of the celestial sphere,

reflecting the fact that this is how we should think of viewing the night sky (at least if

the Earth wasn’t obscuring half of it).

Let’s now look at what an observer in a di↵erent inertial frame sees. This is shown

in the right-hand figure. This second observer will also take a snapshot using his fancy

camera as he passes through the origin. But this new observer’s celestial sphere is given

by null rays that sit at t0 = constant. Although it’s no longer obvious from the picture,

we know that the space defined by the intersection of light rays with the constant t
0

hyperplane must still be a sphere simply because all inertial observers are equivalent.

However, this new celestial sphere is clearly tilted with respect to the previous one.

The four light rays drawn in the figure intersect both celestial spheres. These light

rays therefore provide a map between what the two observers see. This is a map

between the two celestial spheres, S2
! S2. Our goal is to construct this map.

This is where our new mathematical formalism comes in. Any point on a light ray is,

by definition, at vanishing distance from the origin when measured in the Minkowski

metric. Equivalently, the 2 ⇥ 2 Hermitian matrix X̂ describing this point must have

vanishing determinant. But there’s a nice way to write down such matrices with zero

determinant. We introduce a two-component complex vector, ⇠↵ with ↵ = 1, 2. Then
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we write

X̂ = ⇠⇠
† =

 
|⇠1|

2
⇠1⇠

†
2

⇠2⇠
†
1 |⇠2|

2

!

which, by construction, obeys det X̂ = 0. It’s simple to check that the most general

Hermitian matrix X̂ with det X̂ = 0 and non-negative trace can be written in this way.

(The non-negative trace condition means that X̂ lives in the future lightcone. We can

always parameterise the past lightcone by X̂ = �⇠⇠†.) Note, however, that there’s a

redundancy in this description, since if we rotate both components of ⇠ by a phase, so

that ⇠ ! e
i�
⇠, then X̂ remains unchanged.

An Aside: The Hopf Map

In our new notation, the celestial sphere at constant time t is simply given by

⇠
†
⇠ = |⇠1|

2 + |⇠2|
2 = constant (7.40)

There’s actually some interesting maths in this statement. It’s obvious that given

two complex variables ⇠1 and ⇠2, the equation (7.40) defines a 3-dimensional sphere S3.

What’s perhaps less obvious, but nonetheless true, is that if we identify all points on S3

related by ⇠ ! e
i�
⇠, then we get a 2-dimensional sphere S2. In mathematical language,

we say that S3
/U(1) ⇠= S2.

It’s simple to write directly the map S3
! S2. Given a complex 2-vector, ⇠, obeying

⇠
†
⇠ = 1, you can define 3 real numbers ki by

k
i = ⇠

†
�
i
⇠

where �i are the three Pauli matrices (7.37). Then a little algebra shows that ki
k
i = 1.

In other words, ki gives a point on S2. This is map from S3 to S2 is called the Hopf

map.

Back to the Real World

Let’s now use these new objects ⇠ to construct the map between the two celestial

spheres. A nice fact is that Lorentz transformations act in a natural way on the two-

component ⇠. To see this, recall that

X̂
0 = ⇠

0
⇠
0† = A⇠⇠

†
A

†

But we can view this as a transformation of ⇠ itself. We have simply the SL(2,C)

transformation

⇠
0 = A⇠ (7.41)
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Figure 62: The stereographic projection. The southern hemisphere is mapped to inside the

dotted circle; the northern hemisphere is mapped to outside this circle.

However, this is not quite our mapping. We can start with a celestial sphere defined

by (7.40) and act with a Lorentz transformation. The trouble is that the resulting

space we get remains the first celestial sphere, just written in the second observer’s

coordinates. We still need to propagate the light rays forward and backwards so that

they intersect the second celestial sphere.

To avoid this complication, it’s best to think about these celestial spheres in a slightly

di↵erent way. Rather than saying that they are defined at constant time, let’s instead

define them as equivalence classes of light rays. This means that we lose the information

about where we are along the light ray: we only keep the information about which light

ray we’re talking about. Mathematically, this is very simple: to each ⇠ we associate a

single complex number ! 2 C by

! =
⇠1

⇠2

The map from the celestial sphere S2
! C is known as stereographic projection and

is shown in the figure. Strictly speaking, ! parameterises C [ {1}, with the point

at infinity included to accommodate the point ⇠2 = 0, which is the North pole of the

celestial sphere. This extended complex plane is called the Riemann sphere.

Now the light rays seen by the first observer are labelled by ! 2 C and form a

celestial sphere. The light rays seen by the second observer are labelled by !
0 = ⇠

0
1/⇠

0
2

and form a di↵erent celestial sphere. A Lorentz transformation A 2 SL(2,C) acts on

⇠ as (7.41) which, in terms of !, reads

!
0 =

a! + b

c! + d
where A =

 
a b

c d

!
and ad� bc = 1 (7.42)
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This transformation on the complex plane is known as a Möbius transformation. It’s

simple to see that Möbius transformations form a group. In fact, from what we’ve seen

above, you shouldn’t be surprised to learn that the group of Möbius transformations is

SL(2,C), up to a discrete Z2 identification.

Suppose now that the first observers sees an object on his celestial sphere that traces

out some shape. After stereographic projection, that will result in a shape on the

complex plane (perhaps passing through the point at infinity). This appears to the

second observer to be transformed by (7.42). Upon taking the inverse stereographic

projection, we will learn what shape the second observer really sees.

To make progress, we should look at a simple example. And the simplest example is

for an object which is itself a sphere. This means that, when stationary with respect

to the first observer, the outline of the object looks like a circle. What does the second

observer see? To answer this, I’ll need to invoke some simple facts about stereographic

projection and Möbius transformations. Although I won’t prove them, they are among

the most basic properties of these transformations and will be proven in next year’s

Geometry course. The facts are:

• The stereographic projection maps circles on the sphere to circles or lines on the

plane.

• Möbius transformations map circles and lines on the plane to circles or lines on

the plane.

Hiding behind these facts is the statement that both maps are conformal, meaning that

they preserve angles. But, for us, the upshot is that a circle on the first celestial sphere

is mapped under a Lorentz transformation to a circle on the second.

Let’s pause to take this in. The first observer saw an object which had the shape

of a circle. Based on the arguments of Lorentz contraction, you might expect that the

second observer sees a squashed circle, maybe an ellipse. Yet this is not what happens.

Instead, the second observer also sees a circle! The e↵ects of the time of flight of

light completely eliminate the Lorentz contraction. This fact was only realised more

than 50 years after Einstein’s formulation of special relativity when it was discovered

independently by Terrell and Penrose. It is sometimes said to be the “invisibility of the

Lorentz contraction”. Note that it doesn’t mean that the e↵ects of Lorentz contraction

that we discussed before are not real. It just means that you don’t get to see them if

you take a picture of a sphere. Moreover, if you look more closely you find that there

are things that change. For example, if you paint a picture on the surface of the sphere,

this will appear deformed to the other observer.
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7.6.3 Spinors

Finally, we’re in a position to explain what the title of Section 7.6 means. A spinor

is simply a two-dimensional complex vector ⇠ which, under a Lorentz transformation

A 2 SL(2,C), changes as ⇠ ! A⇠.

(Some confusing caveats: ⇠ defined in this way is known as a Weyl spinor. In fact,

strictly speaking, it is known as a left-handed Weyl spinor. For reasons that I won’t go

into here, we can also define something called a right-handed Weyl spinor by exchanging

' ! �' in the definition of the boosts (7.39). Then combining a left-handed Weyl

spinor together with a right-handed Weyl spinor gives a four component complex object

that is called a Dirac Spinor. See, I told you it would be confusing!)

We’ve already seen how spinors can be used to describe light rays. But this is not

their only use; they have much more a life of their own. Before I describe this, let

me firstly explain a property that makes it very surprising that spinors have any real

relevance in the world. This harks back to the observation that SL(2,C) is the double

cover of the Lorentz group. Suppose that there is some object in the Universe that is

actually described by a spinor. This means, in particular, that the state of the object

with ⇠ is di↵erent from the state of the object with �⇠. What happens when we rotate

this object? Well, we’ve already seen how to enact a rotation using SL(2,C) matrices:

they are given by (7.38). Except if we’re acting on spinors we need to make a decision:

do we pick +A or do we pick �A? Because, unlike the action on Minkowski space,

these two di↵erent matrices will result in di↵erent states ⇠ after a rotation. It doesn’t

actually matter which choice we pick, as long as we make one. So let’s decide that a

rotation about an axis ni acts on a spinor by

⇠ ! exp

✓
i✓

2
n
i
�
i

◆
⇠

This all seems fine. The surprise comes when we look at what happens if we rotate the

spinor by 2⇡. It doesn’t come back to itself. Instead, after a rotation by 2⇡ we find

⇠ ! �⇠. We have to rotate by 4⇡ to get the spinor to return to itself!

Wouldn’t it be astonishing if there were objects in the Universe which had this

property: that you could rotate them and find that they didn’t come back to themselves.

This is even more astonishing when you realise that rotating an object is the same thing

as walking around it. If such objects existed, you would be able to circle them once

and see that the object sits in a di↵erent state just because you walked around it. How

weird would that be?
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Well, such objects exist. What’s more, they’re the same objects that you and I

are made of: electrons and protons and neutrons. All of these particles carry a little

angular momentum whose direction is described by a spinor rather than a vector. This

means that Nature makes use of all the pretty mathematics that we’ve introduced in

this section. The symmetry group of the Universe we live in is not the Lorentz group

SO
+(1, 3). Instead, it is the double cover SL(2,C). And the basic building blocks of

matter have subtle and wonderful properties. Turn an electron 360o and it isn’t the

same; turn it 720o and you’re back to where you started. If you want to learn more

about this, you can find deeper explanations in the lecture notes on Quantum Field

Theory.
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