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Recommended Books and Resources

For a very elementary introduction to the Standard Model, you could take a look at

the lectures on Particle Physics that I wrote for the CERN summer school. They cover

the subject in a great deal of detail, but without any real mathematical sophistication.

If you’re completely new to the wonderful world of subatomic particles, this is a good

place to get grounded.

Many undergraduate degrees have courses on particle physics that use quantum

mechanics and some elementary group theory, without fully embracing quantum field

theory. There are a number of good textbooks catering to these courses. Two that I

particularly like are:

• Halzen and Martin, “Quarks and Leptons”,

• David Gri�ths, “Introduction to Elementary Particles”

More advanced and really excellent books are

• Cli↵ Burgess and Guy Moore “The Standard Model”

• Mark Thomson, “Modern Particle Physics”

• Matt Schwartz, “Quantum Field Theory and the Standard Model”

All three have di↵erent perspectives. Cli↵ and Guy’s book in particular is closely

aligned to the general theme of these lectures. Mark Thomson’s book includes many

more details about the specifics of particle interactions, while Matt’s book is a great

all-round QFT book that, as the title suggests, has an increasing focus on the Standard

Model as it proceeds.

Finally, if you’re serious about particle physics you should acquaint yourself with the

all-important Particle Data Group. They have various apps that you can download

and, for the more old-fashioned among you, books. Their booklet, available in the

download section of the webpage, is particularly useful. They’ll even mail you one for

free if you ask nicely.

In addition, there are many online lecture notes. You can find links to these on the

course webpage.
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0 Introduction

The “Standard Model” is the comically inadequate name that physicists give to the

greatest scientific theory of all time.

This theory is the poster child for success in reductionist science. It describes the

universe on the most fundamental level and correctly predicts the results of every

experiment that we have ever done, sometimes with unprecedented levels of accuracy.

There are parts of the theory that are stunningly beautiful, with di↵erent facets

sliding together like a perfect jigsaw, locked in place with a mathematical rigidity that

means large parts of the world we inhabit could not be any other way. But there

are other aspects of the theory that appear much less elegant, with a couple of dozen

parameters that cannot be predicted from first principles but only by measuring them

in experiment. These parameters don’t appear to be completely random; there are

patterns within them that surely hint at some structure that lies beyond the Standard

Model, a structure that we have yet to uncover.

Boiled down to its essence, the Standard Model describes a bunch of particles, in-

teracting with three forces. These forces are the strong nuclear force, the weak nuclear

force, and electromagnetism. The force of gravity is not part of the Standard Mode but

it’s straightforward to include it by coupling to a dynamical, curved spacetime. (Claims

that the Standard Model is incompatible with general relativity are wildly overblown.

The two theories work perfectly well together at all energy scales that we can currently

probe by experiment. The di�culties only arise when energies approach the Planck

scale.)

Each force in the Standard Model is associated to a Lie group. The upshot is that

the Standard Model is built around the group

G = U(1)⇥ SU(2)⇥ SU(3) .

Why nature chose the numbers, 1,2, and 3 as the building blocks for her most important

theory is not known, but you can’t help but smile at the decision. Here SU(3) is

associated to the strong force and SU(2) is associated to the weak force and U(1) is

not associated to electromagnetism but, instead, to an electromagnetic-like force known

as hypercharge. It too plays a role in the weak force. The theory of electromagnetism

that we know and love can be found hiding within the SU(2)⇥ U(1) factor.
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electron down quark up quark electron neutrino

1 9 4 ⇠ 10�6

muon strange quark charm quark muon neutrino

207 186 2495 ⇠ 10�6

tau bottom quark top quark tau neutrino

3483 8180 340,000 ⇠ 10�6

Table 1. The fermions of the Standard Model

Despite the group theoretic similarities of each force, the resulting physics is wildly

di↵erent. That’s because quantum field theory is cool. It does wonderful and unex-

pected things. Part of the purpose of this course is to learn about these things and

why the dynamics of the strong, weak and electromagnetic forces all play very di↵erent

roles in our world.

These three forces interact with matter which, in the Standard Model, comes in the

form of 15 Weyl fermions which, collectively, go by the name of the electron, the up

quark, the down quark, and the neutrino. Why we give just four names to 15 fermions

is part of the story that we will unravel, but at heart it is to do with representation

theory of the group G.

At this point, one of the deepest facts about nature rears its head. The subtleties

of quantum field theory mean that this quartet of particles – the electron, neutrino,

and up and down quarks – have to come together as a collective. You don’t have a

choice. The theory with just, say, an electron and an up quark and no companions

makes no sense. On grounds of mathematical consistency alone, we’re obliged to have

this quartet of particles with their particular properties. This is where some of the

most beautiful aspects of the Standard Model can be found.

But then nature has a surprise, one which we’ve known about for almost a century

and yet we are seemingly no closer to understanding. Nature took that collection of

four particles and, for mysterious reasons, chose to replicate it twice over. This means

that the matter in our world is not made of 15 fermions with four di↵erent names, but

instead of 45 fermions with twelve di↵erent names. The names of these twelve particles

are shown in Table 1 together with their masses, relative to the electron mass which is

me ⇡ 0.51 MeV .
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Figure 1. Again, the masses of the fermions of the Standard Model. Note that the ordering

of particles in each generation is switched.

Each of the three rows in Table 1 is referred to as a di↵erent generation. The particles

in each generation experience identical forces. So, for example, the electron, muon and

tau all have electric charge �1, the down, strange and bottom quarks all have electric

charge �1/3 and the up, charm and top quarks all have electric charge +2/3. All three

neutrinos are neutral.

Similarly, the six quarks all experience the strong force in the same way, while the

electron, muon, tau and neutrinos (which, collectively are referred to as leptons) are all

untouched by the strong force.

The masses of the particles are replicated in Figure 1. They span at least 11 orders

of magnitude, maybe more. (The masses of the neutrinos are not well constrained, as

shown in the figure.) Why these particular masses? Why this ordering of masses? We

have no idea. That’s one of the outstanding questions that we hope might be answered

by a deeper theory.

There is one final piece of the Standard Model that sits, lording over everything.

This is the Higgs boson. It is, in many ways, the thing that ties everything together.

In particular, all the masses listed above can be traced to the interactions of various

fermions with the Higgs field.

The Higgs is simultaneously both the simplest and the most complicated field in the

Standard Model. It is the simplest because it is the only fundamental (as far as we can

tell!) scalar field that we have so far observed, meaning that it is the only field to carry

zero spin. It is the most complicated because, in contrast to fermions and gauge fields,

scalar fields don’t come with many consistency requirements which means that there
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are a plethora of interaction terms that we can write down and the only way we have

to constrain their values is to go out and measure them. It’s here that we find the two

dozen or so parameters that we can’t yet explain. And it’s here that things get messy

and interesting.

This, then, is the Standard Model, part beauty, part beast. A glorious and astonish-

ingly successful theoretical edifice that, so far, has stood firm against everything that

experimenters have thrown at it. Yet few believe that it can really be the last word

in physics. The Standard Model, like the periodic table before it, surely holds clues

for what lies beyond. Our duty as physicists is to understand the Standard Model as

best we can, to learn its secrets and, if possible, to let it guide us to a still deeper

understanding of the world. The purpose of this course is to take you, at least part

way, on this journey.
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1 Symmetries

A large chunk of the structure of the Standard Model follows from understanding the

various symmetries at play. Among these symmetries are

• Poincaré symmetries of spacetime, which restrict us to scalars, fermions, and

gauge fields. These are the basic building blocks of the Standard Model.

• Gauge symmetries, better referred to as “gauge redundancies”. These dictate the

interactions of the spin 1 fields. Indeed, we’ve already seen that the Standard

Model is usually advertised by specifying the gauge group

G = U(1)⇥ SU(2)⇥ SU(3) . (1.1)

• Global symmetries. These act on the fermions and include baryon number and

lepton number, as well as various approximate flavour symmetries.

• Discrete symmetries. Prominent among these are parity, time-reversal, and charge

conjugation. These three symmetries are critically important in the structure of

the Standard Model because, we shall see, none of them are actually good sym-

metries of our universe! But this is one case where not having symmetries puts

even stronger constraints on the theory than having symmetries. This is because

of something called “anomaly cancellation” that will be described in Section 4.

Of these, the various global symmetries arise because of the specific matter content of

the Standard Model and so we will postpone a discussion of them until we have more

details in place. (We’ll first get there in Section 3 when we describe features of the

strong force.) However, the other three symmetries – Poincaré, gauge, and discrete –

are ingredients that arise in pretty much all relativistic field theories. For this reason,

it makes sense to explore them in some detail in preparation for what’s to come.

1.1 Spacetime Symmetries

On the length scales appropriate for particle physics, spacetime is e↵ectively flat.

This means that the arena for our story is Minkowski space R1,3, equipped with the

Minkowski metric

⌘µ⌫ = diag(+1,�1,�1,�1) . (1.2)

We label a point in Minkowski space as xµ = (x0, x1, x2, x3). The set of symmetries of

Minkowski space include Lorentz transformations of the form xµ ! ⇤µ

⌫
x⌫ where

⇤T⌘⇤ = ⌘ . (1.3)
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Embedded among these are a couple of discrete transformations: parity with ⇤ =

diag(1,�1,�1,�1) and time reversal with ⇤ = diag(�1, 1, 1, 1). These are important

enough that we will discuss them separately in Section 1.4. The transformations that

are continuously connected to the identity have det⇤ = 1 and ⇤0

0
> 0 and form the

Lorentz group SO(1, 3). (The restriction to ⇤0

0
> 0 is sometimes written as SO+(1, 3).)

Our main goal in this section is to understand some things about the representa-

tions of the Lorentz group and its extension to the Poincaré group which also includes

spacetime translations. Among these representations, spinors are the most fiddly and

subtle and we will describe some of their properties in Section 1.2.

1.1.1 The Lorentz Group

Strictly speaking, the group SO(1, 3) doesn’t have any spinor representations. However,

there is a closely related group called Spin(1, 3) that does admit spinors. This is the

double cover, in the sense that

SO(1, 3) ⇠= Spin(1, 3)/Z2 (1.4)

where that Z2 is related to the famous minus sign that spinors pick up under a 2⇡

rotation, a minus sign that vectors like xµ are oblivious to. The fact that there are

spinors in our world is the statement that the true symmetry group is Spin(1, 3) rather

than SO(1, 3).

The groups Spin(1, 3) and SO(1, 3) share the same Lie algebra so(1, 3). A Lorentz

transformation acting on a 4-vector can be written as

⇤ = exp

✓
� i

2
!µ⌫M

µ⌫

◆
(1.5)

where !µ⌫ are six numbers that specify what Lorentz transformation we’re doing, while

Mµ⌫ = �M ⌫µ are a choice of six 4 ⇥ 4 anti-symmetric matrices that generate the

di↵erent Lorentz transformations. The matrix indices are suppressed in the above

expressions; in their full glory we would write (Mµ⌫)⇢
�
. So, for example

(M01)⇢
�
= i

 
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

!
and (M12)⇢

�
= i

 
0 0 0 0

0 0 �1 0

0 1 0 0

0 0 0 0

!
. (1.6)

(Note that the generators di↵er by a factor of i from those defined in the Quantum

Field Theory lectures. This is compensated by an extra factor of i in the exponent

(1.5).) The matrices Mµ⌫ generate the algebra so(1, 3),

[Mµ⌫ ,M⇢�] = i (⌘⌫⇢Mµ� � ⌘⌫�Mµ⇢ + ⌘µ�M ⌫⇢ � ⌘µ⇢M ⌫�) . (1.7)
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The six di↵erent Lorentz transformations naturally decompose into three rotations Ji
and three boosts Ki, defined by

Ji =
1

2
✏ijkMjk and Ki = M0i (1.8)

where the j, k = 1, 2, 3 indices are summed over, and ✏123 = +1. The rotation matrices

are Hermitian, with J†
i
= Ji while the boost matrices are anti-Hermitian with K†

i
=

�Ki. This ensures that the rotations in (1.5) give rise to a compact group while the

boosts are non-compact. From the Lorentz algebra, we find that these generators obey

[Ji, Jj] = i✏ijkJk , [Ji, Kj] = i✏ijkKk , [Ki, Kj] = �i✏ijkJk . (1.9)

The rotations form an su(2) sub-algebra. That, of course, is to be expected and is

related to the fact that SO(3) ⇠= SU(2)/Z2.

We can, however, find two mutually commuting su(2) algebras sitting inside so(1, 3).

For this we take the linear combinations

Ai =
1

2
(Ji + iKi) and Bi =

1

2
(Ji � iKi) . (1.10)

Both of these are Hermitian, with A†
i
= Ai and B†

i
= Bi. They obey

[Ai, Aj] = i✏ijkAk , [Bi, Bj] = i✏ijkBk , [Ai, Bj] = 0 . (1.11)

But we know all about representations of SU(2): they are labelled by an integer or

half-integer j 2 1

2
Z which, in the context of rotations, we call “spin”. The dimension

of the representation is then 2j + 1. The fact that we can find two su(2) sub-algebras

of the Lorentz algebra tells us that all representations must carry two such labels

(j1, j2) with j1, j2 2
1

2
Z . (1.12)

Moreover, we know that this representation must have dimension (2j1 + 1)(2j2 + 1).

We’ll flesh out the meaning of these representations more below. But for now, we can

identify the simplest such representations just by counting: we have

(0, 0) : scalar

(1
2
, 0) : left-handed Weyl spinor

(0, 1
2
) : right-handed Weyl spinor

(1
2
, 1
2
) : vector (1.13)

(1, 0) : self-dual 2-form

(0, 1) : anti-self-dual 2-form
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What we call the physical spin of a particle is the quantum number under rotations ~J :

this is j = j1 + j2. The spin-statistics theorem ensures that particles with j 2 Z are

bosons, while those with j 2 Z+ 1

2
are fermions.

There’s something a little odd about the our discovery of two su(2) sub-algebras.

After all, it certainly isn’t true that the Lorentz group is isomorphic to two copies of

SU(2). This is because SU(2) is a compact group: keep doing a rotation and you will

eventually get back to where you started. Indeed, two copies of the group SU(2) give

the rotation group of Euclidean space R4:

Spin(4) ⇠= SU(2)⇥ SU(2) with SO(4) ⇠= Spin(4)/Z2 . (1.14)

In contrast, the Lorentz group is non-compact: keep boosting and you get further and

further from where you started. How does this manifest itself in the two su(2) algebras

that we’ve found in (1.11)?

The answer is a little subtle and is to be found in the reality properties of the

generators Ai and Bi. Recall that all integer, j 2 Z, representations of SU(2) are real,

while all half-integer spin, j 2 Z + 1

2
, are pseudoreal (which means that, while not

actually real, the representation is isomorphic to its complex conjugate). However, the

Ai and Bi in (1.11) do not have these properties. You can see in (1.6) that both Ji and

Ki are pure imaginary. This, in turn, means that the generators Ai and Bi are complex

conjugates of each other

(Ai)
? = �Bi . (1.15)

This is where the di↵erence lies that distinguishes SO(4) from SO(1, 3). The Lie algebra

so(1, 3) does not contain two, mutually commuting copies of the real Lie algebra su(2),

but only after a suitable complexification. This means that certain complex linear

combinations of the Lie algebra su(2) ⇥ su(2) are isomorphic to so(1, 3). To highight

this, the relationship between the two is sometimes written as

so(1, 3) ⇠= su(2)⇥ su(2)? . (1.16)

For our purposes, it means that the complex conjugate of a representation (j1, j2)

exchanges the two quantum numbers

(j1, j2)
? = (j2, j1) . (1.17)

Both the scalar representation (0, 0) and the vector representation (1
2
, 1
2
) are real, while

the left- and right-handed Weyl spinors (1
2
, 0) and (0, 1

2
) are exchanged under complex
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conjugation. This last statement, which is important, will be elaborated upon in Sec-

tions 1.2 and 1.4. In the context of quantum field theory, if a field appears in a theory

then so too does its complex conjugate. This means that if you have a left-handed

spinor, you also have a right-handed complex conjugated spinor.

1.1.2 The Poincaré Group and its Representations

The continuous symmetries of Minkowski space comprise of Lorentz transformations

together with spacetime translations. Combined, these form the Poincaré group. Space-

time translations are generated, as usual, by the momentum 4-vector P µ. Their com-

mutation relations with themselves and with the Lorentz generators Mµ⌫ are given

by

[P µ, P ⌫ ] = 0 and [Mµ⌫ , P �] = i (P µ⌘⌫� � P ⌫⌘µ�) (1.18)

The latter of these is equivalent to the statement that P µ transforms as a 4-vector

under Lorentz transformations. These commutation relations should be considered in

conjunction with the Lorentz algebra (1.7),

[Mµ⌫ ,M⇢�] = i (⌘⌫⇢Mµ� � ⌘⌫�Mµ⇢ + ⌘µ�M ⌫⇢ � ⌘µ⇢M ⌫�) (1.19)

Together, (1.18) and (1.19) form the algebra of the Poincaré group.

Given an algebra, our next task is to explore its representations. There are di↵erent

ways that we could approach this. Ultimately, we will be interested in the way that

the Poincaré group acts on fields that make up the Standard Model. But first, to build

some intuition, we will understand how the Poincaré group acts on single particle states

in the Hilbert space.

To set the scene, let’s first recall how we construct irreducible representations of the

rotation group. We work with the algebra so(3) ⇠= su(2) rather than the group. This

is, of course, defined by the familiar commutation relations

[Ji, Jj] = i✏ijkJk . (1.20)

To construct representations, the first thing we do is look to the Casimirs. These are

operators that commute with all generators of the group. For su(2), there is just a

single Casimir,

C =
3X

i=1

J2

i
. (1.21)
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Irreducible representations are labelled by the eigenvalue of the Casimir. For su(2),

the eigenvalue of J2 is j(j + 1) with the spin j taking values in j = 0, 1
2
, 1, . . .. Each

representation has dimension 2j + 1, with the states within a multiplet identified by

their eigenvalue under, say, J3 whose eigenvalue lies in the range |j3|  j. The result is

the familiar one from quantum mechanics: states are labelled by two quantum numbers

|j, j3i

Now let’s turn to the Poincaré group. The irreducible representations are what we

call “particles”. Again, they are characterised by the Casimirs. I won’t tell you how

to construct Casimirs, but will instead just present you with the result. First, we

introduce the Pauli-Lubański vector,

W µ =
1

2
✏µ⌫⇢�P⌫M⇢� . (1.22)

This can be thought of as a relativistic version of angular momentum. You can eas-

ily check this commutes with momentum [Wµ, P⌫ ] = 0. The remaining non-trivial

commutation relations are somewhat more laborious to show:

[Wµ,M⌫⇢] = i(⌘µ⌫W⇢ � ⌘µ⇢W⌫) and [Wµ,W⌫ ] = �i✏µ⌫⇢�W
⇢P � . (1.23)

The last of these commutation relations is quadratic on the right-hand side and so we’re

not looking at a Lie algebra here, but something more complicated. (This is reminiscent

of the Runge-Lenz vector which is a conserved quantity for the Kepler problem; there

too, the Poisson bracket structure returns something quadratic on the right-hand side.)

The two Casimirs of the Poincaré group are formed from the momentum Pµ and the

Pauli-Lubański vector Wµ,

C1 = PµP
µ and C2 = WµW

µ . (1.24)

This is our starting point: representations of the Poincaré group are labelled by the

eigenvalues of C1 and C2, together with the eigenvalues of any other operators that

we can find to make a maximally commuting set, analogous to J3 for the angular

momentum.

The most important of these “other operators” is the momentum P µ itself. All states

will be labelled by the eigenvalue pµ which is simply the 4-momentum of the particle.

The first Casimir is then just the rest mass of the particle, C1 = pµpµ = m2. By

acting with rotations and boosts Mµ⌫ , we can change the momentum to take any value

subject to the constraint pµpµ = m2. In the rotation analogy, the di↵erent values of pµ

are like the di↵erent values of j3 in the multiplet. However, in contrast to rotations,
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representations of the Poincaré group will necessarily be infinite dimensional, labelled

(among other things) by the continuous variable pµ. This di↵erence can be traced to

the fact that the Poincaré group is non-compact while the rotation group is not.

What happens next depends on whether we’re dealing with massive or massless

particles. We describe each in turn, followed by a somewhat mysterious massless rep-

resentation that no one really knows what to make of.

Massive Representations

First, consider the situation when C1 = m2 6= 0. It’s fruitful to pick a representative

value of the momentum pµ and the simplest choice is to boost to the rest frame of the

particle so that pµ = (m, 0, 0, 0). In this frame, the Pauli-Lubański vector is

W 0 = 0 and W i = �mJ i . (1.25)

with J i the generators of rotations. Note that the rotation generators J i are precisely

those elements of the Lorentz group that don’t change the value of our chosen momen-

tum pµ = (m, 0, 0, 0). That means that these generators J i must act on whatever other

degrees of freedom are carried by the particles. We want to ask: what are the allowed

extra degrees of freedom?

But this is a question that we already answered above because our problem has

reduced to finding a representation of the Lie algebra su(2), generated by J i. The

second quadratic Casimir of the Poincaré group is C2 = �m2J2 and so is specified by

the eigenvalue of J2 which, as we reviewed above, is j(j+1) for some j 2 1

2
Z. The full

multiplet is then filled out by the di↵erent values of j3 with |j3|  j.

We’ve seen that, if we fix the momentum to the specific value pµ = (m, 0, 0, 0),

then we’re left with finding representations of the rotation group. But, importantly, it

doesn’t matter which value of the momentum we started with: had we picked a di↵erent

pµ (still with pµpµ = m2), then we’d have got the same result. This suggests that we

can lift the SU(2) representation that we found for our given pµ to a representation of

the full Poincaré group. And, indeed, this is the case.

There is a theorem underlying this result which we won’t prove. Instead, I’ll just

give you some names of things. Once we fix the momentum pµ, the elements of the

Lorentz group that don’t change pµ form a group known as the little group. For massive

particles, the little group is SU(2). One can then show that representations of the little

group uplift to representations of the full Poincaré group. This is what’s known as an

induced representation.
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The upshot is something familiar: massive particles are characterised by their mass

m and spin j. Given these Casimirs, states in this representation of the Poincaré group

are labelled by |pµ, j3i.

Massless Representations

The story is slightly di↵erent for massless particles, for which the first Casimir vanishes:

C1 = m2 = 0. We again choose a representative momentum. This time we can’t boost

to the rest frame, but we can choose the momentum to take the form pµ = (E, 0, 0, E)

where E is the energy of the particle. A short calculation shows that, in this frame,

the Pauli-Lubański now takes the form

Wµ = E

0

BBBB@

�M12

M23 �M02

M31 +M01

M12

1

CCCCA
= E

0

BBBB@

�J3

J1 �K2

J2 +K1

J3

1

CCCCA
. (1.26)

Here we’ve replaced the Mµ⌫ with the appropriate rotation generator Ji or boost gen-

erator Ki defined in (1.8). Once again, each of the components of Wµ leaves our initial

momentum pµ = (E, 0, 0, E) unchanged, a fact that you can check by looking at the

explicit form of the generators (1.6). In other words, these components of Wµ are once

again our little group. (This has happened twice now and it is no coincidence: the

structure of the Pauli-Lubański vector was designed so that this holds.)

What group do the components of W µ actually generate? We can look at their

commutation relations which, using (1.9), are

[W1,W2] = 0 , [W3,W2] = �iEW1 , [W3,W1] = iEW2 . (1.27)

This is the Euclidean group in R2, sometimes written as ISO(2), with W1 and W2 the

generators of translations and W3 the generator of rotations. Again, the little group

doesn’t act on our chosen pµ = (E, 0, 0, E), but it may act on any other degrees of

freedom that our state carries. Said di↵erently, those other degrees of freedom must

fall into a representation of the 2d Euclidean group.

Here a subtlety rears its head. For reasons that we will explain below, things turn out

to be simplest if we consider representations of the little group on which the translation

generators W1 and W2 act trivially. If we ignore these translations, the remaining little

group is just the U(1) of rotations generated by J3. Representations of this U(1) are

labelled by a single eigenvalue h such that the states transform as

ei✓J3 |hi = eih✓|hi . (1.28)
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The eigenvalue h is called the helicity and is the analog of spin for massless particles.

At time, we’ll be lazy and just refer to both as “spin”. For a general null p, the helicity

tells us the eigenvalue of the state under a rotation along the direction of motion,

ei✓ p̂·J|pµ;hi = eih✓|pµ;hi . (1.29)

Because the U(1) generated by J3 was a subgroup U(1) 2 SU(2), we know that this

helicity is quantised to take values

h 2 1

2
Z . (1.30)

This is the statement that, under a rotation of ✓ = 2⇡, the states are either left the

same (for h 2 Z) or pick up a minus sign (for h 2 Z+ 1

2
).

There’s something missing in the story above. For massive representations, we’ve

seen that the states are labelled by m and j and fill out a multiplet |pµ, j3i with

|j3|  j. This multiplet has dimension 2j + 1. (Ok, the multiplet is really infinite

dimensional because of the pµ, but for a fixed pµ the multiplet has dimension 2j + 1.)

However, for massless particles there is just a single state |pµ;hi. This is because the
helicity describes the representation of the Abelian group U(1) generated by J3 rather

than the non-Abelian group SU(2) and irreducible representations of Abelian groups

are one-dimensional.

The problem with this is that it doesn’t fit with what we know about massless

particles. For example, the photon has helicity h = 1 and has two polarisation states,

as does a graviton with h = 2. A massless spinor with h = 1

2
also has two degrees of

freedom. Why aren’t we seeing this doubling in our representation theory analysis?

What we’re missing is the additional requirement that the spectrum of states is

invariant under CPT . These are discrete symmetries that we will look at more closely

in Section 1.4. For massive particles, this doesn’t buy us anything new: the set of

states |pµ, ji is already invariant under CPT . However, for massless particles CPT

flips h 7! �h and tells us that massless states must come in pairs

|pµ;hi and |pµ;�hi . (1.31)

This is the origin of the two polarisation states of the photon or graviton, or the two

helicities of a massless Weyl spinor. Note that a massless scalar has helicity h = 0 and

so is CPT self-conjugate. This means that there’s no requirement from CPT to add

an additional degree of freedom in this case.
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Weird Continuous Spin Representations

We brushed over something above. When looking at massless representations, we

found that the little group coincides with the 2d Euclidean group (1.27). But then,

without justification, we restricted ourselves to representations on which the translation

generators W1 and W2 act trivially. Here we give the justification.

Let’s look at representations of the 2d Euclidean group (1.27) for which translations

W1 and W2 act non-trivially. Because [W1,W2] = 0, we can simultaneously diagonalise

these generators so that they act on states |w1, w2i such that

Wi|w1, w2i = wi|w1, w2i for i = 1, 2 . (1.32)

The second Casimir is then

C2 = W µWµ = �(w2

1
+ w2

2
) . (1.33)

For the massless representations above, we assumed that w1 = w2 = 0. Now we

want to understand what happens when they are non-zero. Since C2 is fixed, we write

w1 = ⇢ cos↵ and w2 = ⇢ sin↵ with C2 = �⇢2 and we should think of the collection of

states |w1, w2i as parameterised by the angle ↵ 2 [0, 2⇡) with the action

W1|↵i = ⇢ cos↵|↵i and W2|↵i = ⇢ sin↵|↵i . (1.34)

It remains to determine the action of W3 = EJ3 on these states. This is given by

ei✓J3 |↵i = eih✓|↵ + ✓i =) J3|↵i = h|↵i � i
d

d↵
|↵i . (1.35)

You can check that the actions (1.35) and (1.34) do indeed furnish a representation

of the 2d Euclidean algebra (1.27). But, from the perspective of particle physics, it’s

a very weird representation. This is because particle states |pµ,↵;hi are labelled by

their momentum pµ and an additional angle ↵ 2 [0, 2⇡). This means that for every

choice of momentum pµ, there’s still an infinite dimensional Hilbert space, labelled by

the continuous parameter ↵ rather than a discrete, bounded parameter like j3. Said

di↵erently, it’s as if we have an uncountably infinite number of species of particle. These

are known as continuous spin representations.

We’ve certainly never observed particles corresponding to these states and they would

have very strange properties (such as infinite heat capacity). Nonetheless, one can’t

help but wonder if nature may make use of them somewhere.
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1.1.3 The Coleman-Mandula Theorem

It’s not unusual for quantum field theories to exhibit further continuous symmetries.

Say, a global U(1) symmetry that rotates the phase of a complex field, or perhaps

a non-Abelian SU(N) symmetry under which a multiplet of fields transforms. The

generators of these symmetries – which we’ll denote collectively as T – correspond to

some conserved charge and are always Lorentz scalars which means that they necessarily

commute with the Poincaré generators,

[P µ, T ] = [Mµ⌫ , T ] = 0 . (1.36)

One could ask: is it possible for something less trivial to happen, with the new genera-

tors transforming in some fashion under the Poincaré group? For example, this would

happen if the additional generators T themselves carried some spacetime index. If this

were possilble, the Poincaré group would be subsumed into a larger group. And that

sounds interesting.

A theorem due to Coleman and Mandula greatly restricts this possibility. Roughly

speaking, the theorem states that, in any spacetime dimension greater than d = 1+ 1,

the symmetry group of any interacting quantum field theory must factorise as

Poincaré ⇥ Internal . (1.37)

We won’t prove the Coleman-Mandula theorem here. The gist of the proof is to look at

2-to-2 scattering (meaning two incoming particles scatter into two outgoing particles).

Poincaré invariance already greatly restricts what can happen, with only the scatter-

ing angle left undetermined. Any internal symmetries that factorise, as in (1.37), put

restrictions on the kinds of interactions that are allowed, for example enforcing con-

servation of electric charge. But if the generators T were to carry a spacetime index

then they would put further constraints on the scattering angle itself and that would

be overly restrictive, at best allowing scattering to occur only at discrete angles. But

if one assumes that the scattering amplitudes are analytic functions of the angle then

the amplitude must vanish for all angles and the theory is free.

Like all no-go theorems in physics, the Coleman-Mandula theorem comes with a

number of underlying assumptions. Some of these are eminently reasonable, such as

locality and causality. But it may be possible to relax other assumptions to find inter-

esting loopholes to the Coleman-Mandula theorem. Two such loopholes have proven

to be extremely important.

• Conformal Invariance: The Coleman-Mandula theorem assumes that the the-

ory has a mass gap, meaning that all particles are massive. Indeed, the theorem
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is a statement about symmetries of the S-matrix which is really only well defined

for massive particles where we don’t have to worry about IR divergences. For

theories of massless particles something interesting can, and often does, happen.

The first interesting thing is that interacting massless theories typically exhibit

scale invariance. This means that physics is unchanged under the symmetry

xµ ! �xµ. The associated symmetry generator is called D for “dilatation”. This

can only be a symmetry of a theory that has no dimensionful parameters, which

is the main reason it can occur only for massless theories.

The second interesting thing is more surprising. For reasons that are not en-

tirely understood, theories that exhibit scale invariance also exhibit a further

symmetry known as special conformal transformations of the form

xµ ! xµ � aµx2

1� 2a · x+ a2x2
. (1.38)

This transformation depends on a vector parameter aµ and the associated gen-

erator is a 4-vector Kµ. The resulting conformal algebra extends the Poincaré

algebra (1.18) and (1.19) with the non-trivial commutators

[D,Kµ] = �iKµ , [D,P µ] = iP µ

[Kµ, P ⌫ ] = 2i(D⌘µ⌫ �Mµ⌫) (1.39)

[Mµ⌫ , K�] = i (K⌫⌘µ� �Kµ⌘⌫�) .

Interacting conformal field theories crop up in many places in physics. In their

Euclidean incarnation, they describe critical points, or second order phase transi-

tions, that were the focus of our lectures on Statistical Field Theory. In d = 1+1

dimensions the conformal group has rather more structure and a detailed intro-

duction can be found in the lectures on String Theory.

• Supersymmetry: The second loophole to the Coleman-Mandula theorem is su-

persymmetry. This is a symmetry that relates bosons to fermions. The generator

that enacts this magical transformation is denoted as Q↵ and carries a spacetime

spinor index ↵ = 1, 2. (We will learn more about spinors in Section 1.2.) This

is exactly the kind of thing that the Coleman-Mandula theorem is supposed to

rule out. However, supersymmetry evades the theorem because the generators

Q↵ do not form a Lie algebra: instead they form what is known as a super-Lie

algebra, with the commutation relations of the Poincaré group (1.18) and (1.19)

augmented by the anti-commutation relation

{Q↵, Q̄↵̇} = 2�µ

↵↵̇
Pµ . (1.40)
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Here �µ

↵↵̇
are a collection of 2⇥2 matrices defined in (1.44). (We’ll see a lot more

about what the ↵ and ↵̇ spinor indices mean shortly.) You can learn (a lot!) more

about this algebra and its consequences for various field theories in the lectures

on Supersymmetry.

Neither conformal symmetry nor supersymmetry play a role in the Standard Model.

However, both arise in di↵erent ways when it comes to ideas for what lies beyond the

Standard Model.

1.2 Spinors

Scalars are basic. They have no internal structure and, as such, come with very little

baggage. There’s a lot of fun that we can have with them, largely by writing down

potentials that do interesting things, and we’ll see examples of this when we discuss

spontaneous symmetry breaking in Section 2. But there’s little that is subtle about

scalars: what you see is what you get.

In contrast, any field with higher spin is awash with subtleties. For massless spin

1 particles, like photons, these subtleties are all about gauge invariance and we will

discuss them in Section 1.3. Here our interest is in spin 1

2
particles, known as spinors.

These are the fields that describe all matter particles in the Standard Model, meaning

the quarks and leptons. They are subtle largely because anything that comes back to

itself with a minus sign after a 2⇡ rotation is always going to be a little strange.

1.2.1 Dirac vs Weyl Spinors

We start by reviewing some features of spinors that we met in the lectures on Quantum

Field Theory. However, our focus in going to be a little di↵erent. In particular, to

prepare us for the Standard Model, we will need to look more closely at the properties

of Weyl spinors.

In the lectures on Quantum Field Theory, we learned about the 4-component Dirac

spinor  . This comes hand in hand with a collection of gamma matrices that obey the

Cli↵ord algebra

{�µ, �⌫} = 2⌘µ⌫ . (1.41)

The Cli↵ord algebra admits a unique irreducible representation, up to conjugation.

But that “up to conjugation” caveat hides all manner of headaches as it provides

ample opportunity for physicists to use annoying conventions. Here we use the chiral
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basis of gamma matrices,

�µ =

 
0 �µ

�̄µ 0

!
and �5 =

 
1 0

0 �1

!
. (1.42)

where we’ve introduced two collections of 2⇥ 2 matrices,

�µ = (1, �i) and �̄µ = (1,��i) (1.43)

where �i with i = 1, 2, 3 are the familiar Pauli matrices,

�1 =

 
0 1

1 0

!
, �2 =

 
0 �i

i 0

!
, �3 =

 
1 0

0 �1

!
. (1.44)

The bar on �̄µ in (1.43) doesn’t denote complex conjugation: these are simply a di↵erent

collection of 2⇥ 2 matrices from �µ.

In the Quantum Field Theory lectures, we showed that the generators of Lorentz

transformations for a Dirac spinor are

Sµ⌫ =
i

4
[�µ, �⌫ ] =

 
�µ⌫ 0

0 �̄µ⌫

!
. (1.45)

(As with our earlier definition of Mµ⌫ , this di↵ers by a factor of i from the conventions

in the Quantum Field Theory lectures.) Here we’ve defined

�µ⌫ =
i

4
(�µ�̄⌫ � �⌫ �̄µ)

�̄µ⌫ =
i

4
(�̄µ�⌫ � �̄⌫�µ) . (1.46)

Because both of these expressions are anti-symmetrised in µ and ⌫, each is a collection

of six 2⇥ 2 matrices.

The generators Sµ⌫ defined in (1.45) are block diagonal. This is telling us that they

are not an irreducible representation of the Lorentz group. Instead, it’s formed of two

distinct representations, one generated by �µ⌫ and the other generated by �̄µ⌫ . Indeed,

you can check that each of these obeys the Lorentz algebra (1.5)

[�µ⌫ , �⇢�] = i (⌘⌫⇢�µ� � ⌘⌫��µ⇢ + ⌘µ��⌫⇢ � ⌘µ⇢�⌫�) (1.47)
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with a similar expression for �̄µ⌫ . Correspondingly, the 4-component Dirac spinor  

also decomposes into two 2-component spinors

 =

 
 L

 R

!
. (1.48)

These are referred to as left-handed and right-handed spinors respectively. In the

language of our earlier table of representations (1.13),  L sits in the (1
2
, 0) representation

while  R sits in the (0, 1
2
) representation. A Dirac spinor is a combination of both

representations (1
2
, 0)� (0, 1

2
).

Under a Lorentz transformation, a left-handed Weyl spinor transforms as

 L ! S L with S = exp

✓
� i

2
!µ⌫�

µ⌫

◆
. (1.49)

Here !µ⌫ are the same set of six numbers that specify the Lorentz transformation (1.5).

There is a similar expression for  R, with �µ⌫ replaced by �̄µ⌫ .

You can check that tr�µ⌫ = 0 and so, using det(eA) = etrA, we have detS = 1. In

fact, S 2 SL(2,C), and what we’ve done in constructing the Weyl spinor representation

of the Lorentz group is highlight the group isomorphism Spin(1, 3) ⇠= SL(2,C).

(Left-Handed)? = Right-Handed

The two representations – one for a left-handed Weyl spinor, the other for a right-

handed Weyl spinor – are related by complex conjugation.

It’s not immediately obvious because, as we’ve seen, the generators are �µ⌫ and �̄µ⌫

and it’s not true that these generators are complex conjugates: (�µ⌫)? 6= �̄µ⌫ . To see

the relation, we need an additional conjugation by the anti-symmetric tensor

✏ =

 
0 1

�1 0

!
. (1.50)

You can then check that

✏T (�µ⌫)?✏ = �̄µ⌫ . (1.51)

Operationally, the complex conjugation flips the sign of (�2)? = ��2 leaving the other

Pauli matrices alone: (�i)? = �i for i = 1, 3. But the conjugation by ✏ = i�2 then flips

the sign of �i with i = 1, 3, leaving �2 alone.
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This simple algebraic relation has an important physical implication. If you have a

left-handed particle described by a Weyl spinor  L, then its anti-particle is described

by the conjugate spinor  †
L
(which we also write as  ̄L) and is right-handed.

Building Scalars from Spinors

If we’re given two left-handed spinors,  L and �L, then we can build a scalar. We’ll

adorn our spinors with indices, so we have ( L)↵ and (�L)↵ with ↵ = 1, 2. We also add

indices to our anti-symmetric matrix

✏↵� =

 
0 1

�1 0

!
. (1.52)

We then define the scalar quantity

 L �L := ✏↵�( L)�(�L)↵ = ( L)2(�L)1 � ( L)1(�L)2 . (1.53)

To see that this does indeed transform as a scalar, we look at

 L �L ! S �

↵
S �

�
✏↵�( L)�(�L)� = (detS)✏��( L)�(�L)� =  L �L (1.54)

where, in the first equality we’ve used the fact that S �

↵
S �

�
✏↵� = detS ✏��, which you

can confirm simply by checking all the cases �, � = 1, 2. In the second equality we’ve

used the fact that detS = 1.

This is an important lesson: you can form a scalar from two left-handed spinors. In

terms of the representation theory of the previous section, what we’re seeing here is

the tensor product (1
2
, 0)⌦ (1

2
, 0) = (0, 0)� (1, 0), where the scalar (1.53) picks out the

singlet (0, 0).

The anti-symmetric tensor ✏↵� is an invariant tensor for the group SL(2,C). In that

sense, it plays a role that is similar to the delta function �ab for the group SO(N), or the

Minkowski metric ⌘µ⌫ for the group SO(1, 3). In particular, it allows us to form a scalar

product between two spinors as in (1.53). The fact that this product is anti-symmetric,

rather than symmetric, fits nicely with the fact that, in quantum field theory, spinors

are anti-commuting variables. This means that we have,

 L �L = ( L)2(�L)1 � ( L)1(�L)2 = �(�L)1( L)2 + (�L)2( L)1 = �L  L . (1.55)

In particular, this means that we can form a scalar from just a single left-handed Weyl

spinor

 L  L = ( L)2( L)1 � ( L)1( L)2 = 2( L)2( L)1 . (1.56)

Again, there are similar expressions for right-handed spinors.
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There’s quite a bit more to say about the two di↵erent representations of the Lorentz

group and their properties. You can read about this (and the corresponding dotted

and undotted indices) in the first section of the lectures on Supersymmetry. But the

simple summary above will su�ce for our purposes.

1.2.2 Actions for Spinors

Our next goal is to understand how to construct Lagrangians for spinors. Again, our

starting point will be the Dirac spinor that we met in Quantum Field Theory. There

we saw that the Lorentz invariant action is

SDirac = �
Z

d4x
⇣
i ̄�µ@µ �M  ̄ 

⌘
. (1.57)

For a Dirac spinor, the bar notation means  ̄ =  †�0. Decomposed in terms of Weyl

fermions (1.48),

SDirac = �
Z

d4x
⇣
i ̄L�̄

µ@µ L + i ̄R�
µ@µ R �M( ̄R L +  ̄L R)

⌘
. (1.58)

First an important, but trivial, notational point: the bar for a Weyl spinor means

something di↵erent from a bar for a Dirac spinor. It is simply a more elegant way of

writing  ̄L =  †
L
.

Second, note that the mass term couples the left- and right-handed Weyl spinors.

Combining our observations above, we know that the complex conjugate  ̄R is a left-

handed spinor, and so in writing  ̄R L we’ve combined two left-handed spinors into a

scalar. Similarly,  ̄L R combines two right-handed spinors into a scalar.

It’s worth pausing to look at the symmetries of the action (1.58). Crucially, these

symmetries are di↵erent for massless and massive fermions. In the absence of the mass

term, so M = 0, the action has a U(1)2 symmetry, under which the two fermions rotate

separately,  L ! ei↵ L and  R ! ei� R. When we turn on the mass term, only the

diagonal combination, with ↵ = � survives. This is a general story, and one that will

be particularly important for understanding the Standard Model: massless fermions

always have more symmetries than massive fermions.

The mass in (1.58) can take values M 2 R. (There’s no positivity requirement.)

Upon quantisation, with M 6= 0, we get a particle of spin +1

2
and charge +1 under the

surviving U(1), together with a distinct anti-particle of spin +1

2
and charge �1, both

with mass |M |.
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The mass term in (1.58) which combines two di↵erent spinors,  L and  R, is known

as a Dirac mass. It’s not the only thing we can write down. Suppose that we have just

a left-handed spinor  L. Then it’s perfectly possible to write down an action with a

mass term,

SWeyl = �
Z

d4x
⇣
i ̄L�̄

µ@µ L +
m

2
 L L +

m?

2
 ̄L ̄L

⌘
. (1.59)

This is known as a Majorana mass. Here we can take m 2 C.

Again, the massive theory has less symmetry than the massive theory, with the U(1)

that rotates the phase of  L broken when m 6= 0. This means that there’s no U(1)

quantum number to distinguish particles from anti-particles and, upon quantisation,

the theory describes a single spin 1

2
particle with mass |m| that is now its own anti-

particle.

Because the Majorana mass term explicitly breaks the U(1) symmetry, it is not

allowed if the U(1) is gauged. Relatedly, it’s not possible to write down such a term

for any fermion  L that transforms in a complex representation of a gauge group. It

is, however, possible to write down such terms for fermions in real representations.

1.3 Gauge Invariance

In the Standard Model, forces are associated to massless spin 1 particles, known col-

lectively as gauge bosons. As we now explain, much of the dynamics of these forces is

fixed by gauge invariance.

1.3.1 Maxwell Theory

The key ideas of gauge invariance are familiar from electromagnetism. There, the

fundamental field is the 4-vector Aµ(x), known as the gauge potential. Crucially, not all

components of Aµ(x) are physical: instead, we should identify any two gauge potentials

that are related by a gauge transformation of the form

Aµ ! Aµ + @µ↵ (1.60)

for any function ↵(x). The transformation (1.60) is sometimes called a gauge symmetry.

It’s not a good name. A “symmetry” describes a situation in which two physically

distinct configurations share the same physics. But that’s not what’s going on in

(1.60). Instead, the two configurations related by a gauge transformation describe the

same physical configuration. A fairly decent analogy is to think of two gauge potentials

that are related by (1.60) in the same way as you would view two di↵erent coordinate

systems. A much better name would be gauge redundancy.
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As we proceed, we’ll see that a great deal of the structure of the Standard Model

is determined by the requirements of gauge invariance. Yet, in many ways, this is a

strange idea on which to rest our most important theories of physics. Gauge invariance

is, at heart, merely an ambiguity in how we choose to present the laws of physics. Why

should it play such an important role?

One reason is that the ambiguity allows us to demonstrate various properties that

we care about but which, naively, might appear incompatible. These properties include

Lorentz invariance and locality and, in the quantum theory, unitarity. We already got

a glimpse of this in the lectures on Quantum Field Theory when we quantised Maxwell

theory. One choice of gauge makes unitarity manifest while another makes Lorentz

invariance manifest. The gauge ambiguity allows us to flit from one choice to another,

allowing us to both have our cake and eat it.

Relatedly, we know that the photon has two polarisation states. But try writing down

a field which describes the photon that has only two indices and which transforms nicely

under the SO(3, 1) Lorentz group; its not possible. So instead we introduce the field

Aµ which makes Lorentz invariance manifest and then use the gauge symmetry to kill

two of four resulting states.

The physical information in Aµ can be found in the field strength

Fµ⌫ = @µA⌫ � @⌫Aµ . (1.61)

The field strength is invariant under the gauge transformation (1.60). The field strength

houses the electric field E and the magnetic field B. If we write Aµ = (�,A), then we

have

E = �r�� @A

@t
and B = r⇥A . (1.62)

The dynamics of the gauge field is described by the action

SMaxwell = �1

4

Z
d4x Fµ⌫F

µ⌫ . (1.63)

The resulting equations of motion are

@µF
µ⌫ = 0 . (1.64)

This coincides with two of the Maxwell equations: Gauss’ law r ·E = 0 and Ampère’s

law r⇥B = @E/@t. The other two follow immediately from constructing Fµ⌫ in terms

of the gauge potential. To see this, we first introduce the dual field strength

?F µ⌫ =
1

2
✏µ⌫⇢�F⇢� . (1.65)
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This is similar to Fµ⌫ , but with E and B swapped (one of them with a minus sign).

Then, by the anti-symmetry of ✏µ⌫⇢�, together with the definition (1.61), we have the

Bianchi identity

@µ
?F µ⌫ = 0 . (1.66)

Expanding this out gives the remaining two Maxwell equations: the one that says

magnetic monopoles don’t exist r ·B = 0, and the law of induction r⇥E+@B/@t = 0.

The necessity to keep gauge invariance means that it’s not possible to augment

the action (1.63) with a mass term of the form m2AµAµ. This would break gauge

invariance and cause trouble down the line. Naively, this would appear to guarantee

that the photon must always be massless. In fact, there is a way to give the photon a

mass, known as the Higgs mechanism. This will be discussed in Section 2.3.

Coupling to Matter

Underlying electromagnetism is a U(1) gauge group. That’s not so obvious in the

description above, where the “symmetry” (really redundancy) manifests itself only as

a shift of the gauge field (1.60) depending on a function ↵(x). However, the U(1)ness

of electromagnetism becomes more apparent when we couple to charged fields.

Fields that are charged under electromagnetism are necessarily complex. Consider,

for example, a complex scalar field �(x) of charge e. When the gauge field transforms

as (1.60), the scalar field has a corresponding transformation

�! eie↵� . (1.67)

Here we see the group emerging more clearly, with eie↵(x) 2 U(1). Because the trans-

formation parameter ↵(x) is a function, we really have a U(1) symmetry/redundancy

for each point x in space. This is what it means to have a U(1) “gauge group”: it is a

much larger group than the global symmetries that appear elsewhere.

We can construct theories that are invariant under the transformation (1.67) by

replacing partial derivatives with the covariant derivative

Dµ� = @µ�� ieAµ� . (1.68)

This has the nice property that Dµ� transforms covariantly under a gauge transforma-

tion, a fact that requires a couple of quick lines of calculation:

Dµ� ! (@µ � ieAµ � ie@µ↵) e
ie↵�

= eie↵ (@µ � ieAµ)�

= eie↵Dµ� . (1.69)
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The key to this calculation is that the derivative hitting @µ(eie↵) exactly cancels the

shift of the gauge field (1.60). Taking the complex conjugate of (1.68), we have

Dµ�
† = (@µ + ieAµ)�

† . (1.70)

From this, we see that the meaning of the covariant derivative Dµ depends on the object

it’s hitting: it’s �ieAµ for the scalar in (1.68), but +ieAµ for the conjugate scalar in

(1.70). You can check that, under a gauge transformation, Dµ�† ! e�ie↵Dµ�†. This

ensures that we can form a gauge invariant action

Sscalar =

Z
d4x

⇣
Dµ�

†Dµ�� V (|�|)
⌘

(1.71)

where we take the potential to depend only on |�|2 = �†�. In particular, this means

that we disallow terms in the potential of the form �2 + �† 2 which are real but are not

gauge invariant.

If we have multiple scalar fields, then they can carry di↵erent charges. When the

gauge group is U(1), these charges should be integer multiples of each other, meaning

that each field transforms as

�! eieq↵� with q 2 Z . (1.72)

It is possible to write down theories in which the charges q are not integer valued. (For

example, one could imagine one scalar field with q = 1 and another with q =
p
2.)

Strictly, the gauge group should be viewed as R in this case, rather than U(1). The

di↵erences between a U(1) gauge group and an R gauge group are rather subtle, and

manifest themselves only in the presence of magnetic monopoles, or in spacetimes of

non-trivial topology. We won’t get into these issues here.

Everything that we’ve said above for scalars also holds for fermions, both Weyl and

Dirac. In either case, we replace the partial derivatives in the relevant action (either

(1.59) or (1.58)) with covariant derivatives and o↵ we go.

1.3.2 A Refresher on Lie Algebras

There is an important extension of Maxwell theory in which the gauge group U(1) is

replaced by a compact Lie group G. Here we give a lightening review of the relevant

aspects of Lie groups and Lie algebras.
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A Lie group is a group that is also a di↵erentiable manifold1. This means, among

other things, that a group element is labelled by some continuous parameters. We’ve

already met examples of Lie groups in both the rotation group and the Poincaré group.

Lie groups have the property that, for elements continuously connected to the iden-

tity, we can write each U 2 G as

U = ei✓
A
T

A
(1.73)

Here the ✓A are just numbers that tell us which group element we’re working with,

while the TA are generators of the group. If you like, the T a tell us the infinitesimal

action of the group, with g ⇡ 1 + i✓ATA + O(✓2) when ✓ is small. A general group

element (1.73) can then be constructed by exponentiating the infinitesimal action.

It turns out that, with the exception of some global information, the structure of the

Lie group is captured in the behaviour of those infinitesimal generators TA. They form

the associated Lie algebra g, given by

[TA, TB] = ifABCTC . (1.74)

Here A,B,C = 1, . . . , dimG and fABC are the fully anti-symmetric structure constants

which distill the information about the group G. The factor of i on the right-hand side

is taken to ensure that the generators are Hermitian: (TA)† = TA.

(Mathematicians usually prefer the convention where there is no i on the right-hand

side and the generators are anti-Hermitian, largely because there are examples like

SO(N) where everything in the game is real and a factor of i makes things needlessly

complex. In contrast, physicists tend to include the factor of i on the right-hand side

because they’re usually working in the realm of quantum mechanics where things will

ultimately become complex anyway.)

The TA in (1.74) are abstract objects but we will shortly want to identify them with

matrices. This means, among other things, that we want the commutator in (1.74) to

have the same properties as matrix commutation, among them the Jacobi identity

[TA, [TB, TC ]] + [TB, [TC , TA]] + [TC , [TA, TB]] = 0 . (1.75)

This puts constraints on the structure constants fabc which must, in turn, obey

fADEfBCD + fBDEfCAD + fCDEfABD = 0 . (1.76)

1For many physicists, Lie groups are the only groups they know. A mathematician friend of mine
told me that a physicist’s definition of a finite group is a Lie group without manifold structure.
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G SU(N) SO(N) Sp(N) E6 E7 E8 F4 G2

dimG N2 � 1 1

2
N(N � 1) N(2N + 1) 78 133 248 52 14

dimF N N 2N 27 56 248 6 7

Table 2. The classification of compact, semi-simple Lie algebras G, together with their

dimension and the dimension of the fundamental representation F .

We will be interested in simple, compact Lie groups. Here “simple” means that we don’t

have any trivial U(1) factors floating around that commute with everything else. We

can always include such factors if we wish (and we will wish for the Standard Model)

but we’ll be best served if we ignore them at this stage. Meanwhile, “compact” means

that if you continue to rotate in the group then you ultimately come back to where you

started from (or close to where you started from). For example, the group of rotations

is compact, while the Lorentz group is non-compact because if you keep boosting in a

given direction then you just move faster and faster.

There is a classification of simple compact Lie algebras. The possible options for the

group G, together with the dimension of the group, are shown in Table 22. All of these

groups are referred to as non-Abelian meaning that things don’t commute with each

other. In contrast, U(1) is an Abelian group.

As we mentioned above, the TA in (1.74) are initially viewed as just abstract objects.

But it’s interesting to ask when they can take a more concrete form in the guise of

matrices. These are the representations of the algebra. For each algebra G, there is an

infinite list of numbers which are the dimensions of the matrices that can be used to

represent G. The smallest such matrix is called the fundamental representation and we

will denote it as F . The dimension of F for each Lie group G are also shown in Table

2.

In what follows, we will (with a slight abuse of notation) use TA to refer to the gener-

ators fundamental representation. When we have occasion to use other representations

R, we will refer to the generators as TA(R) (In later sections, we’ll also refer to these as

TA

R
.). In fact, for the Standard Model we will only need two di↵erent representations:

the fundamental and the adjoint. The adjoint is a representation that has dimension

2We’re using the convention Sp(1) = SU(2). Other authors sometimes write Sp(2N), or even
USp(2N) to refer to what we’ve called Sp(N), preferring the argument to refer to the dimension of
the fundamental representation F rather than the rank of the Lie algebra g.
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dim(adj) = dimG with the generators given by

TA(adj)BC = �ifABC . (1.77)

Don’t be lulled into thinking that you don’t need to consider other representations:

they will appear in other situations, including when we discuss flavour symmetry in

QCD in Section 3.

The Lie algebra comes with what, in fancy language, is called a Killing form. But,

by the time we’re thinking about matrices, this Killing form is just the trace. The

generators of any simple Lie algebra obey TrTA = 0. (This is what it means for the

Lie algebra to be “simple”.) We take the generators in the fundamental representation

F to satisfy

TrTATB =
1

2
�AB (1.78)

This can be viewed as tantamount to fixing the normalisation of the structure con-

stants fABC . Having fixed the normalisation in the fundamental representation, other

representations TA(R) will have di↵erent normalisations.

Before we proceed, an example. The simplest non-Abelian Lie group is SU(2), which

has dim(SU(2)) = 3 and structure constants given by fABC = ✏ABC . In this case, the

fundamental representation is (up to an overall normalisation) the 2⇥ 2 Pauli matrices

TA =
1

2
�A . (1.79)

These indeed obey [TA, TB] = i✏ABCTC , together with the normalisation condition

(1.78).

The group SU(3) also plays a prominent role in the Standard Model. (In fact, as we

will see, it plays two prominent roles!) We will describe the structure constants and

the generators in Section 3.

1.3.3 Yang-Mills Theory

Now we can turn to some physics. Yang-Mills theory is a generalisation of Maxwell

theory in which the group U(1) is replaced by a simple, compact Lie algebra G. To

specify the Yang-Mills theory, we need only specify the choice of G together with

a coupling constant g > 0 that will dictate the strength of the interactions. (The

coupling constant g plays the same role as the charge e in Maxwell theory. As we will

later see, the phrase “coupling constant” is not particularly accurate because it will

turn out not to be constant!)
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For each element of the algebra, we introduce a gauge field AA

µ
with A = 1, . . . , dimG.

These are then packaged into the Lie algebra-valued gauge potential

Aµ = AA

µ
TA (1.80)

A down-to-earth perspective is to think of the TA as matrices in the fundamental

representation. This means, for example, that for G = SU(N), the gauge potential Aµ

is a 4-vector where each component is a traceless N ⇥N matrix.

The fields AA

µ
are collectively referred to as gauge bosons. (They have other, more

specific, names in the Standard Model when we apply these ideas to the two nuclear

forces.) As in Maxwell theory, not all the information in Aµ is physical and any two

field configurations related by a gauge transformation should be viewed as equivalent.

This time, however, the gauge transformation is a little more intricate.

The action of the gauge symmetry is associated to a Lie group valued function over

spacetime,

⌦(x) 2 G . (1.81)

The set of all such transformations is known as the gauge group. As in Maxwell theory,

we will sometimes be sloppy and refer to the Lie group G as the gauge group, but

strictly speaking it is the much bigger group of maps from spacetime into G. The

action on the gauge field is

Aµ ! ⌦Aµ⌦
�1 +

i

g
⌦ @µ⌦

�1 . (1.82)

The first term is the expected transformation for an adjoint-valued field. The second,

inhomogeneous, term is an additional piece that is characteristic of gauge transforma-

tions.

To make contact with gauge transformations in electromagnetism, suppose that we

have G = U(1) and write ⌦(x) = eie↵(x). Then, using the fact that everything com-

mutes, we have

⌦Aµ⌦
�1 +

i

e
⌦@µ⌦

�1 = Aµ + @µ↵ (1.83)

and the gauge transformation (1.82) reproduces the familiar gauge transformation of

Maxwell theory.

– 29 –



As in Maxwell theory, we can construct a field strength. Here too there is an extra

ingredient arising from the fact that Aµ is a matrix and the generalisation of (1.61) is

Fµ⌫ = @µA⌫ � @⌫Aµ � ig[Aµ, A⌫ ] . (1.84)

In contrast to Maxwell theory, the field strength includes a non-linear term, propor-

tional to the coupling g. This will prove to be important: it is this non-linear term that

makes Yang-Mills theory significantly richer and more interesting than Maxwell theory.

Like Aµ, the field strength is a Lie algebra-valued field and we could also expand it as

Fµ⌫ = FA

µ⌫
TA.

So far, I’ve not explained why (1.84) is the right field strength. The main reason is

that it transforms nicely under the gauge transformation (1.82)

Fµ⌫ ! ⌦Fµ⌫ ⌦
�1 . (1.85)

To see this, you could just plug (1.82) into (1.84) but it’s mildly laborious; we will o↵er

a shortcut to this result presently.

The transformation (1.85) means that, in contrast to electromagnetism, the Yang-

Mills “electric field” Ei = F0i and “magnetic field” Bi = �1

2
✏ijkFjk are not gauge

invariant. To construct something physical, you can multiply together some number of

Ei and Bj and then take the trace, which ensures that the ⌦ and ⌦�1 in (1.85) cancel

and you get something gauge invariant. (You need something that is at least quadratic

in Fµ⌫ because, for simple Lie groups, TrFµ⌫ = 0.)

The gauge transformations above involve the Lie group valued object ⌦(x). But one

of the key properties of Lie groups is that their structure is largely determined by the

elements that are infinitesimally close to the identity. This suggests that it’s fruitful to

look at gauge transformations that are everywhere close to the identity. These can be

written as

⌦(x) ⇡ 1 + ig↵A(x)TA + . . . (1.86)

where the ↵a are taken to be everywhere small. From (1.82), the infinitesimal trans-

formation of the gauge field is Aµ ! Aµ + �Aµ with

�Aµ = @µ↵� ig[Aµ,↵] (1.87)

where ↵ = ↵aT a is the Lie algebra-valued infinitesimal transformation. It’s convenient

to write this as �Aµ = Dµ↵ where the covariant derivative is defined to be

Dµ↵ = @µ↵� ig[Aµ,↵] . (1.88)

This is the covariant derivative acting on the Lie algebra-valued (i.e. adjoint) field ↵.

We’ll soon see di↵erent covariant derivatives acting on other representations.
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Now we can check how infinitesimal gauge transformations act on the field strength

(1.84). We have

�Fµ⌫ = @µ�A⌫ � @⌫�Aµ � ig[Aµ, �A⌫ ]� ig[�Aµ, A⌫ ]

= Dµ�A⌫ �D⌫�Aµ

= [Dµ,D⌫ ]↵ . (1.89)

We see that we’re left with the task of computing the commutator of two covariant

derivatives, acting on the adjoint field ↵. This is a worthwhile and straightforward,

calculation. We have

[Dµ,D⌫ ]↵ = �ig[Fµ⌫ ,↵] . (1.90)

This gives �Fµ⌫ = ig[↵, Fµ⌫ ] which is indeed the expected infinitesimal gauge transfor-

mation arising from (1.85).

The Yang-Mills Action

The dynamics of the Yang-Mills field is the obvious generalisation of the Maxwell action,

SYM = �1

2

Z
d4x TrF µ⌫Fµ⌫ . (1.91)

Naively, the only di↵erence lies in that overall trace, which ensures that the action

is invariant under gauge transformations (1.85). This also accounts for the overall

normalisation of the action, which comes with a factor of 1/2 rather than the 1/4 seen

in (1.63) because an additional factor of 1/2 comes from the trace in (1.78). This means

that the Yang-Mills and Maxwell action come with the same normalisation.

However, the key di↵erence between the two actions is buried in our notation: while

the Maxwell action is quadratic in Aµ, the Yang-Mills action includes terms that are

cubic and quartic in Aµ, both coming from the commutator in the definition of the

field strength (1.84).

The classical equations of motion are derived by minimizing the action with respect

to each gauge field Aa

µ
. It is a simple exercise to check that they are given by

DµF
µ⌫ = 0 . (1.92)

Here the covariant derivative is defined as in (1.88): DµF µ⌫ = @µF µ⌫ � ig[Aµ, F µ⌫ ].

These are the Yang-Mills equations. In contrast to the Maxwell equations, they are

non-linear. This means that the Yang-Mills fields interact with themselves.
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There is also a Bianchi identity that follows from the definition (1.84) of Fµ⌫ in terms

of the gauge field. This is best expressed by first introducing the dual field strength

?F µ⌫ =
1

2
✏µ⌫⇢�F⇢� . (1.93)

and noting that this obeys the identity

Dµ
?F µ⌫ = 0 . (1.94)

Both (1.92) and (1.94) are non-linear equations. However, the non-linearities come in

the form of commutators like [Aµ, A⌫ ]. This means that if we focus on field configu-

rations that sit purely with a subgroup U(1) ⇢ G, then the commutators vanish and

the equations reduce to those of Maxwell theory. So although the general solutions to

the Yang-Mills equations are surely complicated, we can always import any solution to

Maxwell theory and embed it in some U(1). In particular, Yang-Mills theory admits

solutions akin to electromagnetic waves that travel at the speed of light.

Although we can always embed solutions of Maxwell theory in the Yang-Mills field,

there’s nothing that tells us that these solutions are stable. For that, one has to work

harder and look at fluctuations of the other fields that do not live in your favourite

U(1). (For what it’s worth, a constant electric field is stable in Yang-Mills theory, while

a constant magnetic field is unstable.) We won’t discuss these stability issues further in

these lectures, largely because our interest lies in what happens in quantum Yang-Mills

rather than in the classical theory.

Just as for Maxwell theory, the need to keep gauge invariance means that we can’t

add a mass term like AµAµ or TrAµAµ to the action (1.91). This strongly suggests

that quantum Yang-Mills is, like Maxwell theory, a theory of massless particles. This

strong suggestion is, it turns out, completely wrong! When we quantise the Yang-Mills

action (1.91), we find a theory of interacting massive particles, rather than massless

particles. The reason for this can be traced to the interaction terms in Yang-Mills,

but is not fully understood. Indeed, proving it from first principles remains one of the

most important open problems in mathematical physics. We will discuss this further

in section 3.

Coupling to Matter

As with electromagnetism, we can couple the Yang-Mills field to matter. We do this

by requiring that the matter fields live in some representation R of the gauge group.

This means that the matter fields come in some vector of dimension dimR.
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For each such representation, we have generators TA(R) which we can can think of

as square matrices of dimension dimR. Dressed resplendent in all their indices, they

take the form

TA(R)a
b

with 0a, b = 1, . . . , dimR and A = 1 . . . , dimG . (1.95)

Consider a scalar field in the representation R. Under a gauge transformation ⌦(x) =

eig↵
A
(x)T

A
, the scalar transforms as

�a ! (⌦R)
a

b
�b with (⌦R)

a

b
=
⇣
exp

�
ig↵ATA(R)

�⌘a
b

. (1.96)

Some representations R are real, and some are complex. For example, the fundamen-

tal representation of SU(N) is complex, and so � must be a complex N -dimensional

vector. Meanwhile, the adjoint representation of any group G is always real and, cor-

respondingly, � can be real.

To write down an action for � that is invariant under the gauge transformation (1.96),

we follow our Maxwellian noses and construct the covariant derivative,

D�a = @µ�
a � igAA

µ
TA(R)a

b
�b . (1.97)

Under a gauge transformation, this covariant derivative transforms, as the name sug-

gests, covariantly, meaning

Dµ�
a ! (⌦R)

a

b
Dµ�

b . (1.98)

We will later see that all matter fields in the Standard Model transform in the fun-

damental representation. For SU(N), this means that we can think of �a as an N -

component complex vector, with a = 1, . . . , N , and write the covariant derivative in

terms of the N ⇥N matrix-valued gauge field Aµ = AA

µ
TA,

Dµ�
a = @µ�

a � ig(Aµ)
a

b
�b . (1.99)

This expression di↵ers from our previous covariant derivative (1.88) because � is in

the fundamental representation, while ↵ in (1.88) was in the adjoint. This highlights

something we’ve stressed previously: the meaning of the covariant derivative depends

on the representation of the object on which it acts. Once again, covariant derivatives

do not commute. This time, for covariant derivatives acting on fundamental fields, we

find

[Dµ,D⌫ ] = �igFµ⌫ . (1.100)

This should be compared to the analogous result (1.90) for covariant derivatives acting

on adjoint-valued fields.
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As before, it’s useful to check some of the formulae for infinitesimal gauge trans-

formations. We have �Aµ = Dµ↵, as in (1.87) and, from (1.96), �� = ig↵�. Then,

suppressing the a = 1, . . . , N index, the covariant derivative (1.99) transforms as

�(Dµ�) = @µ��� ig �Aµ�� igAµ ��

= ig@µ(↵�)� ig(Dµ↵)�+ g2Aµ↵�

= ig↵ (@µ�� igAµ�)

= ig↵Dµ�. (1.101)

This is, indeed, the infinitesimal version of the gauge transformation (1.98).

With covariant derivatives that transform nicely, it’s straightforward to write down

an action for the matter fields. As in electromagnetism, we just need to replace the

partial derivatives in the action with covariant derivatives and we have something gauge

invariant. This holds for scalars, Weyl fermions, and Dirac fermions.

A Rescaling

Above we’ve written the action so that the coupling constant g multiplies the non-

linear terms. This means, in particular, that it makes an appearance in the field

strength (1.84). It also appears, perhaps rather strangely, as the inverse 1/g in the

gauge transformation (1.82).

There is a di↵erent way to normalise the gauge field that, for many purposes, turns

out to be more natural. We define the new gauge field

Ãµ = gAµ and F̃µ⌫ = @µÃ⌫ � @⌫Ãµ � i[Ãµ, Ã⌫ ] . (1.102)

We also define the rescaled gauge parameter ↵̃ = g↵, so that the group element is

⌦ = ei↵̃. This then eliminates the gauge coupling from all kinematic quantities like the

field strength and covariant derivatives. The only place that the coupling shows up is

in an overall coe�cient multiplying the entire action,

SYM = �1

2

Z
d4x TrF µ⌫Fµ⌫ = � 1

2g2

Z
d4x Tr F̃ µ⌫F̃µ⌫ (1.103)

In the first way of writing things, the coupling constant g sits in front of the non-linear

terms, making it clear that it governs the strength of interactions. But it also governs

the strength of interactions in the second way of writing things. To see this, note that

in the Euclidean path integral, we sum over all field configurations weighted by e�S/~.

With the rescaling above, g2 sits in the same place in the action as ~, which suggests
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that g2 ! 0 will be a classical limit. Heuristically you should think that, for g2 small,

we pay a large price for field configurations that do not minimize the action; in this

way, the path integral is dominated by the classical configurations. In contrast, when

g2 ! 1, the Yang-Mills action disappears completely. This is the strong coupling

regime, where all field configurations are unsuppressed and contribute equally to the

path integral.

The Analogy with General Relativity

General Relativity is rightly lauded for the way it places geometry into the heart of

physics. But the other laws of physics, which combine to form the Standard Model, are

no less geometrical. Rather than arising from the geometry of spacetime, they instead

arise from a slightly more subtle object known as a fibre bundle.

We won’t describe the mathematics of fibre bundles in any detail in these lectures,

but will instead just point out some analogies between the gauge theories discussed

above and the di↵erential geometry that underlies general relativity.

One of the key ideas in general relativity is di↵eomorphism invariance. This is

the statement that physical quantities should not depend on the coordinates that we

choose to describe them. Such coordinate transformations are analogous to gauge

transformations in Yang-Mills theory.

One of the most important objects in general relativity is the Levi-Civita connection

�µ

⇢⌫
. Famously, this is not a tensor. Under a coordinate transformation x ! x̃, with

⌦µ

⌫
=
@xµ

@x̃⌫
, (1.104)

the Levi-Civita connection transforms as

�µ

⇢⌫
! (⌦�1)µ

⌧
⌦�

⇢
⌦�

⌫
�⌧

��
+ (⌦�1)⌦�

⇢
@�⌦

⌧

⌫
. (1.105)

The first term is how a tensor would transform. The second term is independent of �

and is the characteristic transformation of a connection. But this looks very similar to

the transformation of the gauge field (1.82),

Aµ ! ⌦Aµ⌦
�1 +

i

g
⌦ @µ⌦

�1 (1.106)

where, again, there is a transformation that befits a tensor, supplemented with the

additional derivative term @⌦. Indeed, this analogy can be made more precise, and

mathematicians refer to the gauge field Aµ as a connection. Both connections find
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their natural home inside covariant derivatives. In gauge theory, this is the Dµ that

we’ve already met, while in general relativity it is the object that acts naturally on

vector fields Y , with (r⌫Y )µ = @⌫Y µ + �µ

⌫⇢
Y ⇢ and is then extended to act on other

tensor fields.

Given a Levi-Civita connection, one can construct the Riemann curvature tensor

R�

⇢µ⌫
. Rearranging some of the indices this can be written as

(Rµ⌫)
�

⇢
= @µ�

�

⌫⇢
� @⌫�

�

µ⇢
+ ��

⌫⇢
��

µ�
� ��

µ⇢
��

⌫�
. (1.107)

Again, we see an immediate similarity with the construction of the field strength in

Yang-Mills (1.84) which, including the a, b = 1, . . . , dimF indices, reads

(Fµ⌫)
a

b
= @µ(A⌫)

a

b
� @⌫(Aµ)

a

b
� ig(Aµ)

a

c
(A⌫)

c

b
+ ig(A⌫)

a

c
(Aµ)

c

b
. (1.108)

Mathematicians refer to both the Riemann tensor and the field strength Fµ⌫ as the

curvature.

1.4 C,P, and T

Discrete symmetries play a crucial role in understanding the structure of the Standard

Model. There are three that are particularly important: parity, charge conjugation, and

time reversal. In this section, we describe each of these in turn. We end by explaining

why the combination of all three is necessarily a symmetry of any local, relativistic

quantum field theory.

1.4.1 Parity

Parity is an inversion of the spatial coordinates,

P : (t,x) 7! (t,�x) . (1.109)

This can be viewed as a Lorentz transformation, but not one that is continuously

connected to the identity. Roughly speaking the action of parity mimics what a system

looks like reflected in the mirror. More precisely, a reflection is implemented by, say,

R : (x, y, z) 7! (x, y,�z). The parity transformation (1.109), which is a reflection

followed by a rotation by 180�, has the advantage that it treats all spatial coordinates

on the same footing.
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(As an aside: one disadvantage of the parity transformation P : x 7! �x is that it

only works when the number of spatial dimensions is odd. For example, in d = 2 + 1

dimensions, the transformation (x, y) 7! (�x,�y) is just a rotation by 180�. For this

reason, if you’re discussing quantum field theories in di↵erent dimensions, it’s better to

talk about reflections which flip the sign of just one spatial direction, rather than parity

which flips all of them. In these lectures, we’ve got no interest in dimension hopping:

our interest is strictly in the Standard Model and so we keep with the conventional

definition of parity (1.109).)

We would like to understand the circumstances under which a quantum field theory

is invariant under parity, and how the fields transform. When we come to discuss the

weak force in Section 5, we will find that the laws of our universe are not invariant

under parity. This is a shocking statement. It means that given a solution to the

equations of motion, the parity reflected evolution is not a solution!

First, let’s ask how electromagnetic fields transform under parity. For this, we can

look at the covariant derivative which, regardless of the object it acts on, takes the

schematic form

Dµ = @µ � iAµ . (1.110)

This ties the behaviour of the gauge field to that of the derivative. Under a parity

transformation @0 is left una↵ected, while the spatial derivatives @i change sign. This

tells us that parity must act as

P : A0(t,x) 7! +A0(t,�x) and P : Ai(t,x) 7! �Ai(t,�x) . (1.111)

Tracing this through to the definitions of the electric field E = �r� � @A/@t and

magnetic field B = r⇥A, we have

P : E(t,x) 7! �E(t,�x) and P : B(t,x) 7! +B(t,�x) . (1.112)

Vectors like E, which transform under parity in the same way as x are deemed worthy

to keep the name “vector”. Meanwhile, vectors like B which don’t pick up a minus sign

under parity are said to be pseudovectors. The most familiar examples of pseudovectors

are the magnetic field and angular momentum L = x⇥p. These are also the two kinds

of vectors that exhibit the most counterintuitive behaviour when we’re undergraduates.

This is not a coincidence.
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In the quantum theory, the parity transformation is enacted by a unitary operator

on the Hilbert space that we also call P . The fields Aµ(x) are now also operators and

the transformation (1.111) becomes

PA0(t,x)P
† = A0(t,�x) and PAi(t,x)P

† = �Ai(t,�x) . (1.113)

In what follows, we will flit between the description of parity and other discrete sym-

metries as a map, as in (1.111), and as an operator acting on Hilbert space, as in

(1.113).

Next, we turn to spinors. It can be somewhat fiddly to figure out how spinors

transform under various discrete symmetries, but it’s a topic that will play a crucial

role as we proceed. The equations of motion for a left-handed massless Weyl spinor  L

is

�̄µ@µ L = 0 (1.114)

where �̄ = (1,��i). Under a parity transformation, the spatial derivative changes sign

and the Weyl equation (1.114) is not invariant. This is important: if we have just a

single left-handed Weyl spinor  L then this theory is not invariant under parity.

We can rescue the situation if, in addition to our left-handed Weyl spinor  L, we

also have a right-handed Weyl spinor  R. This obeys the equation of motion

�µ@µ R = 0 (1.115)

where �µ = (1, �i). The di↵erent minus signs in �µ and �̄µ mean that we can compen-

sate for a parity transformation if we also exchange left- and right-handed spinors, so

that

P L(t,x)P
† =  R(t,�x) and P R(t,x)P

† =  L(t,�x) . (1.116)

There are also options to put di↵erent minus signs (and even phases) on the right-hand

side as we describe below.

As we’ve seen in Section 1.2.1, the two spinors  L and  R naturally sit in a Dirac

spinor  = ( L, R)T . The action of parity on Weyl spinors (1.116) translates into the

action on the Dirac spinor

P (t,x)P † = �0 (t,�x) with �0 =

 
0 1

1 0

!
. (1.117)
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In the lectures on Quantum Field Theory, we saw that a stationary fermion is associated

to a solution to the Dirac equation, where the spinor degrees of freedom take the form

 = (⇠, ⇠)T . Here ⇠ is some 2-component spinor the tells us the orientation of the

spin of the particle. Meanwhile, the solution corresponding to an anti-fermion takes

the form  = (⇠,�⇠)T . This means that the fermion has intrinsic parity +1 while the

anti-fermion has intrinsic parity �1.

Terms in the action are always constructed out of an even number of fermions. Given

the transformation (1.117), we can look at the fate of various fermion bilinears under

parity. You can check, for example, that

P :  ̄ 7!  ̄ and P :  ̄�5 7! � ̄�5 (1.118)

where we’ve suppressed the all-important spinor indices. We say that  ̄ transforms as

a scalar while  ̄�5 transforms as a pseudoscalar. Similarly, you can check that  ̄�µ 

is a vector while  ̄�5�µ is a pseudovector.

You shouldn’t be too dogmatic about insisting that (1.116) and (1.117) are the

definitive action of parity. Suppose that you have a Dirac fermion with action

S =

Z
d4x

⇣
i ̄�µ@µ �M  ̄ 

⌘
. (1.119)

Then this is invariant under parity with the transformation (1.117). Suppose, in con-

trast, that you’re given the action

S =

Z
d4x

⇣
i ̄�µ@µ �M  ̄�5 

⌘
. (1.120)

This is not invariant under (1.117) because the mass term is parity odd. Nonetheless,

that doesn’t mean that the theory doesn’t have parity symmetry. We just need to look

more carefully. You can check that the action (1.120) is invariant under the redefined

parity transformation

P 0 (t,x)P 0 �1 = �5�0 (t,�x) . (1.121)

In terms of Weyl fermions, this inserts an extra minus sign on the right-hand side of

one of the transformations in (1.116). Ultimately, given a theory the aim is to find

some parity transformation of the fields that leaves the action, and hence the equation

of motion, invariant.
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So far, we haven’t discussed the action of parity on scalar fields. These are more

malleable. Given a scalar field �, the kinetic terms are invariant under either

P�(t,x)P † = ±�(t,�x) . (1.122)

In other words, the kinetic terms don’t distinguish between scalar (the plus sign) or

pseudoscalar (the minus sign). Typically, this gets fixed when we look at the interaction

of the scalar field with fermions. For example, a Yukawa term of the form � ̄ means

that the scalar � is parity even under the transformation (1.117) while a Yukawa term

of the form � ̄�5 means that � is parity odd under (1.117).

There are various pay-o↵s from understanding the way that parity is implemented

in a theory. If a theory is invariant under parity then, as we’ve seen, we can assign

transformation laws to the various fields. But, after quantisation, these fields give rise

to particles. That means that di↵erent species of particles can be thought of as parity

even or parity odd. Moreover, this concept of parity is conserved in all interactions and,

like all conservation laws, this puts constraints on the kind of things that can happen.

Perhaps surprisingly, it turns out that things are even more constrained when parity

is not a symmetry of the theory! This is for a much more subtle reason known as an

anomaly. We will discuss this in Section 4.

1.4.2 Charge Conjugation

Charge conjugation is an operation that switches particles with their anti-particles. If

a theory is invariant under charge conjugation, then the laws of physics that govern

particles coincide with those that govern anti-particles.

This time we start with a complex scalar field �, coupled to electromagnetism. It will

prove simplest to look at actions, rather than equations of motion. Charge conjugation

exchanges particles and anti-particles, so we want it to act as

C : � 7! ±�† . (1.123)

The ± ambiguity is like the ambiguity in the action of parity (1.122) and, as in that

case, will typically be fixed by the interactions with other fields. In contrast, there’s

no ambiguity about the action on the gauge field, which is fixed by looking at the

covariant derivatives, Dµ� = (@µ� ieAµ)� and Dµ�† = (@µ+ ieAµ)�†. This means that

any transformation (1.123) must be accompanied by

C : Aµ 7! �Aµ . (1.124)
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As for parity, we can also think of charge conjugation as a quantum operator C, in which

case (1.123) and (1.124) are replaced by C�C† = ±�† and CAµC† = �Aµ respectively.

For non-Abelian gauge fields, charge conjugation acts as CAµC† = �A†
µ
.

Again, the story for spinors is a little more fiddly. We’ll start by looking at a Dirac

spinor, rather than a Weyl spinor. The Dirac equation is

i�µ(@µ � ieAµ) �M = 0 . (1.125)

We will look for an action of charge conjugation that transforms the spinor to

C :  7! C ? . (1.126)

Here C on the right-hand side is a 4 ⇥ 4 matrix that allows for the possibility that

the components of the spinor get mixed up under charge conjugation. Note that we’ve

written the transformed spinor as  ?, rather than  †, to emphasise that it remains a

“column vector” rather than a “row vector”. (Of course, it’s not really a vector at all.

It’s a spinor!)

The question is: what choice of C ensures that the transformation (1.126), combined

with (1.124), is a symmetry? First, we take the complex conjugate of the equation of

motion (1.125):

�i(�µ)?(@µ + ieAµ) 
? �M ? = 0 . (1.127)

This is the equation that  ? obeys. Next, we compare this to what we get if we act

with charge conjugation on the original equation (1.125):

i�µ(@µ + ieAµ)C 
? �MC ? = 0

=) iC�1�µC(@µ + ieAµ) 
? �M ? = 0 . (1.128)

We see that (1.128) coincides with (1.127) provided that the charge conjugation matrix

C obeys

C�1�µC = �(�µ)? . (1.129)

The charge conjugation matrix depends on your chosen basis of gamma matrices. For

the chiral basis of gamma matrices (1.42), all gamma matrices are real except for �2

which is pure imaginary. This means that we should take C = ±i�2, and the action of

charge conjugation is

C :  7! ±i�2 ? with �2 =

 
0 �2

��2 0

!
. (1.130)
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For theories that are invariant under charge conjugation, we can assign an eigenvalue

C = ±1 to each particle, usually referred to as C-parity. As with actual parity, P ,

this new quantum number restricts the possible interactions. For example, it turns out

that the neutral pion ⇡0 has C = +1 while, from (1.124), the photon necessarily has

C = �1. This means that the decay to two photons, ⇡0 �! � + �, is allowed (and

indeed, happens over 98% of the time). But the decay to three photons, ⇡0 �! �+�+�

is forbidden on symmetry grounds.

If we decompose the Dirac fermion into its two Weyl components,  = ( L, R)T ,

then we can read o↵ from (1.130) the action of charge conjugation on Weyl spinors,

C :  L 7! ±i�2 ?

R
and C :  R 7! ⌥i�2 ?

L
. (1.131)

We see that charge conjugation, like parity, involves an exchange of two Weyl spinors.

A theory with just a single Weyl fermion is invariant under neither parity nor charge

conjugation. However, there’s still hope if we combine the two symmetries. We can

take the combined action from (1.116) and (1.131) to be

CP :  L(t,x) 7! ⌥i�2 ?

L
(t,�x) and CP :  R(t,x) 7! ±i�2 ?

R
. (1.132)

A Weyl fermion coupled to a gauge field is invariant under CP. However, as we will see

later, it’s quite possible for this symmetry to be violated by other interaction terms

(for example, Yukawa interactions between fermions and scalars).

1.4.3 Time Reversal

Our final discrete symmetry is time reversal, which acts on spacetime coordinates as

T : (t,x) 7! (�t,x) . (1.133)

There’s a subtlety in implementing time reversal symmetry in quantum theories. This

manifests itself already in the simplest quantum mechanical systems like, say, a free

particle moving in R3. The Schrödinger equation for the wavefunction  takes the form

i
@ 

@t
= �r2 . (1.134)

Now compare this to the heat equation that describes how conserved quantities, such

as temperature T , di↵use in a system

@T

@t
= r2T . (1.135)
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The heat equation most certainly isn’t time reversal invariant since the left-hand side

picks up a minus sign, while the right-hand side does not. That’s to be expected: after

all, di↵usion is a process that increases entropy and there’s a clear arrow of time as

things spread out. In contrast, there’s no increase in entropy for a single quantum

particle and we do expect the physics to be invariant under time reversal. Yet the

Schrödinger equation is almost identical to the heat equation in structure. How can

one be time reversal invariant, and the other not?

Almost identical, but not quite. The key is that factor of i in the Schrödinger

equation that is not there in the heat equation. Suppose that  (t) is a solution to

the Schrödinger equation. Then  (�t) is not a solution but the factor of i means that

 ?(�t) is. That’s the clue that we need: time reversal in quantum mechanics acts as

T :  (t) 7!  ?(�t) . (1.136)

Viewed as an operator acting on the Hilbert space, this complex conjugation translates

into the requirement that T is an anti-unitary operator, rather than the more familiar

unitary operator. This means that, acting on states, we have

T (↵| 1i+ �| 2i) = ↵?T | 1i+ �?T | 2i . (1.137)

In addition, the operator obeys

hT 1|T 2i = h 1| 2i? . (1.138)

See the lectures on Topics in Quantum Mechanics for more discussion of the action of

the time reversal in quantum mechanics.

This anti-linear behaviour changes some of the transformation properties of fields.

For example, you might naively think, following (1.111), that A0 would be odd under

time reversal and Ai even. But, in fact, it’s the opposite way around because there’s

an additional factor of i in the covariant derivative Dµ = @µ � ieAµ and that gets

conjugated. It means that the action of time reversal on the gauge field is

T : A0(t,x) 7! +A0(�t,x) and T : Ai(t,x) 7! �Ai(�t,x) . (1.139)

Tracing this through to the electric field E = �rA0 � @A/@t and magnetic field

B = r⇥B, we have

T : E(t,x) 7! +E(�t,x) and T : B(t,x) 7! �B(�t,x) . (1.140)

This makes sense: it’s the same transformation that we get from the Lorentz force law

mẍ = q(E+ ẋ⇥B).
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What about fermions? Once again, the action of time reversal can mix the di↵erent

components of a Dirac spinor. As we now show, it turns out that (for our chiral basis

of gamma matrices (1.42)) the correct transformation is

T :  (t,x) 7! ⇥ (�t,x) where ⇥ = �1�3. (1.141)

As for other transformations, we could also include a minus sign on the right-hand side.

To see (1.141) is indeed a symmetry, consider the action of time reversal on the Dirac

equation (1.125). Remembering that time reversal also acts by complex conjugation

(so, for example, changes �µ to (�µ)?), we have

�i
�
� (�0)?D0 + (�i)?Di

�
⇥ �M⇥ = 0

=) i⇥�1
�
(�0)?D0 � (�i)?Di

�
⇥ �M = 0. (1.142)

This gives us back the original Dirac equation if the matrix ⇥ obeys

⇥�1(�0)?⇥ = �0 and ⇥�1(�i)?⇥ = ��i . (1.143)

It’s simple to check that, for the chiral basis of gamma matrices (1.42), ⇥ = �1�3

does the job. We can also translate this to the action on the component Weyl spinors

 = ( L, R)T ,

T :  L(t,�x) 7! �i�2 L(�t,x) and T :  R(t,x) 7! �i�2 R(�t,x) . (1.144)

We see that time reversal, like CP, does not mix the left- and right-handed Weyl spinors.

What would it mean for a quantum field theory to break time-reversal invariance?

It sounds rather cool. In practice, however, a breaking of time reversal manifests itself

in rather mundane ways. One simple example is the presence of an electric dipole

moment for particles. Recall from the lectures on Electromagnetism that an electric

dipole moment arises from two, equal and opposite, closely separated charges and gives

rise to an electric field that drops o↵ as 1/r3.

The dipole moment points in a particular direction. For an elementary particle,

this direction must align with the spin otherwise the particle would pick a preferred

direction in space and so break Lorentz invariance. But the spin and dipole moment

transform di↵erently under both parity and time-reversal. To see this, recall that spin

S is a form of angular momentum L = mx ⇥ ẋ, which is even under parity and odd

under time reversal. Hence, we have

P : S 7! S and T : S 7! �S

P : E 7! �E and T : E 7! E . (1.145)
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This means that discovery of a dipole moment for a fundamental particle would imply

that the laws of physics break both parity and time reversal invariance. The search

for the electric dipole moment of the neutron remains one of the most direct ways to

test for time-reversal breaking in the strong nuclear force. So far, no such breaking has

been found. (We discuss this further in Section 3.4.) As we will see later, the weak

force does break both parity P and, to a lesser extent, time reversal T . This results in

a theoretical prediction for the electric dipole moment of the electron, albeit one that

is far below current experimental bounds.

1.4.4 CPT

There are theories that are invariant under our three discrete symmetries, C, P and

T , and other theories that break them. As we will see, the Standard Model is in the

latter class and all three symmetries are broken.

However, there is a theorem that says that all relativistic quantum field theories

must necessarily be invariant under the combined action of CPT . In other words, if

you look at anti-particles in the mirror, with their motion reversed, then you will have

a symmetry on your hands.

One somewhat workaday proof of the CPT theorem is to simply write down all

possible Lorentz invariant terms and check that they are indeed invariant under CPT.

As we’ve seen, the most subtle transformations are those of spinors. For example,

combining our previous results (1.117), (1.126) and (1.141), we find that a Dirac spinor

is transformed by the anti-unitary operation

CPT :  (x) 7! ��5 ?(�x) with �5 =

 
1 0

0 �1

!
. (1.146)

You can check that all fermion bilinears are invariant under this transformation. For

example,

 ̄ =  †�0 7!  T�5�0�5 ? = � T�0 ? =  ̄ (1.147)

where, in the final equality, we reordered the fermions and picked up a minus sign for

our troubles due to their Grassmann nature. The pseudoscalar  ̄�5 is also invariant

by a similar argument, while both  ̄�µ and  ̄�µ�5 transform as vectors, rather than

pseudovectors (meaning that they pick up minus signs) which ensures that any kinetic

term we write down is invariant. (For this, you will need to use the fact that �T
1
= ��1

and �T
3
= ��3 while �T

0
= �0 and �T

2
= �2.)

– 45 –



A slightly more elegant, but not entirely convincing, demonstration of CPT follows

from Wick rotating to Euclidean space. Here we sketch the basic idea. The full Lorentz

group in Minkowski space is really O(1, 3) and contains four disconnected components,

with the actions of parity and time reversal taking us from one component to the other.

In contrast, in Euclidean space the group becomes O(4) and this contains only two

disconnected components. If you follow the Lorentzian CPT under a Wick rotation,

it becomes simply a rotation in SO(4), i.e. a transformation that is connected to the

identity. (The need to include C here is roughly because particles are like anti-particles

travelling backwards in time.) This means that if your Euclidean theory is to have

SO(4) rotational invariance, then your Lorentzian theory must enjoy CPT .

The statement that CPT is a symmetry of all relativistic quantum field theories is

eminently falsifiable. Here’s an example from neutrino physics. We will learn later that

neutrinos oscillate from one flavour to another as they travel through space. So, for

example, a muon neutrino ⌫µ will have some probability to convert into an electron

neutrino ⌫e, a process that we write as

⌫µ �! ⌫e . (1.148)

We could also consider the CP conjugate process, namely

⌫̄µ �! ⌫̄e . (1.149)

There is no reason for the amplitudes for these two processes to be equal if CP is

broken. However, there is also the time reversed process of (1.148)

⌫e �! ⌫µ . (1.150)

This too may have a di↵erent amplitude to (1.148) if time reversal is broken. However,

CPT tells us that the amplitude for (1.149) and the amplitude for (1.150) are necessarily

equal. Indeed, all experimental tests so far have failed to find any violation of CPT.
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