6. Non-Inertial Frames

We stated, long ago, that inertial frames provide the setting for Newtonian mechanics.
But what if you, one day, find yourself in a frame that is not inertial? For example,
suppose that every 24 hours you happen to spin around an axis which is 2500 miles
away. What would you feel? Or what if every year you spin around an axis 36 million
miles away? Would that have any effect on your everyday life?

In this section we will discuss what Newton’s equations of motion look like in non-
inertial frames. Just as there are many ways that an animal can be not a dog, so
there are many ways in which a reference frame can be non-inertial. Here we will just
consider one type: reference frames that rotate. We'll start with some basic concepts.

6.1 Rotating Frames

Let’s start with the inertial frame S drawn in the figure ,_,
with coordinate axes =, y and z. Our goal is to understand

the motion of particles as seen in a non-inertial frame S, < >
with axes 2/, ¥/ and 2/, which is rotating with respect to S. — y
We'll denote the angle between the z-axis of S and the z'-
axis of S" as . Since S’ is rotating, we clearly have 6 = 0(t) X!

and 6 # 0. 0

Our first task is to find a way to describe the rotation of .
. . Figure 31:
the axes. For this, we can use the angular velocity vector w
that we introduced in the last section to describe the motion of particles. Consider a
particle that is sitting stationary in the S’ frame. Then, from the perspective of frame

S it will appear to be moving with velocity
r=wxr

where, in the present case, w = 0z. Recall that in general, |w| = 0 is the angular speed,
while the direction of w is the axis of rotation, defined in a right-handed sense.

We can extend this description of the rotation of the axes of S’ themselves. Let e/,
1 = 1,2,3 be the unit vectors that point along the 2/, 3/ and 2z’ directions of S’. Then
these also rotate with velocity

A /
e, =wXe;

This will be the main formula that will allow us to understand motion in rotating
frames.
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6.1.1 Velocity and Acceleration in a Rotating Frame

Consider now a particle which is no longer stuck in the S’ frame, but moves on some
trajectory. We can measure the position of the particle in the inertial frame S, where,
using the summation convention, we write

r —=re;

Here the unit vectors e;, with ¢« = 1,2, 3 point along the axes of S. Alternatively, we
can measure the position of the particle in frame S’, where the position is

r=re/
Note that the position vector r is the same in both of these expressions: but the
coordinates r; and 7} differ because they are measured with respect to different axes.
Now, we can compute an expression for the velocity of the particle. In frame S, it is
simply
because the axes e; do not change with time. However, in the rotating frame S’, the
velocity of the particle is
r=rie +re

= rle/ +riw x e/

=re,twXr (6.2)
We’ll introduce a slightly novel notation to help highlight the physics hiding in these
two equations. We write the velocity of the particle as seen by an observer in frame S

dr) .
dt S_T'L 7

Similarly, the velocity as seen by an observer in frame S’ is just

dt ) o,

From equations (6.1) and (6.2), we see that the two observers measure different veloc-

(5),-(3), o

This is not completely surprising: the difference is just the relative velocity of the two

as

ities,

frames.
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What about acceleration? We can play the same game. In frame S, we have

while in frame S’, the expression is a little more complicated. Differentiating (6.2) once
more, we have

) ) S -/ / /.- / / -/
r=nre, +r¢e +rwxe, +rwxe, +rwxe;

=ile] + 2w X e/ +w X T+ rw X (wxe;')

As with velocities, the acceleration seen by the observer in S is 7;e; while the accel-
eration seen by the observer in S’ is ile/. Equating the two equations above gives

d’r d’r dr ,
(ﬁ>5:(ﬁ)s/+2wx(E)S/—i—wxr—i—wx(wxr) (64)

This equation contains the key to understanding the motion of particles in a rotating

us

frame.

6.2 Newton’s Equation of Motion in a Rotating Frame

With the hard work behind us, let’s see how a person sitting in the rotating frame S’
would see Newton’s law of motion. We know that in the inertial frame S, we have

d2
2 )

So, using (6.4), in frame S’, we have

d? d
m() =F - 2mwx [ = —mw X T —mw X (W Xr) (6.5)
dt2 S/ dt S/

In other words, to explain the motion of a particle an observer in S” must invoke the
existence of three further terms on the right-hand side of Newton’s equation. These are
called fictitious forces. Viewed from S’; a free particle doesn’t travel in a straight line
and these fictitious forces are necessary to explain this departure from uniform motion.
In the rest of this section, we will see several examples of this.

The —2mw x I term in (6.5) is the Coriolis force; the —mw X (w X r) term is called
the centrifugal force; the —mw X r term is called the Fuler force.
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The most familiar non-inertial frame is
HoW DD YOU LIKE MY CENTRIFUGE,

e :
the room you are sitting in. It rotates once per ggﬁk Yg%‘h &f‘éﬂm e
day around the north-south axis of the Earth. r%gnczgiws_vm BONE. W
It further rotates once a year about the Sun I /

which, in turn, rotates about the centre of the
galaxy. From these time scales, we can easily ﬁ%
compute w = |w].

YOU MEAN CENTRIPETAL FORCE.
THERE'S NO SUCH THING AS

The radius of the Earth is Rgatn ~ 6 X CENTRIFUGAL FORCE .
: LE CLAl ISTER BON(), PERPETUATED
10® km. The Earth rotates with angular fre- BY OYERZEDS TEXHERS OF SOENCE.
SIMPLY CONSTRUCT NEWTON'S LAWS IN A ROTATING
quency SYSTEM. AND YOU WILL SEE. A CENTRIFUGAL FORCE
TERM APPEAR AS PLAIN AS DAY.
/
27 e
Wrot = ~Tx107° 57!
1 day
i ' A OME NOW, DO YOU REALLY EXPECT
The distance from the Earth to the Sun is a. Cone Now, oY
2% 10® km. The angular frequency of the orbit LAl
" NO, MISTER BOND.
9 | EXPECT Y00 70 DIE.
™ S
Worh = ~2x1077 st \
1 year

) Figure 32: xkcd.com
It should come as no surprise to learn that

wrot/worb = Torb/trrot ~ 365.

In what follows, we will see the effect of the centrifugal and Coriolis forces on our
daily lives. We will not discuss the Euler force, which arises only when the speed of
the rotation changes with time. Although this plays a role in various funfair rides, it’s
not important in the frame of the Earth. (The angular velocity of the Earth’s rotation
does, in fact, have a small, but non-vanishing, w due to the precession and nutation of
the Earth’s rotational axis. However, it is tiny, with & < w? and, as far as I know, the
resulting Euler force has no consequence).

Inertial vs Gravitational Mass Revisited

Notice that all the fictitious forces are proportional to the inertial mass m. There is
no mystery here: it’s because they all originated from the “ma” side of “F=ma” rather
than “F” side. But, as we mentioned in Section 2, experimentally the gravitational
force also appears to be proportional to the inertial mass. Is this evidence that gravity
too is a fictitious force? In fact it is. Einstein’s theory of general relativity recasts
gravity as the fictitious force that we experience due to the curvature of space and
time.
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6.3 Centrifugal Force

The centrifugal force is given by

Feent = —mw X (w X 1)
= —m(w-1)w + mw’r
We can get a feel for this by looking at the figure.
The vector w X r points into the page, which means
that —w X (w X r) points away from the axis of
rotation as shown. The magnitude of the force is

|F cent| = mw?r cos § = mw?d (6.6)

/ F

Figure 33:

where d is the distance to the axis of rotation as shown in the figure.

The centrifugal force does not depend on the velocity of the particle. In fact, it is an

example of a conservative force. We can see this by writing

Fee = —VV  with V= —%]w x 1|2

(6.7)

In a rotating frame, V' has the interpretation of the potential energy associated to a

particle. The potential V' is negative, which tells us that particles want to fly out from

the axis of rotation to lower their energy by increasing |r|.

6.3.1 An Example: Apparent Gravity

Suspend a piece of string from the ceiling. You might
expect that the string points down to the centre of the
Earth. But the effect of the centrifugal force due to
the Earth’s rotation means that this isn’t the case. A
somewhat exaggerated picture of this is shown in the
figure. The question that we would like to answer is:
what is the angle ¢ that the string makes with the line
pointing to the Earth’s centre? As we will now show,
the angle ¢ depends on the latitude, 6, at which we're

sitting.
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The effective acceleration, due to the combination of gravity and the centrifugal force,
is

gt =8 —w X (wWXr)

It is useful to resolve this acceleration in the radial and southerly 6 .

A~ T
directions by using the unit vectors r and 6. The centrifugal force F \/
is resolved as

F = |F|cos0i — |F|sin66
= mw?r cos® 0t — mw?r cosfsin 6 0 Figure 35:

where, in the second line, we have used the magnitude of the cen-
trifugal force computed in (6.6). Notice that, at the pole § = 7/2
and the centrifugal forces vanishes as expected. This gives the effective acceleration

gt = —gf —w X (WX 1) = (—g + w?Rcos? ) — w?Rcosfsinf O
where R is the radius of the Earth.

The force mges must be balanced by the tension T in the string. This too can be
resolved as

T :Tcosqﬁf'—l—Tsinqﬁé

In equilibrium, we need mg.g+T = 0, which allows us to eliminate T to get an equation
relating ¢ to the latitude 6,

w?R cosfsin 6
tan ¢ =

g — w?Rcos? 0

This is the answer we wanted. Let’s see at what latitude the angle ¢ is largest. If
we compute d(tan ¢)/df, we find a fairly complicated expression. However, if we take
int account the fact that w?R &~ 3 x 1072 ms™? < g then we can neglect the term in
which we differentiate the denominator. We learn that the maximum departure from
the vertical occurs more or less when d(cosfsind)/df = 0. Or, in other words, at a
latitude of 6 ~ 45°. However, even at this point the deflection from the vertical is tiny:
an order of magnitude gives ¢ ~ 107
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When we sit at the equator, with § = 0, then ¢ = 0 and the string hangs directly
towards the centre of the Earth. However, gravity is somewhat weaker due to the
centrifugal force. We have

_ 2
geff‘equator =g—w R

Based on this, we expect geg — g ~ 3 x 1072 ms~2 at the equator. In fact, the experi-
mental result is more like 5 x 1072 ms~2. The reason for this discrepancy can also be
traced to the centrifugal force which means that the Earth is not spherical, but rather
bulges near the equator.

A Rotating Bucket

Fill a bucket with water and spin it. The surface of the water ®
will form a concave shape like that shown in the figure. What T

. %r
is the shape?

We assume that the water spins with the bucket. The poten-
tial energy of a water molecule then has two contributions: one
from gravity and the other due to the centrifugal force given
in (6.7)

1
Vwater = Mgz — §mw27“2

Figure 36:

Now we use a somewhat slick physics argument. Consider a
water molecule on the surface of the fluid. If it could lower its energy by moving along
the surface, then it would. But we’re looking for the equilibrium shape of the surface,
which means that each point on the surface must have equal potential energy. This
means that the shape of the surface is a parabola, governed by the equation

w?r?
+ constant

Z:
29

6.4 Coriolis Force

The Coriolis force is given by
For = —2mw x v

where, from (6.5), we see that v = (dr/dt)s is the velocity of the particle measured
in the rotating frame S’. The force is velocity dependent: it is only felt by moving
particles. Moreover, it is independent on the position.
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6.4.1 Particles, Baths and Hurricanes

The mathematical form of the Coriolis force is identical to the
Lorentz force (2.19) describing a particle moving in a magnetic }
field. This means we already know what the effect of the T—> [} <Hl

Coriolis force will be: it makes moving particles turn in circles.

We can easily check that this is indeed the case. Consider
a particle moving on a spinning plane as shown in the figure, Figure 37:
where w is coming out of the page. In the diagram we have
drawn various particle velocities, together with the Coriolis force experienced by the
particle. We see that the effect of the Coriolis force is that a free particle travelling on
the plane will move in a clockwise direction.

There is a similar force — at least in principle — when you pull the plug from your
bathroom sink. But here there’s a subtle difference which actually reverses the direction
of motion!

Consider a fluid in which there is a region of low pressure. This region could be
formed in a sink because we pulled the plug, or it could be formed in the atmosphere
due to random weather fluctuations. Now the particles in the fluid will move radially
towards the low pressure region. As they move, they will be deflected by the Coriolis
force as shown in the figure below. The direction of the deflection is the same as that
of a particle moving in the plane. But the net effect is that the swirling fluid moves in
an anti-clockwise direction.

- 4 )\

S) — = S

- 4

Figure 38:

The Coriolis force is responsible for the large scale motion of the ocean and atmo-
sphere. (The relevant equations in that context can be found in Section 4.3 of the
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Figure 39: Cyclone Catarina which hit Figure 40: Hurricane Katrina, which hit
Brazil in 2004 New Orleans in 2005

lectures on Fluid Mechanics.) It is also responsible for the formation of hurricanes.
These rotate in an anti-clockwise direction in the Northern hemisphere and a clock-
wise direction in the Southern hemisphere. However, don’t spend too long staring at
the rotation in your bath water. Although the effect can be reproduced in laboratory
settings, in your bathroom the Coriolis force is too small: it is no more likely to make
your bath water change direction than it is to make your CD change direction. (An
aside: CDs are what people used before phones. Some towns have museums — they
used to be called record stores — that display examples of CD cases for people to look
at.)

Our discussion above supposed that objects were moving on a plane which is perpen-
dicular to the angular velocity w. But that’s not true for hurricanes: they move along
the surface of the Earth, which means that their velocity has a component parallel to
w. In this case, the effective magnitude of the Coriolis force gets a geometric factor,

|Fcor| = 2mwuv sin @ (6.8)

It’s simplest to see the siné factor in the case of a particle travelling North. Here the
Coriolis force acts in an Easterly direction and a little bit of trigonometry shows that
the force has magnitude 2mwv sin § as claimed. This is particularly clear at the equator
where 8 = 0. Here a particle travelling North has v parallel to w and so the Coriolis
force vanishes.

It’s a little more tricky to see the sin @ factor for a particle travelling in the Easterly
direction. In this case, v is perpendicular to w, so the magnitude of the force is actually
2mwv, with no trigonometric factor. However, the direction of the force no longer lies
parallel to the Earth’s surface: it has a component which points directly upwards. But
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we're not interested in this component; it’s certainly not going to be big enough to
compete with gravity. Projecting onto the component that lies parallel to the Earth’s
surface (in a Southerly direction in this case), we again get a sin  factor.

The factor of sin @ in (6.8) has an important meteorological consequence: the Coriolis
force vanishes when 6 = 0, which ensures that hurricanes do not form within 500 miles
of the equator.

6.4.2 Balls and Towers

Climb up a tower and drop a ball. Where does it land? Since the Earth is rotating
under the tower, you might think that the ball lands behind you. In fact, it lands in
front! Let’s see where this somewhat counterintuitive result comes from.

The equation of motion in a rotating frame is
F=g—-wxX (wxXr)—2wxr

We’ve already seen in Section 6.3.1 that the effect of the centrifugal force is to change
the effective direction of gravity. But we’ve also seen that this effect is small. In what
follows we will neglect the centrifugal term. In fact, we will ignore all terms of order
O(w?) (there will be one more coming shortly!). We will therefore solve the equation
of motion

F=g—2wxr (6.9)
The first step is easy: we can integrate this once to give
I =gt —2w X (r—rop)

where we've introduced the initial position ry as an integration constant. If we now
substitute this back into the equation of motion (6.9), we get a messy, but manageable,
equation. Let’s, however, make our life easier by recalling that we’ve already agreed to
drop terms of order O(w?). Then, upon substitution, we're left with

r~g—2wxgt
which we can easily integrate one last time to find

1 t2 1 y t3
r~ryg+ — — —Ww
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We’ll pick a right-handed basis of vectors so that e; points o
North, e, points West and e3 = t points radially outward as shown
in the figure. However, we’ll also make life easier for ourselves and ‘ P
assume that the tower sits at the equator. (This means that we
don’t have to worry about the annoying sin # factor that we saw
in (6.8) and we will see again in the next section). Then

g=—ges , w=we; , ro=(R+h)e Figure 41:

where R is the radius of the Earth and h is the height of the tower. Our solution reads

1 1
r R (R +h— 59752) e; — gwgt?’eg

The first term tells us the familiar result that the particle hits the ground in time
t? = 2h/g. The last term gives the displacement, d,

1 oh\ 32 2% |2h3
d=——wg|— = ——/—
3 g 3 g

Recall that e, points West, so that the fact that d is negative means that the displace-
ment is in the Easterly direction. But the Earth rotates West to East. This means
that the ball falls in front of the tower as promised.

In fact, there is a simple intuitive way to understand this result. Although we have
presented it as a consequence of the Coriolis force, it follows from the conservation of
angular momentum. When dropped, the angular momentum (per unit mass) of the
particle is

| =w(R+h)?

This can’t change as the ball falls. This means that the ball’s final speed in the Easterly
direction is

R+ h)?
Rv=(R+h)*w = v:% > Uparth = Rw
So its tangential velocity is greater than that of the Earth’s surface. This is the reason

that it falls in front of the tower.

6.4.3 Foucault’s Pendulum

A pendulum placed at the North pole will stay aligned with its own inertial plane while
the Earth rotates beneath. An observer on the Earth would attribute this rotation of
the pendulum’s axis to the Coriolis force. What happens if we place the pendulum at
some latitude 67
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Let’s call the length of the pendulum [. As in the previous example,

=>

we’ll work with a right-handed orthonormal basis of vectors so that
e; points North, e, points West and e3 = r point radially outward
from the earth. We place the origin a distance [ below the pivot, so 1
that when the pendulum hangs directly downwards the bob at the

end sits on the origin. Finally, we ignore the centrifugal force.

The equation of motion for the pendulum, including the Coriolis
force, is Figure 42:

mx=T+mg—2mw X x

Notice that we’'ve reverted to calling the position of the particle x instead of r. This is
to (hopefully)avoid confusion: our basis vector  does not point towards the particle; it
points radially out from the earth. This is in a different direction to x = ze; +yes+ ze3
which is the position of the bob shown in the figure. Because the bob sits at the end
of the pendulum, the coordinates are subject to the constraint

Pyt (-2 =1 (6.10)
At latitude 6, the rotation vector is
w=wcosbe +wsinfr

while the acceleration due to gravity is g = —gr. We also need an expression for the
tension T, which points along the direction of the pendulum. Again consulting the
figure, we can see that the tension is given by

Tz Ty T(—=2) .

T:—Tel—Teg—i—Tr

Resolving the equation of motion along the axes gives us three equations,

T
mi = —xT + 2mwy sin 0 (6.11)
" yT : .
my == + 2mw (2 cosf — & sin0) (6.12)
T( —
mz = —mg + M — 2mwy cos (6.13)

l

These equations, together with the constraint (6.10), look rather formidable. To make
progress, we will assume that x/l < 1 and y/l < 1 and work to leading order in this
small number. This is not as random as it may seem: Foucault’s original pendulum
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hangs in the Pantheon in Paris and is 67 meters long, with the amplitude of the swing
a few meters. The advantage of this approximation becomes apparent when we revisit
the constraint (6.10) which tells us that z/I is second order,

This means that, to leading order, we can set z, Z and Z all to zero. The last of the
equations (6.13) then provides an equation that will soon allow us to eliminate 7T

T ~ mg + 2mwy cos 6 (6.14)

Meanwhile, we rewrite the first two equations (6.11) and (6.12) using the same trick
we saw in our study of Larmor circles in Section (2.4.2): we introduce £ = x + iy and
add (6.11) to i times (6.12) to get

£~ _%g—ng’sme

Here we have substituted 7" ~ mg since the second term in (6.14) contributes only at
sub-leading order. This is the equation of motion for a damped harmonic oscillator,
albeit with a complex variable. We can solve it in the same way: the ansatz ¢ = e
results in the quadratic equation

B2+2iwﬂsin9+%:0

~ —i (wsin@ + %)
From this we can write the general solution as

£ = g iwtsind (A cos \/gt + Bsin \/gt>

Without the overall phase factor, e=™!*"? this equation describes an ellipse. The

which has solutions

1
fi = —iwsinf + i\/ZwQ sin® 0 +

~ |

role of the phase factor is to make the orientation of the ellipse slowly rotate in the
x —y plane. Viewed from above, the rotation is clockwise in the Northern hemisphere;
anti-clockwise in the Southern hemisphere. Notice that the period of rotation is not 24
hours unless the pendulum is suspended at the poles. Instead the period is 24/ sin @
hours. In Paris, this is 32 hours.
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6.4.4 Larmor Precession

The transformation to rotating frames can also be used as a cute trick to solve certain
problems. Consider, for example, a charged particle orbiting around a second, fixed
particle under the influence of the Coulomb force. Now add to this a constant magnetic
field B. The resulting equation of motion is

k
mf =——r+qr xB
r

where k = qQQ/4mey. When B = 0, this is the central force problem that we solved in
Section 4 and we know the orbit of the particle is an ellipse. But what about when

B # 07
Let’s look at the problem in a rotating frame. Using (6.3) and (6.4), we have
. : k. :
mE+2wxt+wx (wxr))=—-—=t+q(F+wxr)xB
r

where now r describes the position of the coordinate in the rotating frame. Now we do
something clever: we pick the angular velocity of rotation w so that the r terms above
cancel. This works for

__4B
 2m
Then the equation of motion becomes
k q?
r=——1r+—Bx (B
mir = + amB X (B xr)

This is almost of the form that we studied in Section 4. In fact, for suitably small
magnetic fields we can just ignore the last term. This holds as long as B < 4mk/q¢*r3.
In this limit, we can just adopt our old solution of elliptic motion. However, transform-
ing back to the original frame, the ellipse will appear to rotate — or precess — with
angular speed

_ 4B

w =
2m

This is known as the Larmor frequency. 1t is half of the cyclotron frequency that we
met in 2.4.2.
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