The Standard Model: Example Sheet 1

David Tong, January 2024

1. Show that $\sigma^{\mu \nu}=\frac{i}{4}\left(\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\nu} \bar{\sigma}^{\mu}\right)$ satisfies the Lorentz algebra,

$$
\left[\sigma^{\mu \nu}, \sigma^{\rho \sigma}\right]=i\left(\eta^{\nu \rho} \sigma^{\mu \sigma}-\eta^{\nu \sigma} \sigma^{\mu \rho}+\eta^{\mu \sigma} \sigma^{\nu \rho}-\eta^{\mu \rho} \sigma^{\nu \sigma}\right)
$$

Hint: you may find it useful to first rewrite: $\sigma^{\mu \nu}=\frac{i}{2}\left(\eta^{\mu \nu}-\sigma^{\nu} \bar{\sigma}^{\mu}\right)$. At some stage of the calculation, you may also find it useful to prove the result $\left(\sigma^{\mu} \bar{\sigma}^{\nu}+\sigma^{\nu} \bar{\sigma}^{\mu}\right)=2 \eta^{\mu \nu} \mathbb{1}_{2}$.
2. Under a Lorentz transformation, a left-handed Weyl spinor ψ_{L} and right-handed spinor ψ_{R} transform as

$$
\begin{equation*}
\left(\psi_{L}\right)_{\alpha} \rightarrow S_{\alpha}^{\beta}\left(\psi_{L}\right)_{\beta} \quad \text { and } \quad\left(\psi_{R}\right)_{\dot{\alpha}} \rightarrow\left(S^{\star}\right)_{\dot{\alpha}}^{\dot{\beta}}\left(\psi_{R}\right)_{\dot{\beta}} \tag{1}
\end{equation*}
$$

with $S \in S L(2, \mathbb{C})$. (Here the dotted index $\dot{\alpha}=1,2$ is used to reflect the fact that these spinors transform in different representations. What we call $\left(\psi_{R}\right)_{\dot{\alpha}}$ here is called $\bar{\psi}_{\dot{\alpha}}$ in the Supersymmetry course.) Show that:
i) $\left(S^{-1}\right)_{\beta}^{\alpha}=\epsilon^{\alpha \gamma} S_{\gamma}{ }^{\lambda} \epsilon_{\lambda \beta}$
ii) $\left(\psi_{L}\right)^{\alpha}=\epsilon^{\alpha \beta}\left(\psi_{L}\right)_{\beta}$ transforms as $\left(\psi_{L}\right)^{\alpha} \rightarrow\left(\psi_{L}\right)^{\beta}\left(S^{-1}\right)_{\beta}^{\alpha}$
iii) $\psi_{L} \chi_{L}=\left(\psi_{L}\right)^{\alpha}\left(\chi_{L}\right)_{\alpha}$ is a Lorentz scalar.
iv) $\left(\psi_{R}\right)^{\dot{\alpha}}=\epsilon^{\dot{\alpha} \dot{\beta}}\left(\psi_{R}\right)_{\dot{\beta}}$ transforms as $\left(\psi_{R}\right)^{\dot{\alpha}} \rightarrow\left(S^{-1 \dagger}\right)^{\dot{\alpha}}{ }_{\dot{\beta}}\left(\psi_{R}\right)^{\dot{\beta}}$.
v) $\bar{\psi}_{R} \psi_{L}=\left(\psi_{R}^{\star}\right)^{\alpha}\left(\psi_{L}\right)_{\alpha}$ is a Lorentz scalar.
3. Define $\sigma^{\mu \nu}=\frac{i}{4}\left(\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\nu} \bar{\sigma}^{\mu}\right)$ and $\bar{\sigma}^{\mu \nu}=\frac{i}{4}\left(\bar{\sigma}^{\mu} \sigma^{\nu}-\bar{\sigma}^{\nu} \sigma^{\mu}\right)$. Show that $\bar{\sigma}^{\mu \nu}=\left(\sigma^{\mu \nu}\right)^{\dagger}$. Let

$$
S=\exp \left(-\frac{i}{2} \omega_{\mu \nu} \sigma^{\mu \nu}\right)
$$

with $\omega_{\mu \nu}$ a collection of numbers that specify the Lorentz transformation. Show

$$
S^{-1 \dagger}=\exp \left(-\frac{i}{2} \omega_{\mu \nu} \bar{\sigma}^{\mu \nu}\right)
$$

(It suffices to show this for infinitesimal $\omega_{\mu \nu}$ and then use general properties of Lie groups.) As an aside: combined with the result from Questions 2iv), this shows that a Dirac spinor should be viewed as having indices $\psi^{T}=\left(\left(\psi_{L}\right)_{\alpha},\left(\psi_{R}\right)^{\dot{\alpha}}\right)$.
4. A pair of Weyl spinors ψ_{L} and ψ_{R} have both a Dirac mass $M \in \mathbb{R}$ and Majorana masses $m_{1}, m_{2} \in \mathbb{C}$. These appear in the Lagrangian as

$$
\mathcal{L}_{\text {mass }}=-M\left(\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}\right)+\frac{m_{1}}{2} \psi_{L} \psi_{L}+\frac{m_{1}^{\star}}{2} \bar{\psi}_{L} \bar{\psi}_{L}+\frac{m_{2}}{2} \psi_{R} \psi_{R}+\frac{m_{2}^{\star}}{2} \bar{\psi}_{R} \bar{\psi}_{R}
$$

What are the physical masses of fermionic particles in this theory?
5^{*}. The Lie algebra-valued gauge potential $A_{\mu}=A_{\mu}^{A} T^{A}$ transforms under a gauge symmetry G as

$$
A_{\mu} \rightarrow \Omega A_{\mu} \Omega^{-1}+\frac{i}{g} \Omega \partial_{\mu} \Omega^{-1}
$$

where g is the coupling and $\Omega(x)=e^{i g \alpha(x)} \in G$ with $\alpha(x)=\alpha^{A}(x) T^{A}$. Show that:
i) the field strength $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i g\left[A_{\mu}, A_{\nu}\right]$ transforms as $F_{\mu \nu} \rightarrow \Omega F_{\mu \nu} \Omega^{-1}$.
ii) under an infinitesimal gauge transformation $\delta A_{\mu}=\mathcal{D}_{\mu} \alpha$ where the covariant derivative is defined by $\mathcal{D}_{\mu} \alpha=\partial_{\mu} \alpha-i g\left[A_{\mu}, \alpha\right]$.
iii) under an infinitesimal gauge transformation $\delta F_{\mu \nu}=\left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}\right] \alpha=i g\left[\alpha, F_{\mu \nu}\right]$.
iv) the field strength obeys the Bianchi identity $\mathcal{D}_{\mu}{ }^{\star} F^{\mu \nu}=0$.
v) the action

$$
S=-\frac{1}{2} \int d^{4} x \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}
$$

is gauge invariant.
vi) the equation of motion that follows by varying the action with respect to the fields A_{μ}^{A} is $\mathcal{D}_{\mu} F^{\mu \nu}=0$.

A scalar ϕ in the fundamental \mathbf{N} representation of $S U(N)$ transforms as $\phi \rightarrow \Omega \phi$. How does the covariant derivative $\mathcal{D}_{\mu} \phi=\partial_{\mu} \phi-i g A_{\mu} \phi$ transform?

6*. The chiral basis of gamma matrices is

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right) \quad \text { and } \quad \gamma^{5}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

with $\sigma^{\mu}=\left(\mathbb{1}, \sigma^{i}\right)$ and $\bar{\sigma}^{\mu}=\left(\mathbb{1},-\sigma^{i}\right)$. For a Dirac spinor, $\bar{\psi}=\psi^{\dagger} \gamma^{0}$. The equation of motion for a $U(1)$ gauge field coupled to a Dirac fermion is

$$
\partial_{\nu} F^{\mu \nu}=e \bar{\psi} \gamma^{\mu} \psi .
$$

Use the transformation properties of a Dirac spinor under C, P, and T , to derive the corresponding transformation properties of A_{μ} that ensure this equation remains invariant.

The theta term is an extra term that can be added to the Maxwell (or Yang-Mills) action. For Maxwell theory, it takes the form

$$
S_{\theta}=\int d^{4} x F_{\mu \nu}{ }^{\star} F^{\mu \nu} .
$$

How does this transform under C, P, and T ?
7. Show that $\bar{\psi} \psi$ and $i \bar{\psi} \gamma^{5} \psi$ are both real. Consider the mass term

$$
\mathcal{L}_{\mathrm{mass}}=m_{1} \bar{\psi} \psi+i m_{2} \bar{\psi} \gamma^{5} \psi
$$

Using the chiral basis of gamma matrices, write this mass term in terms of Weyl spinors, with $\psi^{T}=\left(\psi_{L}, \psi_{R}\right)$. Find a transformation of ψ_{L} and ψ_{R} such that this theory is invariant under parity. How does parity act on the Dirac spinor?
8. In $d=2+1$ dimensions, with signature $(+,-,-)$, we can take the basis of purely imaginary gamma matrices $\gamma^{\mu}=\left(\sigma^{2}, i \sigma^{1}, i \sigma^{3}\right)$. A massive Dirac fermion has action

$$
S=-\int d^{d} x\left(i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-M \bar{\psi} \psi\right) .
$$

Parity is defined as $P: x^{1} \mapsto-x^{1}$, with x^{0} and x^{2} untouched. Why is this the right definition, rather than the more usual $\mathbf{x} \rightarrow-\mathbf{x}$?

Find an action of parity, charge conjugation, and time reversal for a massless fermion that leaves the action invariant. Which of these symmetries are broken by the mass term?

