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1. Construct a theory of a complex scalar field ϕ with a polynomial potential that has a

spontaneously broken ZN symmetry and identify its ground states.

2. Let M(x) be an N ×N complex matrix field with action

S =

∫
d4x Tr

(
∂µM †∂µM − kM †M − λ

2
M †MM †M

)
with λ > 0.

i) Show that this theory is invariant under the transformations M → AMB† with

A,B ∈ U(N). Show that there is a subgroup U(1) ⊂ U(N)×U(N) that doesn’t act

on M .

ii) Show that the symmetry is spontaneously broken if k < 0, with the ground state

obeying M †
0M0 = v21 for some v2. What is the unbroken symmetry group? Write

M0 as a group coset and determine the number of Goldstone bosons.

iii) Consider the deformed action

S ′ = S +

∫
d4x h

(
detM + detM †

)
.

What is the symmetry group of this action? Assuming that the ground state still

sits at M †
0M0 = v21 for some v2 ̸= 0, how many Goldstone bosons are there?

3*. An SU(2) gauge theory coupled is coupled to a scalar ϕ in the fundamental represen-

tation. We write ϕa with a = 1, 2. The action is

S =

∫
d4x

(
− 1

2
Tr (FµνF

µν) +Dµϕ
†Dµϕ− λ

2
(ϕ†ϕ− v2)2

)
.

Here Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] and Dµϕ = ∂µϕ− igAµϕ. [The SU(2) generators in

the fundamental representation are T⃗ = 1
2
σ⃗, with σ⃗ the usual triplet of Pauli matrices.]

What are the masses of the particles in this theory?

Suppose now that we have SU(N) gauge theory coupled to a single scalar ϕ in the

fundamental representation. If the scalar condenses, what is the surviving symmetry?

How many gauge bosons get a mass? How many components of ϕ must be eaten to

achieve this?
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4. A real scalar field ϕ in the adjoint representation can be viewed as taking values in the

Lie algebra: ϕ = ϕATA, with TA the generators. For gauge group G = SU(N), this means

that ϕ is a traceless N ×N matrix with covariant derivative

Dµϕ = ∂µϕ− ig[Aµ, ϕ]

Suppose that the potential is minimised by ϕ = ϕ0. Explain why we can always take ϕ0 to

be diagonal,

ϕ0 = diag(v1, . . . , vN)

with
∑

a va = 0 and va ≤ va+1. Describe how the symmetry breaking pattern depends on

the eigenvalues va.

5*. The coupling constant g for an SU(Nc) gauge theory, coupled to Nf massless Dirac

fermions, runs at one loop as

1

g2(µ)
=

1

g20
− 1

3(4π)2
(11Nc − 2Nf ) log

Λ2
UV

µ2

For QCD, the coupling constant αs = g2s/4π takes value αs(µ) ≈ 0.12 at µ = MZ ≈ 90

GeV. Determine the value of ΛQCD assuming that all quarks lighter than MZ are actually

massless. Can you get a more realistic approximation to ΛQCD?

6. Let T (R) be the generator of a Lie algebra g in the representation R. The quadratic

Casimir C(R) and Dynkin index I(R) are defined as

TATA = C(R)1 and TrTATB =
1

2
I(R)δAB

Show that 2C(R) dim(R) = I(R) dim(G). Hence determine C(R) for the fundamental and

anti-fundamental representations of SU(N). Calculate C(adj) for the adjoint representa-

tion of SU(2).

7. The chiral Lagrangian is

Lpion =
f 2
π

4
tr(∂µU † ∂µU)

with U(x) = e2iπ(x)/fπ where π(x) is valued in su(Nf ). Show that the quadratic and quartic

terms in π are

Lpion = tr (∂µπ)
2 − 2

3f 2
π

tr
(
π2(∂µπ)

2 − (π∂µπ)
2
)
+ . . .

For Nf = 2, with generators T a = 1
2
σa, show that the quartic terms take the form

Lint = − 1

6f 2
π

(
πaπa∂πb∂πb − πa∂πaπb∂πb

)
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8. For Nf = 3, the Goldstone bosons are pions, kaons and the eta. They sit inside the

matrix π as

π =
1√
2


π0
√
2
+ η√

6
π+ K+

π− − π0
√
2
+ η√

6
K0

K− K̄0 − 2η√
6


These mesons obtain masses from the term

Lmass ∼ fπtr
(
(M +M †)π2

)
where M = diag(mu,md,ms) is the matrix of (renormalised) quark masses. Show that

m2
K+ −m2

K0

m2
π

=
mu −md

mu +md

If we approximate mu ≈ md, derive the Gell-Mann-Okubo relation

4m2
K ≈ 3m2

η +m2
π

Compare this prediction against the measured masses of particles.

9. Consider the SU(2) gauge configuration

Aµ =
1

g

1

x2 + ρ2
ηaµνx

νσa

with ρ parameter and ηaµν a collection of three 4× 4 ’t Hooft matrices given by

η1µν =

 0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 , η2µν =

 0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 , η3µν =

 0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


Show that the corresponding field strength is given by

Fµν = −1

g

2ρ2

(x2 + ρ2)2
ηaµνσ

a

Why does this solve the Euclidean Yang-Mills equation of motion DµF
µν = 0? Compute

the action

S =
1

2

∫
d4x TrFµνF

µν

Note: You will need the identity

ϵabcηaµρη
b
νσ = ηcµνδρσ + ηcρσδµν − ηcµσδρν − ηcρνδµσ
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