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Recommended Books and Resources

There are a large number of books which cover the material in these lectures, although

often from very di↵erent perspectives. They have titles like “Critical Phenomena”,

“Phase Transitions”, “Renormalisation Group” or, less helpfully, “Advanced Statistical

Mechanics”. Here are some that I particularly like

• Nigel Goldenfeld, Phase Transitions and the Renormalization Group

A great book, covering the basic material that we’ll need and delving deeper in places.

• Mehran Kardar, Statistical Physics of Fields

The second of two volumes on statistical mechanics. It cuts a concise path through

the subject, at the expense of being a little telegraphic in places. It is based on lecture

notes which you can find on the web; a link is given on the course website.

• John Cardy, Scaling and Renormalisation in Statistical Physics

A beautiful little book from one of the masters of conformal field theory. It covers the

material from a slightly di↵erent perspective than these lectures, with more focus on

renormalisation in real space.

• Chaikin and Lubensky, Principles of Condensed Matter Physics

• Shankar, Quantum Field Theory and Condensed Matter

Both of these are more all-round condensed matter books, but with substantial sections

on critical phenomena and the renormalisation group. Chaikin and Lubensky is more

traditional, and packed full of content. Shankar covers modern methods of QFT, with

an easygoing style suitable for bedtime reading.

A number of excellent lecture notes are available on the web. Links can be found on

the course webpage: http://www.damtp.cam.ac.uk/user/tong/sft.html.
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0. Introduction

Superficially, this course is about phase transitions. This is the name given to the

abrupt, discontinuous changes that occur when matter is deformed in some way, whether

through heating or squeezing or something else. The familiar example is the violent

shaking of a pot on a stove as water approaches its boiling point, and bubbles of steam

erupt from within.

Despite their familiarity, phase transitions are striking, and even a little disconcert-

ing. Usually in physics, things happens gradually. This fact is sewn into the heart

of classical physics where the positions and momenta of particles are described by

smooth, di↵erentiable functions. Indeed, historically, the idea that change happens

only infinitesimally resulted in the discovery of calculus. Yet, somehow, what holds

on the micro level fails at the macro. Phase transitions tell us that a large number of

particles can behave collectively in a way that any individual particle cannot, with the

macroscopic properties of a system changing discontinuously.

A closer look at what happens at phase transitions – in particular at so-called critical

points – reveals something startling. Many di↵erent substances, regardless of their

microscopic composition, exhibit identical behaviour at a phase transition. This is not

just a qualitative statement, but a quantitative one. For example, as a liquid changes

into a gas at the critical temperature Tc, the heat capacity diverges as

c ⇠
1

|T � Tc|
0.11008...

The exponent is not known precisely. It is thought not to be a rational number, but

should instead be viewed as a universal mathematical constant, similar to ⇡ or e, but

more subtle. Remarkably, the same exponent occurs for all gases. It also occurs in other

systems, including a certain class of magnets. It’s as if all knowledge of the microscopic

physics has been washed away, leaving us with something pure, that carries only a

vague memory of what lies underneath. This phenomenon is known as universality.

All of this makes phase transitions interesting. They involve violence, universal truths

and competition between rival states. The story of phase transitions is, quite literally,

the song of fire and ice.

And yet these are not the only reasons to study phase transitions. In our attempt

to understand what happens as water boils, we will need to develop new tools and a

new way of thinking about the world. This leads us to a paradigm which now underlies

huge swathes of physics, far removed from its humble origin of a pot on a stove. This
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paradigm revolves around two deep facts about the Universe we inhabit: Nature is

organised by symmetry. And Nature is organised by scale.

Nature is Organised by Symmetry

When I was a kid, I was told that there are three phases of matter: solid, liquid and

gas. (Actually, this isn’t quite true. Knowing that I was interested in this kind of stu↵,

the teacher conspiratorially let on that there was a fourth phase of matter, “plasma”.

To this day, I have no idea why. My best guess is that this fitted better with some old

view of the basic elements as earth, water, air and fire.)

It won’t be any surprise to learn that the real world is much more interesting than the

one we’re introduced to as kids. There are not three phases of matter, nor four: there

are many. A key insight, due to Landau, is that these di↵erent phases are characterised

by symmetry.

In this scheme a solid di↵ers from a liquid because its crystal structure breaks the

translational and rotational symmetries of space. Moreover, solids with di↵erent crystal

structures should be viewed as di↵erent phases of matter because they break these sym-

metries in di↵erent ways. Perhaps more surprisingly, liquids and gases break no such

symmetries and so should be viewed as the same phase. When you include further sym-

metries, such as rotations of spins in a magnet or more subtle quantum counterparts,

this classification opens up a wide range of possibilities that allows us to understand

almost all the known forms of matter.

This characterisation has its advantages. First, we can be sure that any attempt to

change a material from one symmetry class to another will necessarily involve a violent

phase transition. Second, it turns out that understanding the symmetries of a system

will immediately determine many of its properties, especially at low temperature.

Moreover, the classification of matter in terms of symmetry has a power that goes

far beyond its initial regime of application. The vacuum of space is, in many ways, like

a complicated material, with quantum e↵ects playing the role of thermal fluctuations.

The vacuum can sit in di↵erent phases and is thought to have undergone several phase

transitions as the Universe cooled after the big bang, each of which can be understood

in terms of symmetries. All the ideas that we will develop here carry directly to theories

of particle physics, cosmology and beyond.

Nature is Organised by Scale

There is an order to the Universe we live in. Roughly speaking, little things a↵ect big

things. Not the other way round.
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This is something you already know: particle physics underlies nuclear and atomic

physics; atomic physics underlies condensed matter and chemistry; and so on up the

chain. It’s certainly true that it can be di�cult to make the leap from one level to the

next, and new creative ideas are needed at each step, but this doesn’t change the fact

that there is an ordering. Big things don’t a↵ect little things. This is the reason there

are no astrology departments in universities.

But there is another aspect to this story, one which is not often stressed. Little

things a↵ect big things, but they rarely a↵ect very big things. Instead, little things

a↵ect slightly bigger things. And these, in turn, a↵ect slightly bigger things too. But

as you go up the chain, you lose the information about what came long before.

This again is something that you know. A zoologist who is interested in the way that

starlings flock has little reason to study the dynamics of the Higgs boson. It’s also the

reason that science is possible in the first place: neither Newton nor Einstein needed to

understand how quantum gravity works on microscopic distance scales to write down

theories that work extraordinarily well on larger scales.

In the 1970s a mathematical formalism was developed that makes these ideas con-

crete. This formalism is called the renormalisation group and provides a framework

to describe physics at di↵erent scales. The renormalisation group gets little coverage

in popular science articles, yet is arguably the single most important advance in the-

oretical physics in the past 50 years. While zoologists may have little need to talk to

particle physicists, the right way to understand both the Higgs boson and the flocking

of starlings is through the language of the renormalisation group.

These two ideas – symmetry and scale – now dominate the way we think about

physics. Yet both have their origins in the simple question: what happens when you

boil water? The purpose of this course is to find out.
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1. From Spins to Fields

The ideas that we will introduce in these lectures have wide applicability across many

areas of physics. However, we will spend much of these lectures studying just a single

example. This example is known as the Ising model and it provides a particularly simple

model of a magnet. Despite its simplicity, the Ising model already contains many of

the concepts that will keep us occupied for the rest of the course. Having understood

the Ising model in some detail, we see how these ideas play out in many other phases

of matter in Section 4.

1.1 The Ising Model

The Ising model is easy to state, yet hard to solve. We have a lattice in d spatial

dimensions, containing N sites. On each lattice site i = 1, . . . , N , there lives a discrete

variable which can take one of two states: si = +1 or si = �1.

It is useful to refer to these states as spins, with si = +1 corresponding to spin up,

and si = �1 to spin down. However, we won’t be using any machinery from quantum

mechanics: there are no non-commuting operators, nor quantum superpositions of

states. In this sense, the Ising model, while discrete, is purely classical.

The collection of spins {si} has energy

E = �B
X

i

si � J
X

hiji

sisj (1.1)

The first term arises due to an external magnetic field, B that we impose on the system.

It has the e↵ect that, for B > 0, the spins want to be up because that will lower their

energy. (Properly this should be the magnetising field H, but we’re using B to avoid

confusion with the Hamiltonian. There is also a factor of the magnetic moment that

we’ve absorbed into B.)

With the first term alone, the individual spins don’t talk to each other and the

model is easy to solve. It is the second term that makes life more interesting. This is

an interaction between neighbouring spins. The notation hiji means that we sum over

all “nearest neighbour” pairs in the lattice. The number of such pairs depends both on

the dimension d and the type of lattice.

If J > 0, neighbouring spins prefer to be aligned ("" or ##). In the context of

magnetism, such a system is called a ferromagnet. If J < 0, the spins want to anti-

align ("#). This is an anti-ferromagnet. In the following, we choose J > 0 although,

for our purposes, the di↵erences are minor.
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(For what it’s worth, the anti-ferromagnetic case, with J < 0, becomes more subtle

on certain lattices where it’s not possible to arrange the spins so that they are opposite

to all their neighbours. A 2d triangular lattice provides a simple example. The resulting

physics is interesting and is known as (geometrical) frustration. We will not discuss it

here.)

We are interested in the physics of the Ising model at a finite temperature T . We can

already get some intuition for what will happen. The interaction energy encourages

the spins to align in the same way. The magnetic field encourages the spins to align

in a particular way. Meanwhile, the temperature encourages the spins to ignore both

the interactions and magnetic field because, at finite temperature, energy is no longer

at a premium. Instead, entropy becomes more important. Since there are many more

random configurations than aligned configurations, the temperature will tend to mess

up the nice ordered states that the interactions and magnetic field have so carefully

prepared. Already we can see that, like any good story, we’re starting with a healthy

dose of narrative tension between our main characters.

In the canonical ensemble, the probability of sitting in a configuration of spins {si}

is given by

p[si] =
e��E[si]

Z
(1.2)

where � = 1/T and the normalisation factor Z is called the partition function, and is

given by

Z(T, J, B) =
X

{si}

e��E[si] (1.3)

The beauty of statistical mechanics is that even though Z is first introduced as an

innocuous normalisation factor, it actually contains everything we want to known about

the system. If we’re able to perform the sum to compute Z, we can extract any

information we want1. For example, the interplay between energy and entropy S is

captured by the thermodynamic free energy

Fthermo(T,B) = hEi � TS = �T logZ (1.4)

As the notation shows, this is a function of thermodynamic variables, T and B. (We

don’t usually add the subscript “thermo” to the free energy but for much of these

lectures we’ll be working with a more refined version of the free energy which we’ll

shortly introduce.)

1
The basic machinery of partition functions was described in the first course on Statistical Physics.
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Of particular interest to us will be the average spin of the configuration, which we

refer to as the equilibrium magnetization.

m =
1

N
h

X

i

sii (1.5)

This takes values is the range m 2 [�1,+1]. From our discussion above, we would

expect that, for B > 0, m ! +1 at low temperatures where the spins are ordered,

and m ! 0 at high temperatures where the spins are arranged randomly. We’d like to

make this intuition more precise. Using the probability (1.2), it is straightforward to

check that the magnetisation can be written as

m =
1

N

X

{si}

e��E[si]

Z

X

i

si =
1

N�

@logZ

@B
(1.6)

Taking further derivatives allows us to compute higher moments of the distribution,

and so learn about fluctuations around the average. We will see this in action later in

these lectures.

Our task is now clear: we should compute the sum (1.3). This is easier said than

done. It turns out that the sum is straightforward in a d = 1 dimensional lattice, and

you will do this on an example sheet. An exact solution also exists in d = 2 when

B = 0, originally due to Onsager. It is not straightforward. In higher dimensions, no

exact solutions are available, although various expansions and tricks have been invented

to manipulate the sum (1.3) to extract some interesting information.

In these lectures, we will not attempt to directly sum the microscopic spins in the

partition function. Instead, we will rephrase the question. We will massage the partition

function into a somewhat di↵erent form, one that has much broader application.

1.1.1 The E↵ective Free Energy

The key idea was explained in the introduction: Nature is organised by scale. The

energy of the Ising model (1.1) provides the microscopic description of our system in

terms of individual spins. Computing the partition function exactly gives us a macro-

scopic description of the system in terms of thermodynamic variables like temperature

T and magnetic field B. What we’re looking for is something in between.

We’re going to get to this “something in between” in two steps: we’ll do something

rather crude here, and then do a better job in Section 1.3. For our crude attempt, we

rewrite the partition function (1.3) in the following manner:

Z =
X

m

X

{si}|m

e��E[si] :=
X

m

e��F (m) (1.7)
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where the notation {si}|m means all configurations of spins such that 1
N

P
i si = m.

In other words, we first sum over all configurations with fixed average magnetisation

m = 1
N

P
si, and subsequently sum over all possible m.

Note that we’re using m here in a subtly di↵erent way to the original definition

(1.5). In the sum (1.7), the magnetisation refers to the average magnetisation of a

given configuration and can take any value. In contrast, in (1.5) we are talking about

the equilibrium value of magnetisation, averaged over all configurations in the canonical

ensemble. We will see shortly how to find this equilibrium value.

The average magnetisation lies in the range�1  m  1. Strictly speaking, this takes

only discrete values, quantised in units of 2/N . However, we are ultimately interested

in the limit of large N , so we don’t lose anything by writing this as an integral,

Z =
N

2

Z +1

�1

dm e��F (m) (1.8)

where the factor of N/2 is the (inverse) width between the allowed m values. Such

overall coe�cients in the partition function are unimportant for the physics, and we

will not be careful in keeping them below.

This way of writing things has allowed us to define something new: an e↵ective free

energy, F (m), which depends on the magnetisation m of the system, in addition to

both T and B. This goes beyond the usual, thermodynamic idea of free energy Fthermo

given in (1.4) which is defined only in equilibrium, where the magnetisation m takes a

specific value, determined by (1.6).

Note that (1.8) looks very much like a standard path integral, with F (m) playing the

role of the energy for m. But there is a di↵erence because, unlike in the microscopic

theory, F (m) can depend on temperature. This means that the � dependence in the

exponent can be more complicated than we’re used to. We’ll see this explicitly below.

The e↵ective free energy F (m) contains more information than the thermodynamic

free energy Fthermo. In particular, F (m) can tell us the correct, equilibrium value of

the magnetisation m. To see this, we define the free energy per unit spin,

f(m) =
F (m)

N

Our partition function becomes

Z =

Z
dm e��Nf(m)
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Here N is a very large number (think N ⇠ 1023) while �f(m) ⇠ 1. Integrals of this kind

are very well approximated by the value of m which minimises f(m), an approximation

known as the saddle point or steepest descent,

@f

@m

����
m=mmin

= 0

The minimum mmin is the equilibrium value of the magnetisation that we previously

computed in (1.6). Substituting this into the the partition function, we have

Z ⇡ e��Nf(mmin) ) Fthermo ⇡ F (mmin) (1.9)

In this way, we can reconstruct Fthermo from knowledge of F (m).

1.1.2 Mean Field Theory

To proceed, we want to find a way to compute F (m) = Nf(m), defined in (1.7). But

this is tantamount to performing the sum in the path integral and, as we stressed above,

this is not easy. We need to find another way.

We will use a method called the mean field approximation. Here the word “approx-

imation” is somewhat generous; a better name would be the mean field “guess” since

there is little justification for what we’re about to do. Instead, the purpose is to provide

a starting point for our discussion. Not all the consequences that we derive from this

guess will be accurate, but as the lectures progress we’ll get a better understanding

about what we can trust, what we can’t, and how to do better.

We wish to sum over configurations {si} with
P

i si = Nm. We can get an esti-

mate for the energy of such configurations by replacing each spin s in (1.1) with its

expectation (i.e. mean) value hsi = m,

E = �B
X

i

m� J
X

hiji

m2
)

E

N
= �Bm�

1

2
Jqm2 (1.10)

Here q denotes the number of nearest neighbours of each spin. For example, in d = 1 a

lattice has q = 2; in d = 2, a square lattice has q = 4. A square lattice in d dimensions

has q = 2d. The factor or 1/2 is there because
P

hiji is a sum over pairs rather than a

sum of individual sites.

Among other things, this means that we’re assuming (falsely!) that the energy de-

pends only on the magnetisation m of a configuration, rather than any more finely

grained details. The sole reason for doing this is that it makes the resulting sum over
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configurations {si}|m very easy to do: we simply need to count the number of config-

urations with magnetisation m. A configuration with N" up spins and N# = N � N"

down spins has magnetisation

m =
N" �N#

N
=

2N" �N

N

The number of such configurations is

⌦ =
N !

N"!(N �N")!

and we can use Stirlings formula to evaluate

log⌦ ⇡ N logN �N" logN" � (N �N") log(N �N")

)
log⌦

N
⇡ log 2�

1

2
(1 +m) log(1 +m)�

1

2
(1�m) log(1�m)

In our mean field approximation, the e↵ective free energy defined in (1.7) is then given

by

e��Nf(m)
⇡ ⌦(m) e��E(m)

Substituting the energy (1.10), and taking logs of both sides, we find ourselves with

the following expression:

f(m) ⇡ �Bm�
1

2
Jqm2

� T

✓
log 2�

1

2
(1 +m) log(1 +m)�

1

2
(1�m) log(1�m)

◆

From this, we can compute the equilibrium value form. As explained above, this occurs

at the minimum

@f

@m
= 0 ) �(B + Jqm) =

1

2
log

✓
1 +m

1�m

◆

A little algebra shows us that the equilibrium magnetisation obeys the self-consistency

condition

m = tanh (�B + �Jqm) (1.11)

There’s a nice intuition behind this equation. It can be derived by assuming that each

spin experiences an e↵ective magnetic field given by Be↵ = B+Jqm, which includes an

extra contribution from the spins around it. In this way, the tricky interactions in the

Ising model have been replaced by an averaged e↵ective field Be↵ . This is sometimes

called the mean field and gives its name to this technique.

– 10 –



There are a number of ways forward at this point. We could, for example, analyse the

properties of the Ising model by looking at solutions to the self-consistency condition

(1.11); this was the strategy taken in the Statistical Physics lectures. However, instead

we’re going to focus on the free energy f(m), since this will prove to be the more useful

tool moving forward.

1.2 Landau Approach to Phase Transitions

A phase transition occurs when some quantity changes in a discontinuous fashion. For

us, this quantity is m which, as we will see, will exhibit non-analytic behaviour as we

vary di↵erent parameters.

Landau theory is a simple, yet e↵ective way to understand the qualitative manner

in which these phase transitions occur. It is based on two ideas: the free energy, and

symmetry. Here we will apply Landau’s theory to the Ising model, focussing first on

the free energy. We will comment on the role of symmetry at the end of this section,

although the full power of this idea will only become apparent in Section 4 where we

describe a whole raft of further examples.

In the previous section, we introduced the e↵ective free energy F (m) = Nf(m),

which is a function of the magnetisation m. This kind of object is the starting point for

Landau’s theory. In this context, the magnetisation is known as an order parameter.

Using the mean field approximation, we computed this to be

f(m) ⇡ �Bm�
1

2
Jqm2

� T

✓
log 2�

1

2
(1 +m) log(1 +m)�

1

2
(1�m) log(1�m)

◆

Landau’s approach focuses on situations where the order parameter is small. Here we

can Taylor expand,

f(m) ⇡ �T log 2� Bm+
1

2
(T � Jq)m2 +

1

12
Tm4 + . . . (1.12)

As we’ve seen above, the preferred value of m is simply the minimum of f(m). The

idea of Landau theory is simply to observe how the function f(m), and in particular its

minima, change as we vary di↵erent parameters. Crucially, the story is rather di↵erent

depending on whether B 6= 0 or B = 0. We will deal with each of these in turn.

1.2.1 B = 0: A Continuous Phase Transitions

Let’s first consider the situation with vanishing magnetic field, B = 0, so that there is

no term in (1.12) that is linear in m. Since our interest lies in the m dependence of

– 11 –



m

f (m)

m

f (m)

Figure 1: Free energy when T > Tc Figure 2: Free energy when T < Tc

f(m), we won’t lose anything if we drop the constant �T log 2 term. We’re left with

the free energy

f(m) ⇡
1

2
(T � Jq)m2 +

1

12
Tm4 + . . . (1.13)

The behaviour of the free energy depends on whether the quadratic term is positive or

negative. To distinguish between these two, we define the critical temperature

Tc = Jq

The free energy is sketched in the case where T > Tc (on the left) and T < Tc (on the

right). We see that at high temperatures, the magnetisation vanishes at the minimum:

m = 0. This is in agreement with our expectation that temperature will randomise the

spins. However, as the temperature is reduced below Tc, the point m = 0 becomes a

maximum of the free energy and the minima now lie at m = ±m0 which, if we chose

to truncate the free energy (1.13) at order m4, is given by

m0 =

r
3(Tc � T )

T
(1.14)

This form is valid only when T is close to Tc, so that

T

m

+1

−1

Figure 3:

m is small and higher order terms can be ignored. As

the temperature is lowered further, the minimum m0

grows. We’re then obliged to turn to the full form

of the free energy f(m) which, among other things,

knows that the magnetisation lies in the range m 2

[�1,+1].

The upshot is that as we vary the temperature, the

magnetisation takes the form shown on the right. This is perhaps somewhat surprising.

Usually in physics, things turn on gradually. But here the magnetisation turns o↵
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abruptly at T = Tc, and remains zero for all higher temperatures. This kind of sharp

change is characteristic of a phase transition. When m = 0, we say that the system

sits in the disordered phase; when m 6= 0, it is in the ordered phase.

The magnetisation itself is continuous and, for this reason, it is referred to as a

continuous phase transition or, sometimes, a second order phase transition.

As an aside: phase transitions can be classified by looking at the thermodynamic free

energy Fthermo = Nf(mmin) and taking derivatives with respect to some thermodynamic

variable, like T . If the discontinuity first shows up in the nth derivative, it is said to be

an nth order phase transition. However, in practice we very rarely have to deal with

anything other than first order transitions (which we will see below) and second order

transitions. In the present case, we’ll see shortly that the heat capacity is discontinuous,

confirming that it is indeed a second order transition.

The essence of a phase transition is that some quantity is discontinuous. Yet, this

should make us nervous. In principle, everything is determined by the partition function

Z, defined in (1.3), which is a sum of smooth, analytic functions. How is it possible,

then, to get the kind of non-analytic behaviour characteristic of a phase transition?

The loophole is that Z is only necessarily analytic if the sum is finite. But there is no

such guarantee that it remains analytic when the number of lattice sites N ! 1. This

means that genuine, discontinuous phase transitions only occur in infinite systems.

In reality, we have around N ⇡ 1023 atoms. This gives rise to functions which are,

strictly speaking, smooth, but which change so rapidly that they act, to all intents and

purposes, as if they were discontinuous.

These kind of subtleties are brushed under the carpet in the mean field approach

that we’re taking here. However, it’s worth pointing out that the free energy, f(m) is

an analytic function which, when Taylor expanded, gives terms with integer powers of

m. Nonetheless, the minima of f behave in a non-analytic fashion.

For future purposes, it will be useful to see how the heat capacity C = @hEi/@T

changes as we approach Tc. In the canonical ensemble, the average energy is given by

hEi = �@ logZ/@�. From this, we find that we can write the heat capacity as

C = �2 @2

@�2
logZ (1.15)

To proceed, we need to compute the partition function Z, by evaluating f(m) at the

minimum value mmin as in (1.9). When T > Tc, this is simple: we have mmin = 0 and

f(mmin) = 0 (still neglecting the constant T log 2 term which doesn’t contribute to the
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heat capacity). In contrast, when T < Tc the minimum lies at m = m0 given in (1.14),

and the free energy is f(m0) = �
3
4(Tc � T )2/T .

Now we simply need to di↵erentiate to get the heat ca-

T

C

Figure 4:

pacity, C. The leading contribution as T ! Tc comes from

di↵erentiating the (Tc � T ) piece, rather than the 1/T piece.

We have

c =
C

N
!

(
0 as T ! T+

c

3/2 as T ! T�

c

(1.16)

We learn that the heat capacity jumps discontinuously. The part of the heat capacity

that comes from di↵erentiating (T � Tc) terms is often called the singular piece. We’ll

be seeing more of this down the line.

Spontaneous Symmetry Breaking

There is one further aspect of the continuous phase transition that is worth highlighting.

The free energy (1.13) is invariant under the Z2 symmetry m ! �m. This is no

coincidence: it follows because our microscopic definition of the Ising model (1.1) also

enjoys this symmetry when B = 0.

However, below Tc, the system must pick one of the two ground states m = +m0 or

m = �m0. Whichever choice it makes breaks the Z2 symmetry. When a symmetry of a

system is not respected by the ground state we say that the symmetry is spontaneously

broken. This will become an important theme for us as we move through the course.

It is also an idea which plays an important role in particle physics .

Strictly speaking, spontaneous symmetry breaking can only occur in infinite systems,

with the magnetisation defined by taking the limit

m = lim
B!0

lim
N!1

1

N

X

i

hsii

It’s important that we take the limit N ! 1, before we take the limit B ! 0. If we

do it the other way round, we find
P

hsii ! 0 as B ! 0 for any finite N .

1.2.2 B 6= 0: First Order Phase Transitions

Let’s now study what happens when B 6= 0. Once again, we ignore the constant

�T log 2 term in the free energy (1.12). We’re left with the free energy

f(m) ⇡ �Bm+
1

2
(T � Jq)m2 +

1

12
Tm4 + . . . (1.17)
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m

f (m )

m

f (m )

Figure 5: Free energy at high tempera-

tures

Figure 6: Free energy at low tempera-

tures.

There are again two, qualitatively di↵erent forms of this function at low and high

temperatures, shown in the figures above for B > 0.

At low temperatures there are two minima, but one is always lower than the other.

The global minima is the true ground state of the system. The other minima is a

meta-stable state. The system can exit the meta-stable state by fluctuating up, and

over the energy barrier separating it from the ground state, and so has a finite lifetime.

As we increase the temperature, there is a temperature (which depends on B) beyond

which the meta-stable state disappears. This temperature is referred to as the spinodal

point. It will not play any further role in these lectures.

For us, the most important issue is that the ground state of the system – the global

minimum of f(m) – does not qualitatively change as we vary the temperature. At high

temperatures, the magnetisation asymptotes smoothly to zero as

m

T

B<0

B>0
+1

−1

Figure 7:

m !
B

T
as T ! 1

At low temperatures, the magnetization again asymptotes

to the state m ! ±1 which minimises the energy. Except

this time, there is no ambiguity as to whether the system

chooses m = +1 or m = �1. This is entirely determined

by the sign of the magnetic field B. A sketch of the magnetisation as a function of

temperature is shown on the right. The upshot is that, for B 6= 0, there is no phase

transition as a function of the temperature.

However, we do not have to look to hard to find a phase transition: we just need to

move along a di↵erent path in the phase diagram. Suppose that we keep T fixed at a

– 15 –



m

f (m )

m

f (m )

m

f (m )

Figure 8: T < Tc: The free energy of the Ising model for B < 0 on the left, B = 0 in the

middle, and B > 0 on the right.

value below Tc. We then vary the magnetic field from B < 0 to B > 0. The resulting

free energy is shown in Figure 8.

We see that the magnetisation jumps discontinuously from �m0 to +m0 as B flips

from negative to positive. This is an example of a first order phase transition.

Our analysis above has left us with the following picture B

T

TC

Figure 9:

of the phase diagram for the Ising model: if we vary B from

positive to negative then we cross the red line in the figure and

the system su↵ers a first order phase transition. Note, however,

that if we first raise the temperature then it’s always possible to

move from any point B 6= 0 to any other point without su↵ering

a phase transition.

This line of first order phase transitions ends at a second order phase transition at

T = Tc. This is referred to as the critical point.

Close to the Critical Point

It will prove interesting to explore what happens when we sit close to the critical tem-

perature T = Tc. There are a bunch of di↵erent questions that we can ask. Suppose, for

example, that we sit at T = Tc and vary the magnetic field: how does the magnetisation

change? Here the free energy (1.17) becomes

f(m) ⇡ �Bm+
1

12
Tcm

4 + . . .

For m small, where we can neglect the higher order terms, minimising the free energy

gives m3
⇠ B. So, when B > 0 we have

m ⇠ B1/3 (1.18)

and when B < 0 we have m ⇠ �|B|
1/3.
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Here is another question: the magnetic susceptibility � is defined as

� =
@m

@B

����
T

(1.19)

We will compute this at B = 0, and as T ! Tc from both above and below. First,

from above: when T & Tc we can keep just the linear and quadratic terms in the free

energy

f(m) ⇡ �Bm+
1

2
(T � Tc)m

2
) m ⇡

B

T � Tc
) � ⇠

1

T � Tc

When T < Tc, we need to work a little harder. For small B, we can write the minimum

of (1.17) as m = m0 + �m where m0 is given by (1.14). Working to leading order in

B/T , we find

m ⇡ m0 +
B

2(Tc � T )
) � ⇠

1

Tc � T

We can combine these two results by writing

� ⇠
1

|T � Tc|
(1.20)

We’ll see the relevance of this shortly.

1.2.3 Validity of Mean Field Theory

The first thing that we should ask ourselves is: are the results above right?! We have

reason to be nervous because they were all derived using the mean field approximation,

for which we o↵ered no justification. On the other hand, there is reason to be optimistic

because, at the end of the day, the structure of the phase diagram followed from some

fairly basic properties of the Taylor expansion of the free energy.

In this section and the next, we will give some spoilers. What follows is a list of

facts. In large part, the rest of these lectures will be devoted to explaining where these

facts come from. It turns out that the validity of mean field theory depends strongly

on the spatial dimension d of the theory. We will explain this in detail shortly but here

is the take-home message:

• In d = 1 mean field theory fails completely. There are no phase transitions.

• In d = 2 and d = 3 the basic structure of the phase diagram is correct, but

detailed predictions at T ⇡ Tc are wrong.
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• In d � 4, mean field theory gives the right answers.

This basic pattern holds for all other models that we will look at too. Mean field theory

always fails completely for d  dl, where dl known as the lower critical dimension. For

the Ising model, dl = 1, but we will later meet examples where this approach fails in

dl = 2.

In contrast, mean field theory always works for d � dc, where dc is known as the

upper critical dimension. For the Ising model, mean field theory works because, as

d increases, each spin has a larger number of neighbours and so indeed experiences

something close to the average spin.

Critical Exponents

What about the intermediate dimensions, dl < d < dc? These are very often the

dimensions of interest: for the Ising model it is d = 2 and d = 3. Here the crude

structure of the phase diagram predicted by mean field theory is correct, but it gives

misleading results near the critical point T = Tc.

To explain this, recall that we computed the behaviour of four di↵erent quantities

as we approach the critical point. For three of these, we fixed B = 0 and dialled the

temperature towards the critical point. We found that, for T < Tc, the magnetisation

(1.14) varies as

m ⇠ (Tc � T )� with � =
1

2
(1.21)

The heat capacity (1.16) varies as

c ⇠ c±|T � Tc|
�↵ with ↵ = 0 (1.22)

where the c± is there to remind us that there is a discontinuity as we approach Tc from

above or below. The magnetic susceptibility (1.20) varies as

� ⇠
1

|T � Tc|
�

with � = 1

The fourth quantity requires us to take a di↵erent path in the phase diagram. This time

we fix T and dial the magnetic field B towards zero, in which case the magnetisation

(1.18) varies as

m ⇠ B1/� with � = 3 (1.23)

The coe�cients ↵, �, � and � are known as critical exponents. (The Greek letters are

standard notation; more generally, one can define a whole slew of these kind of objects.)
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Figure 10: Magnetisation m3
, plotted

against temperature for an Ising magnet,

suggests that 1/� ⇡ 3.

Figure 11: Heat capacity c ⇠ |T � Tc|
�↵

for various gases shows good agreement

with ↵ ⇡ 1/8.

When the Ising model is treated correctly, one finds that these quantities do indeed

scale to zero or infinity near Tc, but with di↵erent exponents. Here is a table of our

mean field (MF) values, together with the true results for d = 2 and d = 3,

MF d = 2 d = 3

↵ 0 (disc.) 0 (log) 0.1101

� 1
2

1
8 0.3264

� 1 7
4 1.2371

� 3 15 4.7898

Note that the heat capacity has critical exponent ↵ = 0 in both mean field and in

d = 2, but the discontinuity seen in mean field is replaced by a log divergence in d = 2.

The d = 2 results are known analytically, while the d = 3 results are known only

numerically (to about 5 or 6 significant figures; I truncated early in the table above).

Both the d = 2 and d = 3 results are also in fairly good agreement with experiment,

which confirm that the observed exponents do not take their mean field values. For

example, the left-hand figure above shows the magnetisation m1/�
⇠ (T � Tc) taken

from MnF2, a magnet with uniaxial anisotropy which is thought to be described by the

Ising model2. The data shows a good fit to 1/� = 3; as shown in the table, it is now

thought that the exponent is not a rational number, but 1/� ⇡ 3.064.

2
This data is taken from P. Heller and G. Benedek, Nuclear Magnetic Resonance in MnF2 Near

the Critical Point, Phys. Rev. Lett. 8, 428 (1962).
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This kind of behaviour is very surprising. It’s rare that we see any kind of non-

analytic behaviour in physics, but rarer still to find exponents that are not integers or

simple fractions. What is going on here? This is one of the questions we will answer

as these lectures progress.

1.2.4 A First Look at Universality

Before we go digging further into the Ising model,

Tc

liquid

gas

critical pointp

T

Figure 12:

there is one other important aspect that deserves a men-

tion at this point. The phase diagram for the Ising model

is rather similar to the phase diagram for the transition

between a liquid and gas, now drawn in the pressure-

temperature plane. This is shown in the figure. In both

cases, there is a line of first order transitions, ending at

a critical point. For water, the critical point lies at a

temperature Tc ⇡ 374 �C and a pressure pc ⇡ 218 atm.

The similarities are not just qualitative. One can use an appropriate equation of

state for an interacting gas – say, the van der Waals equation – to compute how various

quantities behave as we approach the critical point. (See the lectures on Statistical

Physics for details of these calculations.) As we cross the first order phase transition,

keeping the pressure constant, the volume V of the liquid/gas jumps discontinuously.

This suggests that the rescaled volume v = V/N , where N is the number of atoms in

the gas, is analogous to m in the Ising model. We can then ask how the jump in v

changes as we approach the critical point. One finds,

vgas � vliquid ⇠ (Tc � T )� where � =
1

2

From the phase diagram, we see that the pressure p is analogous to the magnetic field

B. We could then ask how the volume changes with pressure as we approach the critical

point keeping T = Tc fixed. We find

vgas � vliquid ⇠ (p� pc)
1/� where � = 3

Finally, we want the analog of the magnetic susceptibility. For a gas, this is the

compressibility,  = �
1
v
@v
@p

��
T
. As we approach the critical point, we find

 ⇠
1

|T � Tc|
�

where � = 1

It has probably not escaped your attention that these critical exponents are exactly

the same as we saw for the Ising model when treated in mean field. The same is also
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true for the heat capacity CV which approach di↵erent constant values as the critical

point is approached from opposite sides.

However, the coincidence doesn’t stop there. Because, it turns out, that the critical

exponents above are also wrong! The true critical exponents for the liquid-gas transi-

tions in d = 2 and d = 3 dimensions are the same as those of the Ising model, listed

previously in the table. For example, experimental data for the critical exponent ↵ of a

number of di↵erent gases was plotted two pages back3 showing that it is approximately

↵ ⇡ 0.1, and certainly not consistent with mean field expectations.

This is an astonishing fact. It’s telling us that at a second order phase transition, all

memory of the underlying microscopic physics is washed away. Instead, there is a single

theory which describes the physics at the critical point of the liquid-gas transition, the

Ising model, and many other systems. This is a theoretical physicist’s dream! We

spend a great deal of time trying to throw away the messy details of a system to focus

on the elegant essentials. But, at a critical point, Nature does this for us. Whatever

drastic “spherical cow” approximation you make doesn’t matter: if you capture the

correct physics, you will get the exact answer! The fact that many di↵erent systems

are described by the same critical point is called universality.

We might ask: does every second order phase transition have the same critical ex-

ponents as the Ising model? The answer is no! Instead, in each dimension d there is

a set of critical points. Any system that undergoes a second order phase transition is

governed by one member of this set. If two systems are governed by the same critical

point, we say that they lie in the same universality class. The choice of universality

class is, in large part, dictated by the symmetries of the problem; we will see some

examples in Section 4.

The Ising Model as a Lattice Gas

It is, at first sight, surprising that a magnet and gas lie in the same universality class.

However, there is a di↵erent interpretation of the Ising model that makes it look a little

more gassy.

3
The data is taken from J. Lipa, C. Edwards, and M. Buckingham Precision Measurement of the

Specific Heat of CO2 Near the Critical Point”, Phys. Rev. Lett. 25, 1086 (1970). This was before the

theory of critical phenomena was well understood. The data shows a good fit with ↵ ⇡ 1/8, not too
far from the now accepted value ↵ ⇡ 0.11. Notice that the data stops around t = 1 � T/Tc ⇡ 10

�4
.

This is apparently because the e↵ect of gravity becomes important as the critical point is approached,

making experiments increasingly di�cult.
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To see this, consider the same d-dimensional lattice as before, but now with particles

hopping between lattice sites. These particles have hard cores, so no more than one

can sit on a single lattice site. We introduce the variable ni 2 {0, 1} to specify whether

a given lattice site, labelled by i, is empty (ni = 0) or filled (ni = 1). We can also

introduce an attractive force between atoms by o↵ering them an energetic reward if

they sit on neighbouring sites. The Hamiltonian of such a lattice gas is given by

E = �4J
X

hiji

ninj � µ
X

i

ni

where µ is the chemical potential which determines the overall particle number. But this

Hamiltonian is trivially the same as the Ising model (1.1) if we make the identification

si = 2ni � 1 2 {�1, 1}

The chemical potenial µ in the lattice gas plays the role of magnetic field in the spin

system while the magnetization of the system (1.6) measures the average density of

particles away from half-filling.

There’s no a priori reason to think that the Ising model is a particular good descrip-

tion of a gas. Nonetheless, this interpretation may make it a little less surprising that

the Ising model and a gas share the same critical point.

1.3 Landau-Ginzburg Theory

The idea of universality – that many di↵erent systems enjoy the same critical point –

is a powerful one. It means that if we want to accurately describe the critical point,

we needn’t concern ourselves with the messy details of any specific system. Instead,

we should just search for the simplest model which gives the correct physics and work

with that.

What is the simplest model? The Landau approach – in which the configuration of

the Ising model is reduced to a single numberm – is too coarse. This is because it misses

any spatial variation in the system. And, as we will see shortly, the critical point is

all about spatial variations. Here we describe a simple generalisation of Landau’s ideas

which allows the system to move away from a homogeneous state. This generalisation

is known as Landau-Ginzburg theory4.

4
It is also known as Ginzburg-Landau theory. The original paper, dating from 1950, has the

authors in alphabetical order and constructs the free energy of a superconductor. Here we use the

term Landau-Ginzburg theory to reflect the fact that, following Landau’s earlier work, these ideas

apply more broadly to any system.
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The key idea is simple: we take the order parameter from Landau theory – which,

for the Ising model, is the magnetisation m – and promote it to a field which can vary

in space, m(x). This is referred to as a local order parameter.

How do we do this? We started with a lattice. We divide a

Figure 13:

this lattice up many into boxes, with sides of length a. Each

of these boxes contains many lattice sites – call it N 0 – but the

box size a is smaller than any other length scale in the game.

(In particular, a should be smaller than something called the

correlation length that we will encounter below.) For each box,

we define the average magnetisation m(x) = 1
N 0

P
i si, where

x denotes the centre of the box. This kind of procedure in

known as coarse-graining.

There are all sorts of subtleties involved in this construction,

and we will do our best to sweep them firmly under the rug. First, m(x) takes values

only at certain values of x which label the positions of boxes. To mitigate this, we take

the number of boxes N/N 0 to be big enough so that x can be treated as a continuous

variable. Second, at each x, m(x) is quantised in units of 1/N 0. We will take N 0 big

enough so that m(x) can take any value in [�1,+1]. The upshot of this is that we will

treat m(x) as a continuous function. However, we will at some point need to remember

that it makes no sense for m(x) to vary on very short distance scales – shorter than

the separation between boxes.

You may have noticed that we’ve not been particularly careful about defining m(x)

and this cavalier attitude will continue below. You might, reasonably ask: does the

physics depend on the details of how we coarse grain? The answer is no. This is the

beauty of universality. We’ll see this more clearly as we proceed.

Our next step is to repeat the ideas that we saw in Section 1.1.1. Following (1.7),

we write the partition function as

Z =
X

m(x)

X

{si}|m(x)

e��E[si] :=
X

m(x)

e��F [m(x)] (1.24)

Here, the notation {si}|m(x) means that we sum over all configurations of spins such

that the coarse graining yields m(x). In general, there will be many spin configurations

for each m(x). We then sum over all possible values of m(x).

This procedure has allowed us to define a free energy F [m(x)]. This is a functional,

meaning that you give it a function m(x) and it spits back a number, F [m(x)]. This

is known as the Landau-Ginzburg free energy
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We will invoke one last notational flourish. We’re left in (1.24) with a sum over all

possible configurations m(x). With the assumption that m(x) is a continuous function,

this is usually written as

Z =

Z
Dm(x) e��F [m(x)] (1.25)

This is a functional integral, also known as a path integral. The notation Dm(x) –

which is usually shortened to simply Dm – means that we should sum over all field

configurations m(x).

Path integrals may be somewhat daunting at first sight. But it’s worth remembering

where it comes from: an integration over m(x) at each point x labelling a box. In other

words, it’s nothing more than an infinite number of normal integrals. We will start to

learn how to play with these objects in Section 2.

The path integral looks very much like a usual partition function, but with the

Landau-Ginzburg free energy F [m(x)] playing the role of an e↵ective Hamiltonian for

the continuous variable m(x). There is some nice intuition behind this. In the thermal

ensemble, a given field configuration m(x) arises with probability

p[m(x)] =
e��F [m(x)]

Z
(1.26)

The path integral (1.25), is nothing but the usual partition function, now for a field

m(x) rather than the more familiar variables of classical physics like position and

momentum. In other words, we’re doing the statistical mechanics of fields, rather than

particles. The clue was in the title of these lectures.

1.3.1 The Landau-Ginzburg Free Energy

The next step is to ask: how do we calculate F [m(x)]? This seems tricky: already in

our earlier discussion of Landau theory, we had to resort to an unjustified mean field

approximation. What are we going to do here?

The answer to this question is wonderfully simple, as becomes clear if we express the

question in a slightly di↵erent way: what could the free energy F [m(x)] possibly be?

There are a number of constraints on F [m(x)] that arise from its microscopic origin

• Locality: The nearest neighbour interactions of the Ising model mean that a spin

on one site does not directly a↵ect a spin on a far flung site. It only does so
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through the intermediate spins. The same should be true of the magnetisation

field m(x). The result is that the free energy should take the form

F [m(x)] =

Z
ddx f [m(x)]

where f [m(x)] is a local function. It can depend on m(x), but also on rm(x)

and higher derivatives. These gradient terms control how the field m(x) at one

point a↵ects the field at neighbouring points.

• Translation and Rotation Invariance: The original lattice has a discrete transla-

tion symmetry. For certain lattices (e.g. a square lattice) there can be discrete

rotation symmetries. At distances much larger than the lattice scale, we expect

that the continuum version of both these symmetries emerges, and our free energy

should be invariant under them.

• Z2 symmetry. When B = 0, the original Ising model (1.1) is invariant under

the symmetry si ! �si, acting simultaneously on all sites. This symmetry is

inherited in our coarse-grained description which should be invariant under

m(x) ! �m(x) (1.27)

When B 6= 0, the Ising model is invariant under m(x) ! �m(x), together with

B ! �B. Again, our free energy should inherit this symmetry.

• Analyticity: We will make one last assumption: that the free energy density is

an analytic function of m(x) and its derivatives. Our primary interest lies in

the critical point where m first becomes non-zero, although we will also use this

formalism to describe first order phase transitions where m(x) is small. In both

cases, we can Taylor expand the free energy in m and restrict attention to low

powers of m.

Furthermore, we will restrict attention to situations where m(x) varies rather

slowly in space. In particular, we will assume that m(x) varies appreciably only

over distances that are much larger than the distance a between boxes. This

means that we can also consider a gradient expansion of f [m(x)], in the dimen-

sionless combination ar. This means that rm terms are more important than

ar2m terms and so on.

With these considerations in place, we can now simply write down the general form

of the free energy. When B = 0, the symmetry (1.27) means that the free energy can
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depend only on even powers of m. The first few terms in the expansion are

F [m(x)] =

Z
ddx


1

2
↵2(T )m

2 +
1

4
↵4(T )m

4 +
1

2
�(T )(rm)2 + . . .

�
(1.28)

There can also be a F0(T ) piece – like the T log 2 that appeared in the Landau free

energy – which doesn’t depend on the order parameter and so, for the most part, will

play no role in the story. Notice that we start with terms quadratic in the gradient: a

term linear in the gradient would violate the rotational symmetry of the system.

When B 6= 0, we can can have further terms in the free energy that are odd in m,

but also odd in B, such as Bm and Bm3. Each of these comes with a coe�cient which

is, in general, a function of T .

The arguments that led us to (1.28) are very general and powerful; we will see many

similar arguments in Section 4. The downside is that we are left with a bunch of

unknown coe�cients ↵2(T ), ↵4(T ) and �(T ). These are typically hard to compute

from first principles. One way forward is to import our results from Landau mean field

approach. Indeed, for constant m(x) = m, the free energy (1.28) coincides with our

earlier result (1.13) in Landau theory, with

↵2(T ) ⇠ (T � Tc) and ↵4(T ) ⇠
1

3
T (1.29)

Happily, however, the exact form of these functions will not be important. All we will

need is that these functions are analytic in T , and that ↵4(T ) > 0 and �(T ) > 0, while

↵2(T ) flips sign at the second order phase transition.

Looking ahead, there is both good news and bad. The good news is that the path

integral (1.25), with Landau-Ginzburg free energy (1.28), does give a correct description

of the critical point, with the surprising d-dependent critical exponents described in

Section 1.2.3. The bad news is that this path integral is hard to do! Here “hard”

means that many of the unsolved problems in theoretical physics can be phrased in

terms of these kinds of path integrals. Do not fear. We will tread lightly.

1.3.2 The Saddle Point and Domain Walls

We are going to build up slowly to understand how we can perform the functional

integral (1.25). As a first guess, we’ll resort to the saddle point method and assume

that the path integral is dominated by the configurations which minimise F [m(x)]. In

subsequent sections, we’ll treat the integral more seriously and do a better job.
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To find the minima of functionals like F [m(x)], we use the same kind of variational

methods that we met when working with Lagrangians in Classical Dynamics . We take

some fixed configuration m(x) and consider a nearby configuration m(x)+ �m(x). The

change in the free energy is then

�F =

Z
ddx

⇥
↵2m �m+ ↵4m

3 �m+ �rm ·r�m
⇤

=

Z
ddx

⇥
↵2m+ ↵4m

3
� �r2m

⇤
�m

where, to go from the first line to the second, we have integrated by parts. This

encourages us to introduce the functional derivative,

�F

�m(x)
= ↵2m(x) + ↵4m

3(x)� �r2m(x)

Note that I’ve put back the x dependence to stress that, in contrast to F , �F/�m(x)

is evaluated at some specific position x.

If the original field configuration m(x) was a minimum of the free energy it satisfies

the Euler-Lagrange equations,

�F

�m

����
m(x)

= 0 ) �r2m = ↵2m+ ↵4m
3 (1.30)

The simplest solutions to this equation have m constant. This recovers our earlier

results from Landau theory. When T > Tc, we have ↵2 > 0 and the ground state has

m = 0. In contrast, when T < Tc, ↵2 < 0 and there is a degenerate ground state

m = ±m0 with

m0 =

r
�
↵2

↵4
(1.31)

This is the same as our previous expression (1.14), where we replaced ↵2 and ↵4 with

the specific functions (1.29). We see that what we previously called the mean field

approximation, is simply the saddle point approximation in Landau-Ginzburg theory.

For this reason, the term “mean field theory” is given to any situation where we write

down the free energy, typically focussing on a Taylor expansion around m = 0, and

then work with the resulting Euler-Lagrange equations.

Domain Walls

The Landau-Ginzburg theory contains more information than our earlier Landau ap-

proach. It also tells us how the magnetisation changes in space.
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Suppose that we have T < Tc so there exist two degenerate ground states, m = ±m0.

We could cook up a situation in which one half of space, say x < 0, lives in the ground

state m = �m0 while the other half of space, x > 0 lives in m = +m0. The two regions

in which the spins point up or down are called domains. The place where these regions

meet is called the domain wall.

We would like to understand the structure of the domain wall. How does the system

interpolate between these two states? The transition can’t happen instantaneously

because that would result in the gradient term (rm)2 giving an infinite contribution

to the free energy. But neither can the transition linger too much because any point at

which m(x) di↵ers significantly from the value m0 costs free energy from the m2 and

m4 terms. There must be a happy medium between these two.

To describe the system with two domains, m(x) must vary but it need only change

in one direction: m = m(x). Equation (1.30) then becomes an ordinary di↵erential

equation,

�
d2m

dx2
= ↵2m+ ↵4m

3

This equation is easily solved. If we insist that the field interpolate between the two

di↵erent ground states, m ! ⌥m0 as x ! ⌥1, then the solution is given by

m = m0 tanh

✓
x�X

W

◆
(1.32)

This is plotted in the figure. Here X is the position of the

x

m(x)

Figure 14:

domain wall and

W =

r
�
2�

↵2

is its width. For |x � X| > W , the magnetisation relaxes

exponentially quickly back to the ground state values ±m0.

We can also compute the cost in free energy due to the presence of the domain wall.

To do this, we substitute the solution back into the expression for the free energy (1.28).

The cost is not proportional to the volume of the system, but instead proportional to

the area of the domain wall. This means that if the system has linear size L then the

free energy of the ground state scales as Ld while the additional free energy required

by the wall scales only as Ld�1. It is simple to see that the excess cost in free energy

of the domain wall has parametric dependence

Fwall ⇠ Ld�1

s

�
�↵3

2

↵2
4

(1.33)
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Here’s the quick way to see this: from the solution (1.32), the field m changes by

�m ⇠ m0 over a distance �x ⇠ W . This means that dm/dx ⇠ �m/�x ⇠ m0/W

and the gradient term in the free energy contributes F ⇠ Ld�1
R
dx �(dm/dx)2 ⇠

Ld�1W�(m0/W )2, where the second expression comes because the support of the inte-

gral is only non-zero over the width W where the domain wall is changing. This gives

the parametric dependence (1.33). There are further contributions from the m2 and

m4 terms in the potential, but our domain wall solves the equation of motion whose

purpose is to balance the gradient and potential terms. This means that the potential

terms contribute with the same parametric dependence as the gradient terms, a fact

you can check by hand by plugging in the solution.

Notice that as we approach the critical point, and ↵2 ! 0, the two vacua are closer,

the width of the domain wall increases and its energy decreases.

1.3.3 The Lower Critical Dimension

We stated above that the Ising model has no phase transition in d = 1 dimensions.

The reason behind this can be traced to the existence of domain walls, which destroy

any attempt to sit in the ordered phase.

Let’s set ↵2(T ) < 0 where we would expect two, ordered ground states m = ±m0.

To set up the problem, we start by considering the system on a finite interval of length

L. At one end of this interval – say the left-hand edge x = �L/2 – we’ll fix the

magnetisation to be in its ground state m = +m0. One might think that the preferred

state of the system is then to remain in m = +m0 everywhere. But what actually

happens?

There is always a probability that a domain wall will appear in the thermal ensemble

and push us over to the other ground state m = �m0. The probability for a wall to

appear at some point x = X is given by (1.26)

p[wall at x = X] =
e��Fwall

Z
This looks like it’s exponentially suppressed compared to the probability of staying put.

However, we get an enhancement because the domain wall can sit anywhere on the line

�L/2  x  L/2. This means that the probability becomes

p[wall anywhere] =
e��Fwall

Z

L

W

For a large enough system, the factor of L/W will overwhelm any exponential suppres-

sion. This is an example of the entropy of a configuration – which, in this context is

log(L/W ) – outweighing the energetic cost.
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Of course, once we’ve got one domain wall there’s nothing to stop us having another,

flipping us back to m = +m0. If we have an even number of domain walls along the

line, we will be back at m = m0 by the time we get to the right-hand edge at x = +L/2;

an odd number and we’ll sit in the other vacuum m = �m0. Which of these is most

likely?

The probability to have n walls, placed anywhere, is

p[n walls] =
e�n�Fwall

Z

1

W n

Z L/2

�L/2

dx1

Z L/2

x1

dx2 . . .

Z L/2

xn�1

dxn =
1

Zn!

✓
Le��Fwall

W

◆n

This means that the probability that we start at m = m0 and end up at m = m0 is

p[m0 ! m0] =
1

Z

X

n even

1

n!

✓
Le��Fwall

W

◆n

=
1

Z
cosh

✓
Le��Fwall

W

◆

Meanwhile, the probability that the spin flips is

p[m0 ! �m0] =
1

Z

X

n odd

1

n!

✓
Le��Fwall

W

◆n

=
1

Z
sinh

✓
Le��Fwall

W

◆

We see that, at finite L, there is some residual memory of the boundary condition that

we imposed on the left-hand edge. However, as L ! 1, this gets washed away. You’re

just as likely to find the spins up as down on the right-hand edge.

Although we phrased this calculation in terms of pinning a choice of ground state on

a boundary, the same basic physics holds on an infinite line. Indeed, this is a general

principle: whenever we have a Landau-Ginzburg theory characterised by a discrete

symmetry – like the Z2 of the Ising model – then the ordered phase will have a number

of degenerate, disconnected ground states which spontaneously break the symmetry.

In all such cases, the lower critical dimension is dl = 1 and in all cases the underlying

reason is the same: fluctuations of domain walls will take us from one ground state to

another and destroy the ordered phase. It is said that the domain walls proliferate.

We could try to run the arguments above in dimensions d � 2. The first obvious

place that it fails is that the free energy cost of the domain wall (1.33) now scales with

the system size, L. This means that as L increases, we pay an exponentially large cost

from e�Fwall . Nonetheless, one could envisage a curved domain wall, which encloses

some finite region of the other phase. It turns out that this is not su�cient to disorder

the system. However, in d = 2, the fluctuations of the domain wall become important

as one approaches the critical point.
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1.3.4 Lev Landau: 1908-1968

Lev Landau was one of the great physicists of the 20th century. He made important

contributions to nearly all areas of physics, including the theory of magnetism, phase

transitions, superfluids and superconductors, Fermi liquids and quantum field theory.

He founded a school of Soviet physics whose impact lasts to this day.

Landau was, by all accounts, boorish and did not su↵er fools gladly. This did not sit

well with the authorities and, in 1938, he was arrested in one of the great Soviet purges

and sentenced to 10 years in prison. He was rescued by Kapitza who wrote a personal

letter to Stalin arguing, correctly as it turned out, that Landau should be released as

he was the only person who could understand superfluid helium. Thus, for his work

on superfluids, Landau was awarded both his freedom and, later, the Nobel prize. His

friend, the physicist Yuri Rumer, was not so lucky, spending 10 years in prison before

exile to Siberia.

Legend has it that Landau hated to

Figure 15:

write. The extraordinarily ambitious, multi-

volume “Course on Theoretical Physics”

was entirely written by his co-author Evgeny

Lifshitz, usually dictated by Landau. As

Landau himself put it: ”Evgeny is a great

writer: he cannot write what he does not

understand”.

Here is a story about a visit by Niels

Bohr to Landau’s Moscow Institute. Bohr

was asked by a journalist how he succeeded

in creating such a vibrant atmosphere in

Copenhagen. He replied “I guess the thing is, I’ve never been embarrassed to admit to

my students that I’m a fool”. This was translated by Lifshitz as: “I guess the thing is,

I’ve never been embarrassed to admit to my students that they’re fools”. According

to Kapista, the translation was no mistake: it simply reflected the di↵erence between

Landau’s school and Bohr’s.

In 1962, Landau su↵ered a car accident. He survived but never did physics again.
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