
6. Non-Inertial Frames

We stated, long ago, that inertial frames provide the setting for Newtonian mechanics.

But what if you, one day, find yourself in a frame that is not inertial? For example,

suppose that every 24 hours you happen to spin around an axis which is 2500 miles

away. What would you feel? Or what if every year you spin around an axis 36 million

miles away? Would that have any e↵ect on your everyday life?

In this section we will discuss what Newton’s equations of motion look like in non-

inertial frames. Just as there are many ways that an animal can be not a dog, so

there are many ways in which a reference frame can be non-inertial. Here we will just

consider one type: reference frames that rotate. We’ll start with some basic concepts.

6.1 Rotating Frames

Let’s start with the inertial frame S drawn in the figure
z=z

x

y

x

y

θ

Figure 31:

with coordinate axes x, y and z. Our goal is to understand

the motion of particles as seen in a non-inertial frame S
0,

with axes x0, y0 and z
0, which is rotating with respect to S.

We’ll denote the angle between the x-axis of S and the x
0-

axis of S 0 as ✓. Since S 0 is rotating, we clearly have ✓ = ✓(t)

and ✓̇ 6= 0.

Our first task is to find a way to describe the rotation of

the axes. For this, we can use the angular velocity vector !

that we introduced in the last section to describe the motion of particles. Consider a

particle that is sitting stationary in the S 0 frame. Then, from the perspective of frame

S it will appear to be moving with velocity

ṙ = ! ⇥ r

where, in the present case, ! = ✓̇ẑ. Recall that in general, |!| = ✓̇ is the angular speed,

while the direction of ! is the axis of rotation, defined in a right-handed sense.

We can extend this description of the rotation of the axes of S 0 themselves. Let e 0
i ,

i = 1, 2, 3 be the unit vectors that point along the x
0, y0 and z

0 directions of S 0. Then

these also rotate with velocity

ė 0
i = ! ⇥ e 0

i

This will be the main formula that will allow us to understand motion in rotating

frames.
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6.1.1 Velocity and Acceleration in a Rotating Frame

Consider now a particle which is no longer stuck in the S
0 frame, but moves on some

trajectory. We can measure the position of the particle in the inertial frame S, where,

using the summation convention, we write

r = riei

Here the unit vectors ei, with i = 1, 2, 3 point along the axes of S. Alternatively, we

can measure the position of the particle in frame S
0, where the position is

r = r
0
ie

0
i

Note that the position vector r is the same in both of these expressions: but the

coordinates ri and r
0
i di↵er because they are measured with respect to di↵erent axes.

Now, we can compute an expression for the velocity of the particle. In frame S, it is

simply

ṙ = ṙiei (6.1)

because the axes ei do not change with time. However, in the rotating frame S
0, the

velocity of the particle is

ṙ = ṙ
0
ie

0
i + r

0
iė

0
i

= ṙ
0
ie

0
i + r

0
i! ⇥ e 0

i

= ṙ
0
ie

0
i + ! ⇥ r (6.2)

We’ll introduce a slightly novel notation to help highlight the physics hiding in these

two equations. We write the velocity of the particle as seen by an observer in frame S

as
✓
dr

dt

◆

S

= ṙiei

Similarly, the velocity as seen by an observer in frame S
0 is just

✓
dr

dt

◆

S0
= ṙ

0
ie

0
i

From equations (6.1) and (6.2), we see that the two observers measure di↵erent veloc-

ities,
✓
dr

dt

◆

S

=

✓
dr

dt

◆

S0
+ ! ⇥ r (6.3)

This is not completely surprising: the di↵erence is just the relative velocity of the two

frames.
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What about acceleration? We can play the same game. In frame S, we have

r̈ = r̈iei

while in frame S 0, the expression is a little more complicated. Di↵erentiating (6.2) once

more, we have

r̈ = r̈
0
ie

0
i + ṙ

0
iėi

0 + ṙ
0
i! ⇥ e 0

i + r
0
i!̇ ⇥ e 0

i + r
0
i! ⇥ ėi

0

= r̈
0
ie

0
i + 2ṙ0i! ⇥ e 0

i + !̇ ⇥ r+ r
0
i! ⇥ (! ⇥ ei

0)

As with velocities, the acceleration seen by the observer in S is r̈iei while the accel-

eration seen by the observer in S
0 is r̈

0
ie

0
i . Equating the two equations above gives

us
✓
d
2r

dt2

◆

S

=

✓
d
2r

dt2

◆

S0
+ 2! ⇥

✓
dr

dt

◆

S0
+ !̇ ⇥ r+ ! ⇥ (! ⇥ r) (6.4)

This equation contains the key to understanding the motion of particles in a rotating

frame.

6.2 Newton’s Equation of Motion in a Rotating Frame

With the hard work behind us, let’s see how a person sitting in the rotating frame S
0

would see Newton’s law of motion. We know that in the inertial frame S, we have

m

✓
d
2r

dt2

◆

S

= F

So, using (6.4), in frame S
0, we have

m

✓
d
2r

dt2

◆

S0
= F� 2m! ⇥

✓
dr

dt

◆

S0
�m!̇ ⇥ r�m! ⇥ (! ⇥ r) (6.5)

In other words, to explain the motion of a particle an observer in S
0 must invoke the

existence of three further terms on the right-hand side of Newton’s equation. These are

called fictitious forces. Viewed from S
0, a free particle doesn’t travel in a straight line

and these fictitious forces are necessary to explain this departure from uniform motion.

In the rest of this section, we will see several examples of this.

The �2m!⇥ ṙ term in (6.5) is the Coriolis force; the �m!⇥ (!⇥ r) term is called

the centrifugal force; the �m!̇ ⇥ r term is called the Euler force.
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The most familiar non-inertial frame is

Figure 32: xkcd.com

the room you are sitting in. It rotates once per

day around the north-south axis of the Earth.

It further rotates once a year about the Sun

which, in turn, rotates about the centre of the

galaxy. From these time scales, we can easily

compute ! = |!|.

The radius of the Earth is REarth ⇡ 6 ⇥

103 km. The Earth rotates with angular fre-

quency

!rot =
2⇡

1 day
⇡ 7⇥ 10�5

s
�1

The distance from the Earth to the Sun is ae ⇡

2⇥108 km. The angular frequency of the orbit

is

!orb =
2⇡

1 year
⇡ 2⇥ 10�7

s
�1

It should come as no surprise to learn that

!rot/!orb = Torb/Trot ⇡ 365.

In what follows, we will see the e↵ect of the centrifugal and Coriolis forces on our

daily lives. We will not discuss the Euler force, which arises only when the speed of

the rotation changes with time. Although this plays a role in various funfair rides, it’s

not important in the frame of the Earth. (The angular velocity of the Earth’s rotation

does, in fact, have a small, but non-vanishing, !̇ due to the precession and nutation of

the Earth’s rotational axis. However, it is tiny, with !̇ ⌧ !
2 and, as far as I know, the

resulting Euler force has no consequence).

Inertial vs Gravitational Mass Revisited

Notice that all the fictitious forces are proportional to the inertial mass m. There is

no mystery here: it’s because they all originated from the “ma” side of “F=ma” rather

than “F” side. But, as we mentioned in Section 2, experimentally the gravitational

force also appears to be proportional to the inertial mass. Is this evidence that gravity

too is a fictitious force? In fact it is. Einstein’s theory of general relativity recasts

gravity as the fictitious force that we experience due to the curvature of space and

time.
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6.3 Centrifugal Force

The centrifugal force is given by ω

d

x F

θ

Figure 33:

Fcent = �m! ⇥ (! ⇥ r)

= �m(! · r)! +m!
2r

We can get a feel for this by looking at the figure.

The vector !⇥ r points into the page, which means

that �! ⇥ (! ⇥ r) points away from the axis of

rotation as shown. The magnitude of the force is

|Fcent| = m!
2
r cos ✓ = m!

2
d (6.6)

where d is the distance to the axis of rotation as shown in the figure.

The centrifugal force does not depend on the velocity of the particle. In fact, it is an

example of a conservative force. We can see this by writing

Fcent = �rV with V = �
m

2
|! ⇥ r|2 (6.7)

In a rotating frame, V has the interpretation of the potential energy associated to a

particle. The potential V is negative, which tells us that particles want to fly out from

the axis of rotation to lower their energy by increasing |r|.

6.3.1 An Example: Apparent Gravity

Suspend a piece of string from the ceiling. You might

Earth
φ

θ

F

g

Figure 34:

expect that the string points down to the centre of the

Earth. But the e↵ect of the centrifugal force due to

the Earth’s rotation means that this isn’t the case. A

somewhat exaggerated picture of this is shown in the

figure. The question that we would like to answer is:

what is the angle � that the string makes with the line

pointing to the Earth’s centre? As we will now show,

the angle � depends on the latitude, ✓, at which we’re

sitting.
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The e↵ective acceleration, due to the combination of gravity and the centrifugal force,

is

ge↵ = g � ! ⇥ (! ⇥ r)

It is useful to resolve this acceleration in the radial and southerly θ
^

r

Earth

^

Figure 35:

directions by using the unit vectors r̂ and ✓̂. The centrifugal force F

is resolved as

F = |F| cos ✓ r̂� |F| sin ✓ ✓̂

= m!
2
r cos2 ✓ r̂�m!

2
r cos ✓ sin ✓ ✓̂

where, in the second line, we have used the magnitude of the cen-

trifugal force computed in (6.6). Notice that, at the pole ✓ = ⇡/2

and the centrifugal forces vanishes as expected. This gives the e↵ective acceleration

ge↵ = �gr̂� ! ⇥ (! ⇥ r) = (�g + !
2
R cos2 ✓)r̂� !

2
R cos ✓ sin ✓ ✓̂

where R is the radius of the Earth.

The force mge↵ must be balanced by the tension T in the string. This too can be

resolved as

T = T cos� r̂+ T sin� ✓̂

In equilibrium, we needmge↵+T = 0, which allows us to eliminate T to get an equation

relating � to the latitude ✓,

tan� =
!
2
R cos ✓ sin ✓

g � !2R cos2 ✓

This is the answer we wanted. Let’s see at what latitude the angle � is largest. If

we compute d(tan�)/d✓, we find a fairly complicated expression. However, if we take

int account the fact that !2
R ⇡ 3 ⇥ 10�2

ms
�2

⌧ g then we can neglect the term in

which we di↵erentiate the denominator. We learn that the maximum departure from

the vertical occurs more or less when d(cos ✓ sin ✓)/d✓ = 0. Or, in other words, at a

latitude of ✓ ⇡ 45�. However, even at this point the deflection from the vertical is tiny:

an order of magnitude gives � ⇡ 10�4.
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When we sit at the equator, with ✓ = 0, then � = 0 and the string hangs directly

towards the centre of the Earth. However, gravity is somewhat weaker due to the

centrifugal force. We have

ge↵ |equator = g � !
2
R

Based on this, we expect ge↵ � g ⇡ 3⇥ 10�2
ms

�2 at the equator. In fact, the experi-

mental result is more like 5⇥ 10�2
ms

�2. The reason for this discrepancy can also be

traced to the centrifugal force which means that the Earth is not spherical, but rather

bulges near the equator.

A Rotating Bucket

Fill a bucket with water and spin it. The surface of the water ω

r

Figure 36:

will form a concave shape like that shown in the figure. What

is the shape?

We assume that the water spins with the bucket. The poten-

tial energy of a water molecule then has two contributions: one

from gravity and the other due to the centrifugal force given

in (6.7)

Vwater = mgz �
1

2
m!

2
r
2

Now we use a somewhat slick physics argument. Consider a

water molecule on the surface of the fluid. If it could lower its energy by moving along

the surface, then it would. But we’re looking for the equilibrium shape of the surface,

which means that each point on the surface must have equal potential energy. This

means that the shape of the surface is a parabola, governed by the equation

z =
!
2
r
2

2g
+ constant

6.4 Coriolis Force

The Coriolis force is given by

Fcor = �2m! ⇥ v

where, from (6.5), we see that v = (dr/dt)S0 is the velocity of the particle measured

in the rotating frame S
0. The force is velocity dependent: it is only felt by moving

particles. Moreover, it is independent on the position.
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6.4.1 Particles, Baths and Hurricanes

The mathematical form of the Coriolis force is identical to the

Figure 37:

Lorentz force (2.19) describing a particle moving in a magnetic

field. This means we already know what the e↵ect of the

Coriolis force will be: it makes moving particles turn in circles.

We can easily check that this is indeed the case. Consider

a particle moving on a spinning plane as shown in the figure,

where ! is coming out of the page. In the diagram we have

drawn various particle velocities, together with the Coriolis force experienced by the

particle. We see that the e↵ect of the Coriolis force is that a free particle travelling on

the plane will move in a clockwise direction.

There is a similar force — at least in principle — when you pull the plug from your

bathroom sink. But here there’s a subtle di↵erence which actually reverses the direction

of motion!

Consider a fluid in which there is a region of low pressure. This region could be

formed in a sink because we pulled the plug, or it could be formed in the atmosphere

due to random weather fluctuations. Now the particles in the fluid will move radially

towards the low pressure region. As they move, they will be deflected by the Coriolis

force as shown in the figure. The direction of the deflection is the same as that of a

particle moving in the plane. But the net e↵ect is that the swirling fluid moves in an

anti-clockwise direction.

Figure 38:

The Coriolis force is responsible for the formation of hurricanes. These rotate in

an anti-clockwise direction in the Northern hemisphere and a clockwise direction in
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Figure 39: Cyclone Catarina which hit

Brazil in 2004

Figure 40: Hurricane Katrina, which hit

New Orleans in 2005

the Southern hemisphere. However, don’t spend too long staring at the rotation in

your bath water. Although the e↵ect can be reproduced in laboratory settings, in your

bathroom the Coriolis force is too small: it is no more likely to make your bath water

change direction than it is to make your CD change direction. (An aside: CDs are

what people used before phones. Some towns have museums – they used to be called

record stores – that display examples of CD cases for people to look at.)

Our discussion above supposed that objects were moving on a plane which is perpen-

dicular to the angular velocity !. But that’s not true for hurricanes: they move along

the surface of the Earth, which means that their velocity has a component parallel to

!. In this case, the e↵ective magnitude of the Coriolis force gets a geometric factor,

|Fcor| = 2m!v sin ✓ (6.8)

It’s simplest to see the sin ✓ factor in the case of a particle travelling North. Here the

Coriolis force acts in an Easterly direction and a little bit of trigonometry shows that

the force has magnitude 2m!v sin ✓ as claimed. This is particularly clear at the equator

where ✓ = 0. Here a particle travelling North has v parallel to ! and so the Coriolis

force vanishes.

It’s a little more tricky to see the sin ✓ factor for a particle travelling in the Easterly

direction. In this case, v is perpendicular to !, so the magnitude of the force is actually

2m!v, with no trigonometric factor. However, the direction of the force no longer lies

parallel to the Earth’s surface: it has a component which points directly upwards. But

we’re not interested in this component; it’s certainly not going to be big enough to

compete with gravity. Projecting onto the component that lies parallel to the Earth’s

surface (in a Southerly direction in this case), we again get a sin ✓ factor.
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The factor of sin ✓ in (6.8) has an important meteorological consequence: the Coriolis

force vanishes when ✓ = 0, which ensures that hurricanes do not form within 500 miles

of the equator.

6.4.2 Balls and Towers

Climb up a tower and drop a ball. Where does it land? Since the Earth is rotating

under the tower, you might think that the ball lands behind you. In fact, it lands in

front! Let’s see where this somewhat counterintuitive result comes from.

The equation of motion in a rotating frame is

r̈ = g � ! ⇥ (! ⇥ r)� 2! ⇥ ṙ

We’ve already seen in Section 6.3.1 that the e↵ect of the centrifugal force is to change

the e↵ective direction of gravity. But we’ve also seen that this e↵ect is small. In what

follows we will neglect the centrifugal term. In fact, we will ignore all terms of order

O(!2) (there will be one more coming shortly!). We will therefore solve the equation

of motion

r̈ = g � 2! ⇥ ṙ (6.9)

The first step is easy: we can integrate this once to give

ṙ = gt� 2! ⇥ (r� r0)

where we’ve introduced the initial position r0 as an integration constant. If we now

substitute this back into the equation of motion (6.9), we get a messy, but manageable,

equation. Let’s, however, make our life easier by recalling that we’ve already agreed to

drop terms of order O(!2). Then, upon substitution, we’re left with

r̈ ⇡ g � 2! ⇥ g t

which we can easily integrate one last time to find

r ⇡ r0 +
1

2
gt2 �

1

3
! ⇥ g t3

We’ll pick a right-handed basis of vectors so that e1 points North, e2 points West

and e3 = r̂ points radially outward as shown in the figure. However, we’ll also make

life easier for ourselves and assume that the tower sits at the equator. (This means

that we don’t have to worry about the annoying sin ✓ factor that we saw in (6.8) and

we will see again in the next section). Then

g = �ge3 , ! = !e1 , r0 = (R + h)e3
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where R is the radius of the Earth and h is the height of the tower. Our solution reads

r ⇡

✓
R + h�

1

2
gt

2

◆
e3 �

1

3
!gt

3e2

The first term tells us the familiar result that the particle hits the ground in time

t
2 = 2h/g. The last term gives the displacement, d,

d = �
1

3
!g

✓
2h

g

◆3/2

= �
2!

3

s
2h3

g

Recall that e2 points West, so that the fact that d is negative means that the displace-

ment is in the Easterly direction. But the Earth rotates West to East. This means

that the ball falls in front of the tower as promised.

In fact, there is a simple intuitive way to understand this

e2

ω

^

e1

r

Figure 41:

result. Although we have presented it as a consequence of the

Coriolis force, it follows from the conservation of angular momen-

tum. When dropped, the angular momentum (per unit mass) of

the particle is

l = !(R + h)2

This can’t change as the ball falls. This means that the ball’s final

speed in the Easterly direction is

Rv = (R + h)2! ) v =
(R + h)2!

R
> vEarth = R!

So its tangential velocity is greater than that of the Earth’s surface. This is the reason

that it falls in front of the tower.

6.4.3 Foucault’s Pendulum

A pendulum placed at the North pole will stay aligned with its own inertial plane while

the Earth rotates beneath. An observer on the Earth would attribute this rotation of

the pendulum’s axis to the Coriolis force. What happens if we place the pendulum at

some latitude ✓?

Let’s call the length of the pendulum l. As in the previous example, we’ll work with a

right-handed orthonormal basis of vectors so that e1 points North, e2 points West and

e3 = r̂ point radially outward from the earth. We place the origin a distance l below

the pivot, so that when the pendulum hangs directly downwards the bob at the end

sits on the origin. Finally, we ignore the centrifugal force.
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The equation of motion for the pendulum, including the Cori-

e2

e1

r̂

x

y
z

l

Figure 42:

olis force, is

mr̈ = T+mg � 2m! ⇥ ẋ

Notice that we’ve reverted to calling the position of the particle x

instead of r. This is to (hopefully)avoid confusion: our basis vector

r̂ does not point towards the particle; it points radially out from

the earth. This is in a di↵erent direction to x = xe1 + ye2 + ze3
which is the position of the bob shown in the figure. Because the bob sits at the end

of the pendulum, the coordinates are subject to the constraint

x
2 + y

2 + (l � z)2 = l
2 (6.10)

At latitude ✓, the rotation vector is

! = ! cos ✓ e1 + ! sin ✓ r̂

while the acceleration due to gravity is g = �gr̂. We also need an expression for the

tension T, which points along the direction of the pendulum. Again consulting the

figure, we can see that the tension is given by

T = �
Tx

l
e1 �

Ty

l
e2 +

T (l � z)

l
r̂

Resolving the equation of motion along the axes gives us three equations,

mẍ = �
xT

l
+ 2m!ẏ sin ✓ (6.11)

mÿ = �
yT

l
+ 2m! (ż cos ✓ � ẋ sin ✓) (6.12)

mz̈ = �mg +
T (l � z)

l
� 2m!ẏ cos ✓ (6.13)

These equations, together with the constraint (6.10), look rather formidable. To make

progress, we will assume that x/l ⌧ 1 and y/l ⌧ 1 and work to leading order in this

small number. This is not as random as it may seem: Foucault’s original pendulum

hangs in the Pantheon in Paris and is 67 meters long, with the amplitude of the swing

a few meters. The advantage of this approximation becomes apparent when we revisit

the constraint (6.10) which tells us that z/l is second order,

l � z = l

r
1�

x2

l2
�

y2

l2
⇡ l �

x
2

2l
�

y
2

2l
+ . . .
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This means that, to leading order, we can set z, ż and z̈ all to zero. The last of the

equations (6.13) then provides an equation that will soon allow us to eliminate T

T ⇡ mg + 2m!ẏ cos ✓ (6.14)

Meanwhile, we rewrite the first two equations (6.11) and (6.12) using the same trick

we saw in our study of Larmor circles in Section (2.4.2): we introduce ⇠ = x + iy and

add (6.11) to i times (6.12) to get

⇠̈ ⇡ �
g

l
⇠ � 2!i⇠̇ sin ✓

Here we have substituted T ⇡ mg since the second term in (6.14) contributes only at

sub-leading order. This is the equation of motion for a damped harmonic oscillator,

albeit with a complex variable. We can solve it in the same way: the ansatz ⇠ = e
�t

results in the quadratic equation

�
2 + 2i!� sin ✓ +

g

l
= 0

which has solutions

�± = �i! sin ✓ ± i

r
1

4
!2 sin2

✓ +
g

l
⇡ �i

✓
! sin ✓ ±

r
g

l

◆

From this we can write the general solution as

⇠ = e
�i!t sin ✓

✓
A cos

r
g

l
t+B sin

r
g

l
t

◆

Without the overall phase factor, e
�i!t sin ✓, this equation describes an ellipse. The

role of the phase factor is to make the orientation of the ellipse slowly rotate in the

x� y plane. Viewed from above, the rotation is clockwise in the Northern hemisphere;

anti-clockwise in the Southern hemisphere. Notice that the period of rotation is not 24

hours unless the pendulum is suspended at the poles. Instead the period is 24/ sin ✓

hours. In Paris, this is 32 hours.

6.4.4 Larmor Precession

The transformation to rotating frames can also be used as a cute trick to solve certain

problems. Consider, for example, a charged particle orbiting around a second, fixed

particle under the influence of the Coulomb force. Now add to this a constant magnetic

field B. The resulting equation of motion is

mr̈ = �
k

r2
r̂+ qṙ⇥B

where k = qQ/4⇡✏0. When B = 0, this is the central force problem that we solved in

Section 4 and we know the orbit of the particle is an ellipse. But what about when

B 6= 0?
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Let’s look at the problem in a rotating frame. Using (6.3) and (6.4), we have

m (r̈+ 2! ⇥ ṙ+ ! ⇥ (! ⇥ r)) = �
k

r2
r̂+ q (ṙ+ ! ⇥ r)⇥B

where now r describes the position of the coordinate in the rotating frame. Now we do

something clever: we pick the angular velocity of rotation ! so that the ṙ terms above

cancel. This works for

! = �
qB

2m

Then the equation of motion becomes

mr̈ = �
k

r2
r̂+

q
2

2m
B⇥ (B⇥ r)

This is almost of the form that we studied in Section 4. In fact, for suitably small

magnetic fields we can just ignore the last term. This holds as long as B2
⌧ 2mk/q

2
r
3.

In this limit, we can just adopt our old solution of elliptic motion. However, transform-

ing back to the original frame, the ellipse will appear to rotate — or precess — with

angular speed

! =
qB

2m

This is known as the Larmor frequency. It is half of the cyclotron frequency that we

met in 2.4.2.
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