The Standard Model: Example Sheet 2

David Tong, February 2024

1. Construct a theory of a complex scalar field ϕ with a polynomial potential mthat has a spontaneously broken \mathbb{Z}_{N} symmetry and identify its ground states.
2. Let $M(x)$ be an $N \times N$ complex matrix field with action

$$
S=\int d^{4} x \operatorname{Tr}\left(\partial^{\mu} M^{\dagger} \partial_{\mu} M-k M^{\dagger} M-\frac{\lambda}{2} M^{\dagger} M M^{\dagger} M\right)
$$

with $\lambda>0$.
i) Show that this theory is invariant under the transformations $M \rightarrow A M B^{\dagger}$ with $A, B \in U(N)$. Show that there is a subgroup $U(1) \subset U(N) \times U(N)$ that doesn't act on M.
ii) Show that the symmetry is spontaneously broken if $k<0$, with the ground state obeying $M_{0}^{\dagger} M_{0}=v^{2} \mathbb{1}$ for some v^{2}. What is the unbroken symmetry group? Write \mathcal{M}_{0} as a group coset and determine the number of Goldstone bosons.
iii) Consider the deformed action

$$
S^{\prime}=S+\int d^{4} x h\left(\operatorname{det} M+\operatorname{det} M^{\dagger}\right)
$$

What is the symmetry group of this action? Assuming that the ground state still sits at $M_{0}^{\dagger} M_{0}=v^{2} \mathbb{1}$ for some $v^{2} \neq 0$, how many Goldstone bosons are there?
3^{*}. An $S U(2)$ gauge theory coupled is coupled to a scalar ϕ in the fundamental representation. We write ϕ^{a} with $a=1,2$. The action is

$$
S=\int d^{4} x\left(-\frac{1}{2} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)+\mathcal{D}_{\mu} \phi^{\dagger} \mathcal{D}^{\mu} \phi-\frac{\lambda}{2}\left(\phi^{\dagger} \phi-v^{2}\right)^{2}\right)
$$

Here $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i g\left[A_{\mu}, A_{\nu}\right]$ and $\mathcal{D}_{\mu}=\partial A_{\mu} \phi-i g A_{\mu} \phi$. [The $S U(2)$ generators in the fundamental representation are $\vec{T}=\frac{1}{2} \vec{\sigma}$, with $\vec{\sigma}$ the usual triplet of Pauli matrices.]

What are the masses of the particles in this theory?
Suppose now that we have $S U(N)$ gauge theory coupled to a single scalar ϕ in the fundamental representation. If the scalar condenses, what is the surviving symmetry. How many gauge bosons get a mass? How many components of ϕ must be eaten to achieve this?
4. A real scalar field ϕ in the adjoint representation can be viewed as taking values in the Lie algebtra: $\phi=\phi^{A} T^{A}$, with T^{A} the generators. For gauge group $G=S U(N)$, this means that ϕ is a traceless $N \times N$ matrix with covariant derivative

$$
\mathcal{D}_{\mu} \phi=\partial_{\mu} \phi-i g\left[A_{\mu}, \phi\right]
$$

Suppose that the potential is minimised by $\phi=\phi_{0}$. Explain why we can always take ϕ_{0} to be diagonal,

$$
\phi_{0}=\operatorname{diag}\left(v_{1}, \ldots, v_{N}\right)
$$

with $\sum_{a} v_{a}=0$ and $v_{a} \leq v_{a+1}$. Describe how the symmetry breaking pattern depends on the eigenvalues v_{a}.
5^{*}. The coupling constant g for an $S U\left(N_{c}\right)$ gauge theory, coupled to N_{f} massless Dirac fermions, runs at one loop as

$$
\frac{1}{g^{2}(\mu)}=\frac{1}{g_{0}^{2}}-\frac{1}{3(4 \pi)^{2}}\left(11 N_{c}-2 N_{f}\right) \log \frac{\Lambda_{U V}^{2}}{\mu^{2}}
$$

For QCD , the coupling constant $\alpha_{s}=g_{s}^{2} / 4 \pi$ takes value $\alpha_{s}(\mu) \approx 0.12$ at $\mu=M_{Z} \approx 90$ GeV . Determine the value of Λ_{QCD} assuming that all quarks lighter than M_{Z} are actually massless. Can you get a more realistic approximation to Λ_{QCD} ?
6. Let $T(R)$ be the generator of a Lie algebra g in the representation R. The quadratic Casimir $C(R)$ and Dynkin index $I(R)$ are defined as

$$
T^{A} T^{A}=C(R) \mathbb{1} \quad \text { and } \quad \operatorname{Tr} T^{A} T^{B}=\frac{1}{2} I(R) \delta^{A B}
$$

Show that $2 C(R) \operatorname{dim}(R)=I(R) \operatorname{dim}(G)$. Hence determine $C(R)$ for the fundamental and anti-fundamental representations of $S U(N)$. Calculate $C(\operatorname{adj})$ for the adjoint representation of $S U(2)$.
7. The chiral Lagrangian is

$$
\mathcal{L}_{\text {pion }}=\frac{f_{\pi}^{2}}{4} \operatorname{tr}\left(\partial_{\mu} U^{\dagger} \partial_{\mu} U\right)
$$

with $U(x)=e^{2 i \pi(x) / f_{\pi}}$ where $\pi(x)$ is valued in $s u\left(N_{f}\right)$. Show that the quadratic and quartic terms in π are

$$
\mathcal{L}_{\text {pion }}=\operatorname{tr}\left(\partial_{\mu} \pi\right)^{2}-\frac{2}{3 f_{\pi}^{2}} \operatorname{tr}\left(\pi^{2}\left(\partial_{\mu} \pi\right)^{2}-\left(\pi \partial_{\mu} \pi\right)^{2}\right)+\ldots
$$

For $N_{f}=2$, with generators $T^{a}=\frac{1}{2} \sigma^{a}$, show that the quartic terms take the form

$$
\mathcal{L}_{\mathrm{int}}=-\frac{1}{6 f_{\pi}^{2}}\left(\pi^{a} \pi^{a} \partial \pi^{b} \partial \pi^{b}-\pi^{a} \partial \pi^{a} \pi^{b} \partial \pi^{b}\right)
$$

8. For $N_{f}=3$, the Goldstone bosons are pions, kaons and the eta. They sit inside the matrix π as

$$
\pi=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2 \eta}{\sqrt{6}}
\end{array}\right)
$$

These mesons obtain masses from the term

$$
\mathcal{L}_{\mathrm{mass}} \sim f_{\pi} \operatorname{tr}\left(\left(M+M^{\dagger}\right) \pi^{2}\right)
$$

where $M=\operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)$ is the matrix of (renormalised) quark masses. Show that

$$
\frac{m_{K^{+}}^{2}-m_{K^{0}}^{2}}{m_{\pi}^{2}}=\frac{m_{u}-m_{d}}{m_{u}+m_{d}}
$$

If we approximate $m_{u} \approx m_{d}$, derive the Gell-Mann-Okubo relation

$$
4 m_{K}^{2} \approx 3 m_{\eta}^{2}+m_{\pi}^{2}
$$

Compare this prediction against the measured masses of particles.

