
2 Broken Symmetries

Global symmetries have two important roles to play in physics. First, they lead to

conservation laws through Noether’s theorem. Second, if the symmetry is non-Abelian

then it leads to a degeneracy in the spectrum, as the states of the theory necessarily

furnish a representation of the symmetry. This is familiar from the quantum treatment

of the hydrogen atom where states sit in multiplets of the SO(3) rotation group of

dimension 2l + 1 where l is the angular momentum.

But there are other ways in which symmetries can a↵ect the dynamics of a theory.

And this happens when symmetries are “broken”.

There are actually two di↵erent meanings to the phrase “broken symmetry”, both

of which arise in the context of the Standard Model. The first, sometimes called

explicit breaking, is when there are terms in the action that are not invariant under the

symmetry. Strictly speaking, this is the same as not having a symmetry at all. But

the symmetry can still be a useful fiction if the terms that break it are, in some sense,

small so that we have an approximate symmetry. In this case, it might be that some

quantity is almost conserved, meaning that violations of the conservation law happen

rarely. Or it could be that the degenerate multiplets that arose when the symmetry

was exact are split by some small amount. This happens, for example, if we place the

hydrogen atom in a magnetic field so that the rotation symmetry is broken. Then the

2l+1 states which were previously all degenerate get slightly split by the Zeeman e↵ect.

In the Standard Model, we will see several examples of approximate symmetries,

including isospin and its extension to an SU(3) flavour symmetry known as the eightfold

way, as well as chiral symmetry. Both of these will be explained in section 3.

The second meaning of the term “broken symmetry” refers to a more subtle and,

ultimately, more powerful phenomenon. This arises when the theory is invariant under

a symmetry, but the ground state is not. This situation is referred to as spontaneous

symmetry breaking. The purpose of this section is to explain when this happens and

what the consequences are.

Spontaneous symmetry breaking is one of those lovely ideas that crosses into many

di↵erent areas of physics. It was one of the major themes of the lectures on Statistical

Field Theory where it underlies Landau’s theory of phase transitions. It also arises

in many places in condensed matter physics, from magnets to superconductors. For

example, sound waves in a solid can be viewed as the consequence of spontaneous
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breaking of translation symmetry by the underlying lattice. Spontaneous symmetry

breaking also occurs in at least two di↵erent contexts in the Standard Model.

2.1 Discrete Symmetries

The idea of spontaneous symmetry breaking is not something new: it appears in some

simple classical mechanics systems.

Consider a real, classical degree of freedom �(t) with action given by

S =

Z
dt

✓
1

2
�̇2 � V (�)

◆
with V (�) =

m2

2
�2 +

�

4
�4 . (2.1)

In Newtonian mechanics, we would think of �(t) as the position of a particle and usually

denote it as x(t). We’re going to avoid calling the degree of freedom x because we’ll

soon make the leap to field theory where x becomes an argument of the field, �(x, t).

But you should feel free to think of �(t) as the position of a particle.

The potential (2.1) enjoys a discrete Z2 symmetry under which

Z2 : � 7! �� . (2.2)

In classical mechanics, where � is the position of the particle, this symmetry is called

“parity” but we’ll avoid this name because, again, in the context of field theory parity

acts di↵erently (as we saw in Section 1.4).

We will assume that � > 0. In that case, the issue of spontaneous symmetry breaking

is all about the sign of the first term in the potential. When m2 > 0, the potential

has a minimum at � = 0. This is the one point that is invariant under the symmetry

� 7! �� and we say that the symmetry is unbroken.

In contrast, if m2 < 0 then the �2 term in

(2.1) comes with a negative coe�cient and the

point � = 0 is now a local maximum rather

than a minimum, as shown in the figure. This

is the double well potential. The minimum lies

at

� = ±v ⌘ ±
r

�m2

�
. (2.3)

We see that two related things occur. First, there is not a unique ground state: there

are two. Second, neither ground state is invariant under the Z2 symmetry (2.2). In-

stead, the symmetry exchanges the two ground states. This is our first, admittedly
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somewhat trivial, example of spontaneous symmetry breaking. But there is an impor-

tant lesson that will carry over to more complicated situations: if a discrete symmetry

is spontaneously broken, then the theory has multiple, ground states with a potential

barrier between them. Acting with the symmetry then transforms us among the ground

states.

Suppose that you sit in one of the two ground states, and look only at small oscilla-

tions about the minimum. What do you see? We write the potential (2.1) as

V (�) =
�

4
(�2 � v2)2 + constant . (2.4)

We take ourselves to sit near the ground state � = +v and expand

�(t) = v + �(t) . (2.5)

We can then substitute this back into the potential (2.4) to get

V (�) =
�

4
(2v� + �2)2 = �

✓
v2�2 + v�3 +

�4

4

◆
+ constant . (2.6)

We see that, while the full potential V (�) has the Z2 symmetry, if you’re trapped near

one of the minima then you know nothing about it. The action for small oscillations

includes the �3 term and most certainly isn’t invariant under � 7! ��. This is the

sense in which the Z2 symmetry is hidden, or broken, about any given ground state.

The consequence of the symmetry, when broken, is only to generate multiple ground

states.

2.1.1 Quantum Tunnelling

The discussion above is straightforward enough and holds for classical particle me-

chanics. But quantum mechanics brings an extra twist. This is because there is no

spontaneous symmetry breaking in quantum mechanics! The ground state is always

invariant under the Z2 symmetry. In fact, all energy eigenstates are invariant under

the Z2 symmetry.

You might be tempted to construct a ground state that is localised near one or other

of the minima, say a wavefunction of the form

 left(�) ⇡ exp

 
�
p
�v

2
(�+ v)2

!
or  right(�) ⇡ exp

 
�
p
�v

2
(�� v)2

!
. (2.7)

But neither of these are eigenstates of the Z2 symmetry, and neither are eigenstates

of the Hamiltonian. Indeed, if you were to place the system in, say,  left(�) then the

wavefunction will leak through the barrier in a process known as quantum tunnelling.
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Figure 2. On the left: the ground state of the double well potential. On the right: the first

excited state.

Instead, the true ground state wavefunction takes the approximate form

 ground(�) ⇡  left(�) +  right(�) . (2.8)

The ground state has no zeros other than at � ! ±1. Meanwhile, the first excited

state is

 excited(�) ⇡  left(�)�  right(�) . (2.9)

This has a single node, meaning that it crosses the axis once. The nth excited state has

n nodes. (See the lectures on Quantum Mechanics for more discussion of these facts.)

The ground state and first excited state are shown in Figure 2.

There is another way to see tunnelling that will prove useful when we turn to quantum

field theory shortly. We want to compute the amplitude for a particle to start in one

minimum, say � = �v, and end up at the other minimum � = +v. We can do this

using the path integral. After Wick rotating to work with imaginary time ⌧ = it, we

have

h+v|e�H⌧ |�vi =
Z

D� e�SE [�] . (2.10)

Here SE[�] is the “Euclidean action”, meaning that is di↵ers from (2.1) by a minus

sign.

SE[�] =

Z
d⌧

✓
1

2
�̇2 + V (�)

◆
. (2.11)
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To compute the amplitude (2.10), we should

evaluate the path integral on paths that start

in the left-hand vacuum and end up at the

right-hand vacuum. We can get some intu-

ition for this by noting that the Euclidean ac-

tion (2.11) simply flips the sign of the potential

term, so if we wished to view it as a classical

mechanics system then it describes a particle rolling in the inverted potential �V (�).

We’re then looking for paths that start perched on the left-hand peak, roll down to the

minimum, and then rise again to end on the right-hand peak, as shown in the figure.

The path integral instructs us to integrate over all such paths. But, in the saddle

point approximation, we expect the dominant contribution to come from paths that

obey the classical equation of motion,

�̈ = ��(�2 � v2) . (2.12)

This equation has a rather nice analytic solu-

tion that does what we want, namely

�cl(⌧) = v tanh

 r
�v2

2
⌧

!
. (2.13)

The profile is shown in the figure to the right.

It interpolates from � = �v to � = +v, with

the interesting stu↵ happening over a time pe-

riod �⌧ ⇠ 1/
p
�v2 ⇠ 1/|m|. We can evaluate the Euclidean action (2.11) on this

solution to get

Scl =

Z
+1

�1
d⌧

✓
1

2
�̇2

cl
+ �(�2

cl
� v2)2

◆

=
�v4

2

Z
+1

�1
d⌧

1

cosh4(
p
�v2/2⌧)

=
2

3

p
2�v3 . (2.14)

This can be viewed as a measure of how di�cult it is to tunnel under the barrier. As

the barrier gets bigger (so � increases) or the minima get further apart (so v2 increases),

the classical action Scl also increases. This then gives our first guess at the amplitude

to tunnel from one minimum to the other,

lim
⌧!1

h+v|e�H⌧ |�vi = Ke�Scl . (2.15)
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Here K is some overall constant that masks all manner of sins that we’ve swept under

the rug. In fact, to do this calculation correctly, we should really be summing over

trajectories that bounce back and forth many times. One then finds, in the limit of

large T , that you have just as much chance of being in the vacuum � = �v as you do of

being in the vacuum +v. This is the statement that there is no spontaneous symmetry

breaking in quantum mechanics. Moreover, you find that the energy di↵erence between

the ground state and first excited state is given by

Eexcited � Eground ⇡
p
�v2e�Scl . (2.16)

The splitting of the two states is exponentially suppressed.

With these ideas in mind, we can now return to what we really care about: quantum

field theory.

2.1.2 Discrete Symmetry Breaking in Quantum Field Theory

We now extend our double well discussion to field theory. Now �(x) is a function of

spacetime. The action (2.1) is replaced by

S =

Z
d4x

✓
1

2
@µ� @

µ�� V (�)

◆
with V (�) =

m2

2
�2 +

�

4
�4 . (2.17)

Again, we have a Z2 symmetry � 7! �� and, when m2 < 0, we have a double well

potential with two minima at � = ±v = ±
p

�m2/�. We want to ask: is this symmetry

spontaneously broken or not?

Quantum field theory is an extension of quantum mechanics (the clue is in the name)

so we might think that tunnelling would again mean that there is no spontaneous sym-

metry breaking. But that’s not the way things work. This is one situation where field

theory di↵ers from quantum mechanics and our classical intuition is better. The quan-

tum field theory really does have two ground states, in which the vacuum expectation

value of the field is given by

h�i = ±v . (2.18)

To see why quantum field theory is di↵erent from common or garden quantum me-

chanics, we can return to the tunnelling calculation that we saw above. We can again

compute the amplitude to go from one putative ground state to another,

h+v|e�H⌧ |�vi =
Z

D� e�SE [�] . (2.19)
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The Euclidean action SE[�] is now

SE[�] =

Z
d⌧d3x

✓
1

2
@µ� @

µ�+ V (�)

◆
. (2.20)

In the saddle point approximation, the amplitude is dominated by the classical solutions

which obey

@2� = ��(�2 � v2) . (2.21)

This is the same as (2.12), but with the �̈ term replaced by the Laplacian on (Euclidean)

spacetime, @2 = @2
⌧
+r2. We still have the same solution as before,

�cl(⌧) = v tanh

 r
�v2

2
⌧

!
. (2.22)

The field varies in (Euclidean) time ⌧ but is constant in space. So far, everything runs

in parallel to the quantum mechanics argument. But now we compute the classical

action of this solution. It is

S =

Z
d⌧d3x

✓
1

2
@µ�cl @

µ�cl + V (�cl)

◆
= VScl . (2.23)

Here Scl is the quantum mechanical action (2.14) while V is the volume of space. But, if

we’re working in uncompactified Minkowski space then V = 1. This means that both

the tunnelling amplitude (2.15) and the energy splitting of the ground states (2.16) are

proportional to

e�VScl ! 0 as V ! 1 . (2.24)

It’s obvious what’s going on here. In quantum field theory, the ground state of the

field in one minimum is, say, �(x) = +v for all x. If you want to tunnel to the other

minimum, �(x) = �v, then you have to shift the value of the field at every point in

space. But that takes e↵ort and quantum tunnelling is not up to the task. It costs an

infinite amount of action and so does not occur.

This means that while discrete symmetries cannot be spontaneously broken in quan-

tum mechanics, they can be broken in quantum field theory. The suppression is by the

volume factor, so if we’re working with quantum field theory on some compact space,

rather than infinite volume Minkowski space, then tunnelling reappears. However, if

the space is macroscopically large then the suppression factor e�V Scl may be so tiny

that, for all intents and purposes, we can think of the symmetry as broken.
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The upshot of this argument is that the quantum field theory (2.17) in d = 3 + 1

dimensions (and, indeed, in any dimension greater than d = 0 + 1) has two ground

states, |+vi and |�vi, distinguished by the expectation value of �(x) which acts as an

order parameter to tell us which vacuum we live in,

h±v|�(x)| ± vi = ±v and h±v|�(y)|⌥ vi = 0. (2.25)

This is a story that generalises to other discrete symmetries. For example, if you find

yourself with a quantum field theory with ZN symmetry which is spontaneously broken,

then you will have N ground states that will be permuted into each other by the action

of the symmetry.

The Meaning of a Tachyon

Tachyons are mythological beasts in physics. When we first learn special relativity,

certain unscrupulous teachers may tell you that a tachyon is a particle with m2 < 0

which is forced forever to travel faster than the speed of light. This is, of course,

nonsense.

In field theory, a tachyon is nothing mysterious. Our potential above has m2 < 0

but there is certainly nothing flying around faster than light. Instead, it signals that

the point � = 0 is a maximum of the potential, rather than a minimum. This is the

true meaning of a tachyon in field theory: it is telling us that the chosen vacuum is

unstable. It’s our job to find a better, stable vacuum.

That’s not hard in the example above. We just need to expand around one of

the minima of the potential, rather than the maximum. In fact, we already did this

calculation in (2.6). If we write �(x) = v + �(x), then we find a potential for � given

by

V (�) = �

✓
v2�2 + v�3 +

1

4
�4

◆
. (2.26)

We can read o↵ the mass of particles in the theory from the quadratic term. Any

physical excitation has mass M2 = 2�v2. The mass is real and positive and decidedly

not exotic in any way.

Domain Walls

The presence of a spontaneously broken symmetry often implies the existence of some

novel excitation in the theory. In the present case, this is a domain wall, a field

configuration that interpolates from one vacuum to the other.
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Indeed, we’ve already met the classical solution that does the job. We just need to

repurpose the tunnelling solution (2.22) by replacing the imaginary time ⌧ with one of

the spatial coordinates x = (x, y, z). For example, the classical field configuration

�(z) = v tanh

 r
�v2

2
z

!
(2.27)

solves the equations of motion of the original Lorentzian action (2.17). This solution

interpolates from the vacuum � = �v at z ! �1 to the vacuum � = +v at z ! +1.

It describes an excitation of the field, localised around z = 0, but extended in the x-

and y-directions. This is the domain wall.

The domain wall has finite energy density E which, it is easy to see, coincides with

the action Scl of the same configuration in quantum mechanics. We computed this in

(2.14) and found

E =
2

3

p
2�v3 . (2.28)

Although the domain wall has finite energy density, it has infinite energy because it

stretches to infinity in the (x, y)-plane. An exception to this statement is if we are

considering domain walls in d = 1+ 1 dimensions where there is nowhere else for them

to stretch. In this case the domain walls have finite energy and should be viewed as a

kind of particle in the theory.

Back in d = 3 + 1 dimensions, we can straightforwardly consider variations of this

classical configuration (2.27) in which the domain wall forms a sphere of radius R,

containing one vacuum � = �v inside, and the other vacuum � = +v outside. This

now has finite energy, given by E = 4⇡R2E . However, such a static configuration will no

longer solve the equation of motion because the domain wall has tension and will want

to contract. To find the classical solution, we will have to solve the full time-dependent

partial di↵erential equation.

We can also get some sense for what happens to these configurations in the quantum

theory. We can build a Fock space of states above either of the two ground states by

exciting the field �(x) = ±v + �(x). As we’ve noted, this creates particles of mass

M =
p
2�v2. The Hilbert space of the theory decomposes as

H = H+ �H� . (2.29)

This is not a tensor product, which would mean that we have to choose one state from

H+ and another from H� to specify the full state. Instead, it’s a tensor sum: we must
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pick either a state from H+ or a state from H�. The states | i 2 H+ obey

h |�(0,x)| i = +v for |x| ! 1 . (2.30)

This is telling us that we necessarily approach the vacuum |+vi when we’re far away.

However, this doesn’t mean that the excitations about one ground state know nothing

about the other ground state. By piling many � excitations on top of each other, it’s

quite possible to carve out a region of one vacuum inside another, and have excited

states | i 2 H+ that obey, for example,

h |�(0,x)| i =
(
�v for |x| < R

+v as |x| ! 1
. (2.31)

These kind of states are what become of our classical, spherical domain wall.

Cluster Decomposition

We know that the field theory has two ground states |± vi, but you might wonder why

we’re necessarily forced to work with these states. What’s stopping us taking the linear

combinations

|0±i =
1p
2

⇣
|+vi± |�vi

⌘
(2.32)

as our ground states? This is a superposition of a state in H+ and a state in H�.

In fact, |0±i are not the right states to work with. There are two arguments for this.

The first is a little handwavey. Suppose that we perturb our original Lagrangian by

some term �L that breaks the Z2 symmetry. This will mean that one of the states

| ± vi has lower energy and is the true ground state. In the limit that we send the

coe�cient of �L to zero, we will remain in the ground state, either |+vi or |�vi.

This argument seems more compelling for condensed matter systems, where you can

well imagine that there are many di↵erent perturbations (say, background magnetic

fields) that would break the Z2 symmetry. The argument is less convincing in the

context of particle physics where it’s not at all clear what these additional terms might

be. (Some balm comes from a conjecture that, once we take gravity into account, there

are no exact global symmetries so there must, in fact, be some irrelevant symmetry

breaking term lurking in the wings.)
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There is a second, more important argument for why the states |0±i defined in (2.32)

are not the right ground states. This is a property known as cluster decomposition which

is a way of capturing the locality of field theory. If you sit in some vacuum state |vaci
and compute the two-point function of two operators, A(x) and B(y) then, when x and

y are spacelike separated, the expectation value should decompose into

hvac|A(x)B(y)|vaci ! hvac|A(x)|vaci hvac|B(y)|vaci as |x� y| ! 1. (2.33)

Now, on general grounds you can argue that, when x and y are far separated, we must

have

hvac|A(x)B(y)|vaci !
X

n

hvac|A(x)|ni hn|B(y)|vaci (2.34)

where |ni run over all possible vacuum states. But for cluster decomposition to hold,

we want this to project onto the specific vacuum state |ni = |vaci that we started in.

We can check this criterion for our theory with spontaneous symmetry breaking

and the choice A = B = �. If we pick the state | + vi then, using the fact that

h+v|�(x)|�vi = 0, we have

h+v|�(x)�(y)|+vi ! h+v|�(x)|+vi h+v|�(y)|+vi = v2 . (2.35)

So this indeed obeys cluster decomposition. In contrast, if we work in the state |0+i
defined in (2.32) then you can check that

h0+|�(x)|0+i = h0�|�(x)|0�i = 0 and h0+|�(x)|0�i = v . (2.36)

We then have

h0+|�(x)�(y)|0+i ! h0+|�(x)|0�i h0�|�(y)|0+i = v2 . (2.37)

This does not obey cluster decomposition because the vacuum |0�i that we need to

insert in the middle di↵ers from the vacuum |0+i that we started with.

2.2 Continuous Symmetries

The story of symmetry breaking is rather di↵erent, and more powerful, when the sym-

metry in question is a continuous symmetry. Here we start by giving a couple of

examples before we describe the general result known as Goldstone’s theorem.

We’ll work in quantum field theory. As in the previous section, there is some tension

between spontaneous symmetry breaking in quantum field theory and what we know

about the behaviour of wavefunctions in quantum mechanics, but we’ll put this on hold

for now and return to it in Section 2.2.4.
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Figure 3. On the left: the potential with m2 > 0. On the right, the Mexican hat potential

with m2 < 0.

To start, consider a complex scalar field �(x) in d = 3 + 1 dimensions with action

S =

Z
d4x

⇣
@µ�

†@µ�� V (�,�†)
⌘

with V (�,�†) = m2|�|2 + 1

2
�|�|4 . (2.38)

The action is constructed so that it a enjoys U(1) global symmetry which rotates the

phase of �,

�(x) ! ei↵�(x) . (2.39)

Again, the physics depends on the sign of the m2 term in the potential. The two

di↵erent cases, with m2 > 0 and m2 < 0 are shown in Figure 3. In the former case,

there is little interesting to say: you expand around the vacuum � = 0 and, after

quantisation, find interacting particles of mass m with the U(1) symmetry implying

the usual conservation law. Here our interest is in the case m2 < 0.

The potential with m2 < 0 is sometimes called the “Mexican hat potential” because,

you know, . It also looks like the bottom of a wine bottle. The defining feature

is that there are not isolated minima, but instead an infinite number of ground states,

defined by

|�|2 = �m2

�
. (2.40)

We define the vacuum manifold M0 to be the space of field configurations which have

minimum energy. For the double well potential of Section 2.1, the vacuum manifold
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was just two points. Now, the vacuum manifold is the set of solutions to (2.40) which

is a circle,

M0 = S1 . (2.41)

To see what this buys us, we can write the complex field in polar coordinates, with

�(x) = r(x)ei✓(x) . (2.42)

This is a slightly dangerous thing in quantum field theory, where we usually assume

that fields can take any value. In writing (2.42), we need to remember that r(x) � 0

and ✓(x) = ✓(x) + 2⇡. Nonetheless, we can proceed for now and keep this in the back

of our minds.

Substituting the polar decomposition into the original action (2.38), and dropping

an irrelevant constant that arises when we complete the square, we have

S =

Z
d4x

✓
@µr@

µr + r2@µ✓@
µ✓ � �

2
(r2 � v2)2

◆
(2.43)

where, as in the last section, we’ve introduced v2 = �m2/�. Now we can read o↵ the

physics. The ground state of the system sits at r(x) = +v. If we expand about this

vacuum by writing r(x) = v + �(x) then the action becomes

S =

Z
d4x

✓
@µ�@

µ� + (v + �)2@µ✓@
µ✓ � �

2
�2(� + 2v)2

◆
. (2.44)

From this, we can read o↵ the physics. In particular, the �(x) excitations have mass

M2 = 2�v2. These are radial oscillations of the field, that go back and forth in the

potential.

To pick a vacuum, we also need to specify a value for the angular scalar field ✓(x).

But there is no preferred choice here. Once we’ve set r(x) = v, the di↵erent constant

values of ✓(x) parameterise the vacuum manifold M0 = S1. If this was quantum

mechanics, then the wavefunction would simply spread over the S1. But things are

di↵erent in quantum field theory, a fact that we will discuss further in Section 2.2.4,

and each point on M0 corresponds to a di↵erent ground state of the theory. To specify

the ground state, we have to pick one such point. It doesn’t matter which point we

pick because the physics will be the same in each. But, nonetheless, we have to pick

one.
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Whatever choice of ground state we make, say ✓(x) = 0, will spontaneously break

the U(1) symmetry (2.39) which acts as

✓(x) ! ✓(x) + ↵ . (2.45)

In fact, we see that the symmetry acts by taking us from one point on M0 to another.

Finally, we can look at the dynamics of the field ✓(x) that parameterises M0. From

the action (2.43), we see that there is no potential term for ✓, a fact which simply

follows from the U(1) invariance of the potential. If we ignore the coupling to �, then

the ✓ field is governed by the simple Lagrangian

L = v2@µ✓ @
µ✓ . (2.46)

This is a Lagrangian for a massless scalar field, albeit one that is slightly unusual

because ✓ is a periodic variable. The existence of this massless scalar field is a direct

consequence of the spontaneous breaking of the U(1) global symmetry. As we will

see, this is a general story: whenever a continuous global symmetry is spontaneously

broken, there will be massless scalar fields. These fields are called Goldstone bosons.

Goldstone bosons can’t have potential terms: only derivative terms. But that’s not to

say that they’re totally boring. There can still be interactions, both among themselves

(as we will see in later examples) and with other fields. For example, if we expand

out r(x) = v + �(x) in (2.43) then we see that there are interaction terms between the

massive scalar � and the massless Goldstone boson ✓ that take the form �(@✓)2 and

�2(@✓)2. This means that a � particle can decay to two Goldstone modes. However, if

we look at energies E ⌧
p
�v2, which is the mass of the � particle, then the only field

in town is the massless Goldstone mode, whose dynamics is governed by (2.46).

2.2.1 The O(N) Sigma Model

Here’s a generalisation of the ideas above. We take a collection of N real scalar fields

�a(x), with a = 1, . . . , N , and consider the following action

S =

Z
d4x

✓
1

2
@µ�

a@µ�a � V (�)

◆
with V (�) =

1

2
m2�a�a +

1

4
�(�a�a)2 . (2.47)

This action is constructed to have an O(N) symmetry, under which the �a rotate. For

N = 2, it coincides with the action (2.38) for a complex scalar field whose real and

imaginary parts are �1 and �2.
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Spontaneous symmetry breaking occurs when m2 < 0 and the potential again looks

like a Mexican hat but for someone with a higher dimensional head. The minima of

the potential obey

�a�a = v2 := �m2

�
. (2.48)

This is simply the equation for an (N � 1)-dimensional sphere, and defines the vacuum

manifold of the theory

M0 = SN�1 . (2.49)

The vacuum of the theory is one point on M0. It doesn’t matter which one. Suppose

that we pick the “south pole”, so that the vacuum is �a = (0, 0, . . . , 0, v). Now we can

look at fluctuations around this vacuum by writing

�a(x) =
�
⇡1(x), . . . , ⇡N�1(x), v + �(x)

�
. (2.50)

If we substitute this into the action (2.47), we find

S =

Z
d4x

✓
1

2
@µ⇡

a@µ⇡a +
1

2
@µ� @

µ� � V (⇡a, �)

◆
(2.51)

with

V (⇡a, �) = �v2�2 + �v�
�
�2 + ⇡a⇡a

�
+

1

4
�(⇡a⇡a + �2)2 . (2.52)

We again see that only the � field has a quadratic term so this gives rise to a massive

particle, while quantising the ⇡a will give N � 1 massless particles. These are the

Goldstone bosons from spontaneous symmetry breaking.

Although the ⇡a fields are massless, they still appear in the potential (2.52), just

in higher order terms. This is in contrast to the case with U(1) symmetry where the

potential didn’t depend on the Goldstone field ✓(x). There’s no mystery here: it’s

because we’ve made no attempt to pick our fields to parameterise the vacuum moduli

spaceM0. Instead, the ⇡a(x) fields are just linear displacements away from the vacuum,

and if you move away linearly from a point in M0, you eventually end up climbing the

potential.

To do better, we could write our fields as something akin to the polar ansatz (2.43).

Alternatively, if we’re at low energies so that we care only about the dynamics of the
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Goldstone bosons, and not about their interactions with massive excitations, then we

could restrict ourselves to M0 by insisting that (2.48) is obeyed everywhere, meaning

(⇡a)2(x) + (�N)2(x) = v2 . (2.53)

We could use this to eliminate �N(x) in our original action (2.47). By construction,

the potential term vanishes completely and we’re left just with kinetic terms for the

Goldstone modes

S =

Z
d4x

1

2

✓
@µ~⇡ · @µ~⇡ +

(~⇡ · @µ~⇡)(~⇡ · @µ~⇡)
v2 � ~⇡ · ~⇡

◆
. (2.54)

We see that the Goldstone modes now have rather non-trivial interactions between

themselves, but these interactions are entirely kinetic. To get a sense for what the

action (2.54) is telling us, let’s restrict to N = 3. In this case, the constraint (2.53) can

be solved by the usual polar coordinates on R3,

⇡1 = v sin ✓ cos' , ⇡2 = v sin ✓ sin' , �3 = v cos ✓ . (2.55)

It’s important to stress that these are polar coordinates on field space, and both ✓(x)

and '(x) are fields that parameterise the vacuum manifold M0 = S2. With this choice

of parameterisation, the action (2.54) becomes

S =

Z
d4x

v2

2

⇣
@µ✓ @

µ✓ + sin2 ✓ @µ'@
µ'
⌘
. (2.56)

We recognise the metric ds2 = d✓2 + sin2 ✓d'2 on S2 hiding within this action. More

generally, any choice of parameterisation of the constraint (2.53) will give an action for

the Goldstone bosons that takes the schematic form

S =

Z
d4x

1

2
gab(⇡)@µ⇡

a @µ⇡b (2.57)

with gab the round metric on M0. Actions of this kind, where the fields are themselves

coordinates on some manifoldM are known as non-linear sigma models. In this context,

the manifold M is sometimes called the target space, because the fields ⇡a(x) are maps

from spacetime (which is R1,3 for us) to the target manifold M.

Non-linear sigma models like (2.57) are non-renormalisable. That means that they

don’t make sense up to arbitrarily high energy scales. But that’s entirely reasonable!

The sigma model (2.57) is constructed so that it describes only the very low energy

physics. As we reach energies or order E ⇠
p
�v, we will start to be able to climb

up the hills of the potential and out of the vacuum manifold M0. The original theory

(2.47) provides a renormalisable, UV completion of the non-linear sigma model.
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The origins of the name “sigma model” are somewhat farcical. It comes from the

original paper of Gell-Mann and Lévy who did a calculation similar to the one above,

eliminating the field �(x) (which, recall, is related to �N(x) = v + �(x)) and then

naming the resulting Lagrangian after the field they got rid o↵! We’ll see what Gell-

Mann and Lévy did, and what the �(x) field describes in our world, when we come to

discuss aspects of chiral symmetry breaking in QCD in section 3.

2.2.2 Goldstone’s Theorem in Classical Field Theory

With these examples under our belt, we can now look at the general case. We will do

this twice: once from the perspective of the classical theory, then again in the quantum

theory.

We start classical. Consider a theory with a bunch of scalar fields, which we collec-

tively denote as �, transforming in some representation of a global symmetry group G.

We will take G to a be Lie group, so we’re dealing with continuous symmetries rather

than discrete symmetries.

These fields experience a potential V (�) which has some space of minima that define

the vacuum manifold of the theory:

M0 =
�
�0 | V (�0) = Vmin

 
. (2.58)

If the ground state is unique – in which case we will assume that it sits at �0 = 0 –

then M0 is just a single point and we’re back to the usual story in which the symmetry

is realised only on excited states.

The more interesting situation is when �0 is not unique. In this case, acting with

some elements of G will typically move us from one point in M0 to another. Indeed, the

generic situation is that all points in M0 can be reached by a symmetry transformation,

meaning that if we take two points �0,�0
0
2 M0, then there is a g 2 G such that

�0
0
= g�0 . (2.59)

We can see this, for example, in the O(N) model described above where M0 = SN�1

and you can always rotate from one point on the sphere to any other.

While some elements of G will move us around M0, other elements leave the point

�0 unchanged. It’s useful to define the concept of the stability group H. If we sit at

some point �0 2 M0, then the group H is defined to be those elements of G which

don’t change �0,

H =
�
h 2 G | h�0 = �0 } . (2.60)
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The stability group H defined above depends on the choice of �0 2 M0. Happily,

however, if we pick a di↵erent point �0
0
2 M0 then we will find ourselves with a

stability group H 0 that is isomorphic to H. This is simple to show: if �0
0
= g�0 then

then for each h 2 H we can construct h0 = ghg�1 2 H 0.

Again, we can use the G = O(N) model as an example. For any point inM0 = SN�1,

the stability group is H = O(N�1). The way in which O(N�1) is embedded in O(N)

depends on where we sit in M0. For example, if we sit in the vacuum �i = (0, 0, . . . , v)

then the surviving O(N � 1) resides in the upper-left block of the N ⇥N matrix, while

if we sit in the vacuum �i = (v, 0, . . . , 0) then O(N�1) resides in the lower-right block.

But, wherever we sit, there is always an O(N � 1) subgroup that survives.

We say that the group G is spontaneously broken to the group H. We usually write

this as G ! H. The field � is what, in statistical physics, we call an order parameter

for the symmetry G: its value in the ground state – either zero or non-zero – provides

a litmus test for whether the symmetry G is broken. The vacuum manifold M0 can

then be identified as the coset space

M0
⇠= G/H . (2.61)

Here the coset G/H is defined to be the set of equivalence classes, with g1 ⇠ g2 if there

exists an h 2 H such that g1 = hg2.

Now we’re in a position to state the main result3:

Goldstone’s Theorem: If a global, continuous symmetry G is spontaneously broken

to H then the number of massless Goldstone bosons is given by

dim (G/H) = dimG� dimH . (2.62)

In light of the identification (2.61), you can think of these Goldstone bosons as the

modes that fluctuate along the vacuum manifold M0.

Returning, briefly, to our O(N) model, the sphere can be viewed as the coset SN�1 =

O(N)/O(N � 1). We can do some simple counting. We have dimO(N) = 1

2
N(N � 1)

so dimO(N)� dimO(N � 1) = N � 1 = dimSN�1.

3Both the classical and quantum versions of Goldstone’s theorem were first proved by Goldstone,
Salam and Weinberg in a classic 1962 paper entitled “Broken Symmetries”. The proof was prompted
by specific examples that had been explored by Nambu and by Goldstone.
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Proof: The proof of Goldstone’s statement is really just a matter of turning our

intuition into some equations. Suppose that � sits in a representationR of the symmetry

group G. We’ll denote the components of � as �a with a = 1, . . . , dimR.

Consider how � shifts under an infinitesimal symmetry transformation, g� = � +

��. If we denote the generators of G in the representation R as (TA)a
b
, with A =

1, . . . , dimG, then we have

��a = i↵A(TA)a
b
�b (2.63)

with ↵A infinitesimal parameters. We know that G is a symmetry of our theory which

means, among other things, that the potential must satisfy V (g�) = V (�). So, for an

infinitesimal transformation,

V (�+ ��)� V (�) = i↵A
@V

@�a
(TA)a

b
�b = 0 . (2.64)

We di↵erentiate with respect to �b to find


@V

@�a
(TA)a

b
+

@2V

@�a@�b
(TA)a

c
�c

�
= 0 (2.65)

where we’ve stripped o↵ the ↵A on the grounds that they are arbitrary parameters and

so this expression must hold for each A = 1, . . . , dimG. Now we evaluate the result on

a ground state �0. The first term disappears because �0 is a minimum of the potential

and we’re left with

@2V

@�a@�b

����
�0

(TA�0)
a = 0 for A = 1, . . . , dimG . (2.66)

We recognise the second derivative of the potential as the mass matrixM2

ab
= @V/@�a@�b;

the eigenvalues of this matrix are the physical masses. The result (2.66) is telling us that

the mass matrix potentially has a bunch of zero eigenvalues, one for each eigenvector

(TA�0)b.

The “potentially” in the sentence above is there because it may be that the would-be

eigenvector (TA�0)b actually vanishes. Indeed, this is clearly the case if �0 = 0. That’s

as it should be: if �0 = 0 then the symmetry is unbroken and there’s no reason to

generically expect massless modes. However, even when �0 6= 0, there will be some

generators – let us call them T̃A – that annihilate the ground state,

T̃A�0 = 0 . (2.67)
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These are precisely the generators of the unbroken stability group H and so there

are dimH of them. We will denote the generators orthogonal to T̃A as R↵, with

↵ = 1, . . . , dim (G/H). Here, orthogonality means that they obey Tr (T̃AR↵) = 0.

Each of these generators gives a unique eigenstate (R↵�)b, and hence a massless mode.

We see that there are at least dim (G/H) massless particles. These are the Goldstone

bosons. ⇤

2.2.3 Goldstone’s Theorem in Quantum Field Theory

The quantum version of Goldstone’s theorem has much more teeth than its classical

counterpart. This is not because the theorem itself is very much di↵erent – as we’ll

see, it really involves all the same ingredients that we’ve seen above, just adapted to

life in a Hilbert space. Instead, the importance of the result is due to the environment

in which the theorem operates.

In classical field theory, there’s no di�culty in writing down a theory for a massless

scalar. You literally just need to set m2 = 0 in the potential. So while it’s certainly

interesting that spontaneous symmetry breaking gives us a mechanism for generating

massless scalars, they’re not such rare beasts.

But the story is very di↵erent for interacting quantum field theories. There, massless

scalars (and, indeed scalars that are just “light” in some sense) are very hard to come

by. This is because the physical mass is not just the m2 that you write down in the

Lagrangian. Instead, the mass of a scalar picks up extra contributions from the cloud of

other fields that accompany the particle. These are captured, at one loop, by Feynman

diagrams like this:

Here the external legs are the scalars, while the particle running in the loop is anything

that the scalar interacts with, including itself. These diagrams contribute to the mass

renormalisation of the scalar and, crucially, are quadratically divergent. Physically, it

means that quantum corrections push the mass of a scalar particle up to the UV-cut

o↵ of the theory, ⇤UV .

The upshot of this is that, if you write down a Lagrangian with m2 = 0, then

it won’t describe a quantum scalar particle with physical mass zero. Instead, after

renormalisation, it will describe a scalar with physical mass m2 ⇠ ⇤2

UV
. (In some cases,
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⇤UV may be some higher energy scale in the theory, rather than the UV-cut o↵. For

example, in QCD we’ll see that the masses of scalar mesons typically sit at a scale

known as ⇤QCD.) If you want to write down, say a �4 theory that describes a massless

scalar then you will need to tune the mass in the Lagrangian (the so-called “bare

mass”) to be m2 ⇠ �⇤2

UV
, with a coe�cient that precisely cancels the contributions

from quantum corrections. This is known as fine tuning and it is generally agreed to

be as tasteless as it sounds. (This same idea also arises in statistical physics, where the

mass term is associated to the deviation from a critical temperature. In this case, the

fine tuning is physical because you get to turn the temperature up and down at will.)

None of this means that there is some flaw in quantum field theory: instead it’s

capturing the right physics. Quantum field theories tend not to have massless, or

indeed, light, scalar fields. Their mass is typically pushed up to some cut-o↵ scale.

This is not true of fermions, which su↵er only a logarithmic correction to their mass.

This can be traced to the fact that fermions have an extra chiral symmetry when they

are massless that protects their mass from being renormalised.

All of this means that things are interesting when you come across a physical system

that does have a massless, or inordinately light, scalar field. If you find such a light

scalar, then there should be a reason why the preceding arguments fail. In most (but,

famously, not all!) cases, that reason is Goldstone’s theorem. Spontaneous symmetry

breaking provides a robust mechanism to naturally deliver genuinely massless scalars,

whose mass is protected against any corrections from renormalisation. And, as we

mentioned at the beginning of this section, it is a mechanism that is employed over and

over again by nature, from magnets, to phonons to, as we shall see later, pions.

Before we turn to prove Goldstone’s theorem in the context of quantum field theory,

it’s worth commenting on the “famously, not all” remark above. This is a nod to the

Higgs boson. It is not particularly light, weighing in at mH ⇡ 126 GeV. But if we

believe that quantum field theory continues to hold at scales significantly higher than

mH , we should ask why the mass of the Higgs boson hasn’t been pushed up to higher

scales. Or, in other words, why don’t the simple arguments that we sketched above

apply to the Higgs boson? We don’t know the answer to this question. This is known

as the hierarchy problem.

Broken Symmetries Acting on Hilbert Space

With this preamble in place, we can now see how Goldstone’s theorem manifests itself

in quantum field theory. We won’t work with Lagrangians, or restrict ourselves to
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perturbation theory. Instead, all the physics can be seen in how symmetries act on the

Fock space of particles.

By Noether’s theorem, any continuous symmetry G has an associated set of currents

JA

µ
, with A = 1, . . . , dimG. From these we can construct the conserved charges

QA =

Z
d3x JA

0
. (2.68)

One of the lovely features of quantum mechanics (or, indeed, the Hamiltonian version of

classical mechanics) is that these charges enact what we might call the “inverse Noether

theorem”. This means that, given a conserved charge, you can always reconstruct the

associated symmetry. This follows from the fact that the charge is the generator of the

symmetry, with any operator O undergoing the infinitesimal transformation

�AO = i[QA,O] . (2.69)

Comparing to our classical result (2.63), we see that our scalar fields �a transform as

[QA,�a] = (TA)a
b
�b . (2.70)

These are exact operator relations in the quantum theory.

In the classical theory, we saw that � is an order parameter for the symmetry G.

The same is true in the quantum theory, although strictly we should talk about the

vacuum expectation value (or vev) of �, as the order parameter,

h�i = h⌦|�|⌦i (2.71)

where |⌦i is the vacuum of the full, interacting theory. If h�i 6= 0 then we say that �

condenses, a term taken from statistical physics. From (2.70), we have

h⌦|[QA,�a]|⌦i = (TA)a
b
h�bi 6= 0 . (2.72)

But this can only be true if

QA|⌦i 6= 0 for some A . (2.73)

This is what it means for a symmetry to be spontaneously broken in quantum field

theory: the symmetry generators do not annihilate the vacuum.
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Actually, there’s a small caveat that I need to mention here. If we have QA|⌦i = |⌦i
then the commutator does vanish: h⌦|[QA,�a]|⌦i = 0. This kind of action on the

ground state means that the symmetry is unbroken because, when exponentiated, we

have ei↵Q
A |⌦i = ei↵|⌦i, but just changing the phase of a state in quantum mechanics

is the same as leaving the state invariant. So the statement QA|⌦i 6= 0 in (2.73) should

be better written as QA|⌦i 6= c|⌦i for some c 2 C.

For any symmetry generator, broken or unbroken, we have [QA, H] = 0 so (2.73) is

really telling us that, whenever the symmetry is broken, the vacuum is degenerate. Said

slightly di↵erently, in quantum field theory every di↵erent choice of h�i corresponds to
a di↵erent vacuum of the theory.

Conversely, if h�i = 0 then, from (2.73), we see that the vacuum is annihilated by

the symmetry generators: QA|⌦i = 0. This is the more familiar case in which the

symmetry is unbroken. Excitations above the vacuum then sit in multiplets of G.

When a symmetry is spontaneously broken, the excitations above the vacuum no

longer sit in multiplets of the full symmetry group G. To see this, suppose that we

have two fields, �1 and �2, that are related by a symmetry so there is some conserved

charge such that [Q,�1] = �2. We can consider excitations of the vacuum by the

creation operators associated to �1, heuristically |1i = a†
1
|⌦i, and similar excitations

associated to �2, |2i = a†
2
|⌦i. We then have

|2i = a†
2
|⌦i = [Q, a†

1
]|⌦i = Q|1i � a†

1
Q|⌦i . (2.74)

We see that the symmetry generator does relate |1i and |2i but only if Q|⌦i = 0. When

the symmetry is spontaneously broken, so Q|⌦i 6= 0, the two states |1i and |2i can

have di↵erent properties. For example, they may have di↵erent energies.

So far, we haven’t described where the Goldstone bosons come from. Following our

classical intuition, we expect them to correspond to fluctuations along the directions of

broken symmetry. And that’s indeed the case. For each broken symmetry generator,

we construct states

|⇡A(p)i ⇠
Z

d3x eip·xJA

0
(x)|⌦i . (2.75)

These states carry 3-momentum p. Moreover, in the limit of vanishing momentum, we

have

lim
p!0

|⇡A(p)i ⇠ QA|⌦i. (2.76)
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For those generators that are spontaneously broken, the state QA|⌦i 6= 0 has the same

energy as the original vacuum |⌦i because [QA, H] = 0. This is the statement that the

Goldstone boson |⇡A(p)i has energy E ! 0 as p ! 0. In other words, the Goldstone

boson is massless.

None of the arguments above rely on perturbation theory: they are all exact state-

ments about the interacting quantum field theory. This means that if we were to write

down Lagrangians for these Goldstone bosons then they must remain massless, even

after taking into account one-loop e↵ects and so on. In operational terms, this happens

because the Goldstone bosons have only derivative couplings.

The argument above is not completely rigorous, not least because Q|⌦i su↵ers from
divergences and doesn’t strictly exist in the Fock space. A better, but more formal,

argument uses the Källén-Lehmann spectral decomposition. You can read about this

in Volume II of Weinberg’s book.

The View From the E↵ective Potential

There is an alternative proof of Goldstone’s theorem in quantum field theory that

follows much more closely the classical proof that we saw previously. We first need

to review some basic facts about generating functions in quantum field theory. The

generating function for connected correlation functions is

eiW [J ] =

Z
D� ei

R
d
4
x (L(�)+J�) . (2.77)

Here J(x) is a source for � and di↵erentiating W [J ] successively with respect to J(x)

gives the connected correlation functions. In particular, the expectation value of �(x)

is given by

�W [J ]

�J(x)
= h⌦|�(x)|⌦i = �cl(x) . (2.78)

In the absence of a source, Lorentz invariance implies that �cl is just a number, and

coincides with the vev (2.71) that we introduced previously. But, if we turn on a

spatially varying source J(x), then the function �cl(x) will respond accordingly.

The Legendre transform of W [J ] is known as the one-particle irreducible (or 1PI for

short) e↵ective action,

�[�cl] = W [J ]�
Z

d4x J(x)�cl(x) . (2.79)
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As in other examples of Legendre transforms, we should use (2.78) to replace J(x) with

�cl(x) in the 1PI e↵ective action. We can always return to W [J ] (assuming certain

convexity properties) using

��[�cl]

��cl(x)
= �J(x) . (2.80)

The 1PI e↵ective action is not, in general, the same thing as the more physical Wilsonian

e↵ective action that we get by integrating out high energy modes to find a description of

the low energy physics. Taking derivatives of �[�cl] generates the 1PI Green’s functions.

In particular, the two derivative term gives the inverse propagator

�2�

��cl(x)��cl(y)
= ��1(x� y) . (2.81)

In general, �[�cl] can be expressed in terms of a derivative expansion,

�[�cl] =

Z
d4x

⇣
� Ve↵(�cl) +

1

2
Z(�cl)@µ�cl@

µ�cl + . . .
⌘

(2.82)

for some functions Ve↵(�cl) and Z(�cl). For our purposes, we’re interested only in

spatially homogeneous configurations, so we can ignore the derivative terms and the

1PI e↵ective potential becomes

�[�cl] = �VVe↵(�cl) (2.83)

where V is the (admittedly infinite, but actually irrelevant) volume of spacetime. Re-

stricted to constant configurations, the second derivative of �[�cl] is just the mass

matrix, but now for the physical masses as opposed to the classical, bare masses

@2Ve↵

@�cl@�cl

= ��1(0) . (2.84)

Spontaneous symmetry breaking occurs when we have �cl 6= 0 even when J = 0. From

(2.80), this translates into the familiar requirement that

�cl 6= 0 at
@Ve↵

@�cl

= 0 . (2.85)

Now we may rerun all the arguments of section 2.2.2, but for the e↵ective potential

Ve↵(�) rather than the classical potential V (�) to again arrive at (2.66),

@2Ve↵

@�a

cl
@�b

cl

(TA�0)
b = 0 . (2.86)

As in the classical argument, this is telling us that the mass matrix has a number of

zero eigenvalues. (Equivalently, the propagator � has poles at p ! 0.) There is one

zero eigenvalue for each broken generator.
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2.2.4 The Coleman-Mermin-Wagner Theorem

In all our discussions above, we assumed that spontaneous symmetry breaking actually

takes place in the quantum theory. For example, we showed that if h�i 6= 0 then the

ground state must necessarily shift under a symmetry

Q|⌦i 6= 0 . (2.87)

But how do we know that this actually happens? In particular, there is some tension

with what we know from our first courses on quantum mechanics.

Let’s return to the simplest example of a Mexican hat potential (2.38), but now think

of quantum mechanics, rather than quantum field theory. That means that we have a

quantum particle moving in the potential.

It’s challenging to write down the exact

ground state wavefunction  (r, ✓), but it’s not

di�cult to get some idea of what it looks like:

it will be peaked in the trough at r = v,

and be fully delocalised in the angular ✓ di-

rection. In other words, it will look some-

thing like the wavefunction shown in the fig-

ure. But, crucially, because the wavefunction

spreads around the circle parameterised by ✓,

there is no spontaneous symmetry breaking.

This begs the question: why is quantum field theory di↵erent from quantum me-

chanics? Why do we expect spontaneous symmetry breaking in the former case, but

not in the latter? A similar question arose when we discussed discrete symmetries and

there we understood that quantum tunnelling through the barrier was suppressed by

the infinite spatial volume. But here there’s no barrier to tunnel through. Instead we

have a manifold of ground states M0 and it feels like it should be easier for a wave-

function to spread over M0 than to tunnel through a barrier. In other words, it should

be more di�cult to spontaneously break continuous symmetries than to spontaneously

break discrete symmetries.

And indeed it is. But in an interesting way. The key physics is captured by the

following theorem:

Theorem: A continuous symmetry cannot be broken in quantum theories in d = 0+1

(i.e. in quantum mechanics) or d = 1 + 1 dimensions.
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This theorem was first proven by Mermin and Wagner for certain spin chains, inspired

by previous work by Hohenberg. The proof in the context of quantum field theory is due

to Coleman4. We see that the story is di↵erent for discrete and continuous symmetries.

A discrete symmetry can be spontaneously broken in spacetime dimensions d = 1 + 1

and higher, but for a continuous symmetry to be spontaneously broken we must be in

d = 2 + 1 or higher.

Here we o↵er just a sketch of this theorem. In fact, the basic idea can already be

seen in classical field theory. Things are simplest if we work in d-dimensional Euclidean

space. Suppose that we have a massless scalar field � with no potential. This means

that we have a choice of what we call the vacuum and, for our purposes, we’ll decide

that � = 0 is the ground state. Now we excite this scalar field by introducing a delta

function source at the origin. That means that we have to solve

r2� = �(x) . (2.88)

This, of course, is the equation for the Green’s function of the d-dimensional Laplacian.

The solutions take the schematic form (ignoring overall coe�cients)

�(x) ⇠

8
>><

>>:

|x| for d = 1

log |x| for d = 2

1/|x|d�2 for d � 3

(2.89)

We see that for low dimensions, d = 1 and d = 2, exciting the scalar field at the origin

means that it can no longer take the value � = 0 asymptotically. Any disturbance at

the origin is still felt at |x| ! 1 where the field continues to grow. In contrast, in

d = 3 and higher, the field is excited near the origin but then settles back down to

�! 0 as |x| ! 1.

The story above is classical. What happens in the quantum theory? We’ll stick with

the free massless scalar, and continue to work in Euclidean spacetime. Consider the

two-point function h�(x)�(y)i. We know from the lectures on Quantum Field Theory

4The original paper is from 1966, “Absence of Ferromagnetism or Anti-Ferromagnetism in One or
Two-Dimensional Heisenberg Models” by Mermin and Wagner and, because of quirk of publication,
appeared before the Hohenberg paper which motivated them: “Existence of Long-Range Order in One
and Two Dimensions”. Sidney Coleman’s contribution is from 1973, in the concisely titled “There are
no Goldstone Bosons in Two Dimensions”.
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that this is given by the same Green’s function as above, so

h�(x)�(y)i ⇠

8
>><

>>:

|x� y| for d = 1

log |x� y| for d = 2

1/|x� y|d�2 for d � 3

(2.90)

Again, we see the infra-red divergence for d = 1 and d = 2. Roughly speaking, this is

telling us that the wavefunction spreads over all values of � in d = 2 dimensions, just

as it does in d = 1 quantum mechanics. In both cases, there is no normalisable ground

state.

A better way of saying this is that �(x) is not a well defined operator in d = 2

dimensions. In particular, the correlation function h�(x)�(y)i ⇠ log |x � y| is not

positive for all x � y, which is one of the requirements of a QFT. However, although

�(x) is not a well-defined operator, its derivatives @µ�(x) are. You can learn more

about this 2d theory (which really only makes sense when � is taken to be a periodic

variable) in the lectures on String Theory.

No such problems arise for a massless scalar in d � 3 spacetime dimensions. Here,

each value of h�i specifies a di↵erent ground state of the theory. Indeed, for this simple

free theory, the massless � field can be viewed as a Goldstone boson for the shift

symmetry �! �+ constant.

As for the discrete symmetries discussed in Section 2.1, the existence of spontaneous

symmetry breaking is due to the infinite volume of space. If we were to take our

quantum field theory on a compact spatial manifold, then the long-time behaviour is

the same as in quantum mechanics, and the wavefunction will again spread over field

space, obviating spontaneous symmetry breaking.

2.3 The Higgs Mechanism

Goldstone’s theorem tells us that when a continuous symmetry is spontaneously broken,

it results in a massless boson. Here we would like to ask: what happens if that symmetry

is gauged?

First, the very concept of a “spontaneously broken gauge symmetry” is a little mis-

leading. As we’ve stressed, a gauge symmetry is merely a redundancy in the description

of a system and there’s no way that this redundancy can be “broken” or “lost”. This

linguistic issue notwithstanding, the physics underlying the spontaneous breaking of

gauge symmetries is clear cut. First, there is no massless Goldstone boson. Second,

the gauge boson gets a mass. We’ll now see, in some detail, how this comes about.
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2.3.1 The Abelian Higgs Model

We return to a complex scalar � with the Mexican hat potential of Section 2.2. This

time, however, we couple the scalar to a U(1) gauge field. The action is

S =

Z
d4x

⇣
� 1

4
Fµ⌫F

µ⌫ +Dµ�
†Dµ�� �

2
(|�|2 � v2)2

⌘
. (2.91)

This is known as the Abelian Higgs model. The covariant derivative is Dµ� = @µ� �
ieAµ�. Clearly the ground state sits at

|�|2 = v2 . (2.92)

Previously, this meant that we had a vacuum manifold, M0 = S1, parameterised by

the phase of �. But now the U(1) that takes us around the S1 is a gauge symmetry,

�! eie↵(x)� and Aµ ! Aµ + @µ↵ (2.93)

and we know that field configurations that are related by gauge symmetries should be

considered physically equivalent. This suggests that the gauge theory only has a single

ground state, rather than a manifold of ground states. This, it turns out, is the right

interpretation.

To see the physics, let’s place ourselves in the classical vacuum � = v and look at

fluctuations that we parameterise as

�(x) = ei✓(x)
�
v + �(x)

�
. (2.94)

We then have

Dµ� = ei✓
�
@µ� + i(v + �)(@µ✓ � eAµ)

�
. (2.95)

Substituting this into the action, and expanding out, we have

S =

Z
d4x

✓
�1

4
Fµ⌫F

µ⌫ + @µ�@
µ� + (v + �)2(@µ✓ � eAµ)(@

µ✓ � eAµ)� V (�)

◆

with

V (�) =
�

2
�2(� + 2v)2 . (2.96)

From this, we can read o↵ the mass spectrum of the theory. First, the scalar � is

reasonably standard: it has a quadratic term that tells us its mass is

m2

�
= 2�v2 . (2.97)

This is the same mass that we calculated for the global symmetry. Later, when we

discuss electroweak theory, we will learn that an analogous particle is the Higgs boson.
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More interesting is the other scalar field ✓(x). In the absence of the gauge field,

this was the Goldstone boson. But now that we’ve introduced the gauge field, we see

something interesting: this field only appears in kinetic terms in the combination

@µ✓ � eAµ . (2.98)

This allows us to eliminate the field ✓(x) completely. We simply define a new gauge

field, related to the first by the change of variables

A0
µ
= Aµ �

1

e
@µ✓ . (2.99)

This has the same field strength as Aµ, with Fµ⌫ = @µA0
⌫
� @⌫A0

µ
. However, in contrast

to Aµ, the new field A0
µ
does not change under a gauge transformation since the usual

shift Aµ ! Aµ + @µ↵ is now compensated by ✓ ! ✓ + e↵. Said slightly di↵erently,

you could also think of the change of variables to A0
µ
as analogous to working in ✓ = 0

gauge, known, in this context, as unitary gauge. Either way, the upshot is the same:

the field ✓(x) no longer appears in the action

S =

Z
d4x

✓
�1

4
Fµ⌫F

µ⌫ + @µ�@
µ� + e2(v + �)2A0

µ
A0µ � V (�)

◆
. (2.100)

We see that we’ve generated a mass term e2v2A0
µ
A0µ for the gauge field. This is exactly

the kind of term that is usually forbidden by gauge invariance. But such a term arises

naturally when we spontaneously break the gauge symmetry and the photon gets a

mass

m2

�
= 2e2v2 . (2.101)

This is the Higgs mechanism.

There’s some interesting interplay of degrees of freedom going on here. Massive

spin 1 particles have three degrees of freedom. (This is just the (2l + 1)-dimensional

representation of the little group for l = 1.) But massless spin 1 particles have only two

degrees of freedom, the two polarisation states. But it’s clear where the extra degree of

freedom came from because the photon absorbed the would-be Goldstone mode ✓(x).

This Goldstone boson breathes life into the longitudinal mode of the photon which is

ordinarily killed by the constraints of gauge invariance.

Note that the mass of the Higgs boson (2.97) and the mass of the photon (2.101) have

di↵erent parameteric dependence on the coupling constants. This means, among other

things, that we could always just decouple the Higgs boson by taking m� ! 1, leaving
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behind the massive photon at a finite mass m�. Given this, you might wonder why we

needed all this palava with the Higgs boson. And, in fact, we really don’t. We could

always just couple the photon directly to the Goldstone mode ✓, ignoring the radial

mode �. Said di↵erently, we could just couple the photon to the sigma model with

target space M0 = S1 which gives a massive photon and no Higgs boson. However,

this option is less viable when we discuss the Higgs mechanism in non-Abelian theories

because the corresponding sigma model is non-renormalisable and so should be viewed

as an e↵ective low energy theory, breaking down in the UV.

2.3.2 Superconductivity

We will later see that the Higgs mechanism plays a key role in the Standard Model.

But there is a glorious unity to physics, and if nature finds a good trick to use in one

context, she often recycles it elsewhere. So it is with the Higgs mechanism, which also

provides a description of how superconductors work. In that context, it is referred to

as the Anderson-Higgs mechanism5.

Superconductivity is a phenomenon exhibited by many metals when they are cooled

to a few degrees Kelvin. The metal undergoes a phase transition, and the electrical

resistivity promptly plummets. At the same time, any magnetic fields are expelled.

The microscopic explanation for superconductivity is beyond the scope of these lec-

tures. For what it’s worth, an attractive coupling mediated by the phonon causes

electrons to form an object known as a Cooper pair. For our purposes, all we need to

know is that the resulting bound state is described by a complex scalar field � that has

charge �2e, with the �2 because it’s formed of two constituent electrons.

In condensed matter physics, we more commonly work with the free energy, which

describes the equilibrium properties of a system at finite temperature, rather than the

Lagrangian which describes the zero temperature dynamics. But to avoid taking too

much of a detour, here we give a Lagrangian description of superconductivity. This

5The history of the Higgs phenomenon is famously murky. Anderson’s 1963 paper on supercon-
ductivity argues that the would-be Goldstone mode is no longer there and that the photon is gapped.
These ideas were extended to the relativistic theory by Brout and Englert and, independently, by
Peter Higgs. Only Higgs’ paper mentions the existence of an additional massive particle, now called
the Higgs boson, albeit in what appears to be an afterthought in the final paragraph of the paper.
You can decide for yourself whether this was because the existence of the Higgs boson was obvious (as
some of the authors later claimed) or because they didn’t think to ask the question. Still, the mech-
anism for giving a photon mass should probably rightly be called the Anderson-Brout-Englert-Higgs
mechanism. In line with much of the particle physics community, we chose to unfairly shorten this to
simply “Higgs”. Meanwhile the term Higgs boson, for the particle, seems more appropriate.
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is almost identical to the Abelian Higgs model of the previous section, with just one

small di↵erence: the dynamics of the scalar field � is non-relativistic. This means that

we should work with the action

S =

Z
dt d3x

✓
�1

4
Fµ⌫F

µ⌫ + i�†Dt�� |Di�|2 �
�

2
(|�|2 � v2)2

◆
. (2.102)

In addition, there’s an extra factor of �2 buried in the covariant derivatives: Dµ� =

@µ�+ 2ieAµ�. (On dimensional grounds, there should be a coe�cient with dimension

(mass)�1 in front of the gradient terms but I’ve set it to unity to ease comparison with

the relativistic Abelian Higgs model (2.91).)

A non-relativistic complex scalar has just a single degree of freedom. (This is true

because the kinetic term contains a first order time derivative and so �† is the momen-

tum conjugate to �, rather than a separate degree of freedom.) This means that if we

quantise (2.102), we will find a massive photon, but the would-be Higgs boson (what

we called � in the relativistic theory) is missing.

We can read o↵ the charge density and current from the coupling AµJµ. The charge

density is

J0 = �2e|�|2 . (2.103)

In the ground state, we have the condensation |�|2 = v2, so the Cooper pairs form

a constant background electric charge. (In a real system, this is compensated by the

positive electric charge of the underlying lattice of ions.) Meanwhile, assuming that

|�|2 = v2, the electric current is

J = 4ev2 (r✓ � 2eA) . (2.104)

Here, as in the previous section, ✓(x) is the phase of �(x). The expression (2.104) is

known as the supercurrent. It is sometimes denoted as Js to distinguish it from the

normal current carried by electrons.

Resistance is Futile

The signature of a superconductor is that it conducts electricity without resistance.

This follows immediately from the equation of motion for �†,

iD0� = �D2�+
@V

@�† . (2.105)

In the lowest energy state, the charge density |�|2 is constant. But the phase can vary.

Indeed, from (2.104), we see that a spatially varying phase r✓ 6= 0 means that an

electric current flows.
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Figure 4. A constant magnetic field can pass through a normal metal, as shown on the left.

But when the metal becomes superconducting, as shown on the right, the magnetic field is

expelled, a phenomenon known as the Meissner e↵ect.

Suppose that we look at such a configuration with |�|2 = v2. Then the complex

equation of motion (2.105) splits into real and imaginary parts, which are

✓̇ � 2eA0 =
1

(4ev2)2
J2 and r · J = 0 . (2.106)

To see the relevant physics, it’s simplest to restrict to the case where J is constant in

space so that rJ2 = 0. Then, taking the time derivative of the (2.104), we have

dJ

dt
= 4ev2

⇣
r✓̇ � 2eȦ

⌘
= 2(2ev)2

⇣
�rA0 � Ȧ

⌘
= 2(2ev)2E . (2.107)

This is the first London equation. It tells us that an electric field acts to accelerate

the current, rather than to maintain the current. But that’s not what usually happens

in a conductor. Usually, a constant electric field induces a constant current. That’s

what the famous Ohm’s law equation V = IR says. But the resistance R in a normal

conductor is due to friction terms, and the London equation (2.107) is telling us that

a superconductor has vanishing resistance, R = 0.

Meissner E↵ect

Superconductors don’t like magnetic fields very much. If you try to force a magnetic

field through a superconductor, then it will resist. This is known as the Meissner e↵ect,

or sometimes as the Meissner-Ochsenfeld e↵ect. A cartoon of this is shown in Figure

4. It has the dramatic consequence that a superconductor, placed above a magnet, is

repelled and can levitate in mid-air.

At heart, the Meissner e↵ect arises because the photon gets a mass. The term

⇠ v2A · A in the action ensures that it is energetically costly to turn on a magnetic

field.
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We can see this more quantitatively from the form of the supercurrent (2.104). If we

take the curl of both sides, we find

r⇥ J = �2(2ev)2B . (2.108)

This is the second London equation. We can compare it to Ampére’s law, r⇥B = µ0J.

Taking the curl, and using r⇥r⇥B = �r2B (because r ·B = 0), we find that the

magnetic field inside a superconductor obeys the Helmholtz equation

r2B =
1

�2
B with �2 =

1

2(2ev)2
. (2.109)

Here � is the penetration depth, a length scale equal to the inverse mass of the photon,

� = 1/m�. (The factor of 4 di↵erence with (2.101) can be traced to the fact that, for

superconductors, we’re dealing with a field with charge �2e rather than e.)

To see why the penetration depth gets it name, we can solve this equation for a

constant magnetic field of the form

B = (0, 0, B(z)) . (2.110)

Suppose that the superconductor fills half of space, say the region with z > 0. We

set up a constant magnetic field B = (0, 0, B0) in the outside region z < 0 and ask

what becomes of it when it enters the superconductor. There are two solutions to

(2.109), but only the decaying one is physical. We find that the magnetic field drops

o↵ exponentially quickly inside the superconductor,

B(z) = B0e
�z/� . (2.111)

This is the Meissner e↵ect: the superconductor does not su↵er a magnetic field inside.

In most superconductors, � ⇡ 10�8 to 10�9 m. This is what allows superconducting

materials to levitate above magnets: the magnetic field can’t penetrate the supercon-

ductor, and has to go around as shown in Figure 4. This squeezes the magnetic field

lines which costs energy, making it energetically preferable for the superconductor to

remain magically suspended in space, rather than falling like other materials that have

more respect for gravity.

Vortices

There’s no such thing as an immovable object. If you push hard enough, by cranking

up the magnetic field, then the superconductor will eventually relent and let it pass.

But the way it does this is interesting.
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This follows because of a novel solution to the equations of motion of the action

(2.102) known as a vortex. (This is also a solution to the relativistic Abelian Higgs

model (2.91).) The vortex solution is time-independent, and extends along one spatial

direction – say the z-direction – as a string-like object. To this end, we will look for

solutions with @0 = @3 = 0 as well as A0 = A3 = 0.

It turns out that no closed form solution to the resulting equations of motion is

known (although it is not hard to construct numerically). So rather than try to solve

the equations directly, we will instead argue that such a solution must exist. The

argument involves a little simple topology.

Consider the (x, y)-plane at z = 0. We will work with 2d polar coordinates x+ iy =

rei'. The trick is to look for solutions such that, for any curve C around the origin, we

have
I

C

r✓ · dx 6= 0 . (2.112)

Our first task is to understand what this means. Usually, the integral of a total deriva-

tive is zero, but in the present case there’s an opportunity for something more inter-

esting to happen. This is because the field ✓ started life as a phase of our scalar � and,

as such, is periodic, taking values ✓ 2 [0, 2⇡). For a periodic field ✓, the line integralH
C
r✓ · dx counts the number of times that ✓ winds as we traverse the curve C.

For example, if the curve C is parameterised by a coordinate ' 2 [0, 2⇡) then we

could consider field configurations of the form ✓ = k'. Because ✓ must be single-

valued, this only makes sense for k 2 Z which is acceptable because ✓ = 0 is equivalent

to ✓ = 2⇡. This, in turn, means that the integral (2.112) is necessarily quantised,

I

C

r✓ · dx =

Z
2⇡

0

d'
d✓

d'
= 2⇡k with k 2 Z . (2.113)

This quantisation doesn’t happen because of anything to do with quantum mechanics.

Instead, it’s a quantisation imposed upon us by simple topological configurations.

Let’s look for configurations in which the phase ✓ has winding (2.112). If this con-

figuration is to have finite energy (per unit length) then, asymptotically, we must have

Di�! 0. This tells us that
I

C

r✓ · dx = 2e

I

C

A · dx = 2e

Z
d2x B3 = 2e� (2.114)
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with � the magnetic flux through the plane. We see that the quantisation of the

winding translates into a quantisation of the allowed magnetic flux

� =
2⇡

2e
k with k 2 Z . (2.115)

I’ve not cancelled the factors of 2 here to stress the fact that, by measuring the minimal

unit of flux, with k = ±1, you can determine that the current is carried by particles

of charge ±2e, rather than the electron charge �e. (Indeed, this was one of the first

experiments to confirm the charge of the condensate in a superconductor.)

The quantisation of winding means that the field configurations in this theory split

into distinct topological sectors, labelled by k 2 Z. Because this integer is determined

by the asymptotic boundary conditions, there’s no way that a field configuration in one

topological sector can move smoothly into a configuration in another. This means that

we can find novel solutions to the equations of motion by minimising the energy (per

unit length) in any given sector.

Let’s think about how this works for the minimum winding k = 1. Because the

winding number is quantised, it can’t change gradually as we vary the radius of the

contour C in (2.113). It must give the same value k = 1 for all choices of C. That’s

all fine until we get to the origin, at which point the phase ✓ gets something of an

identity crisis because it’s supposed to point in all directions at once. The only way

out is to realise that ✓ is the phase of the field �, and so there must be a point in the

(x, y)-plane where � = 0 so that the phase is ill-defined. This means that whenever we

have winding, there is necessarily a small region of non-superconducting phase, with

� = 0, somewhere inside the contour C. That will be the region where it is energetically

preferable for the flux � in (2.115) to penetrate.

We can get an estimate for the size of the region over which the condensate varies.

For simplicity, we set A0 = A = 0 and restrict to time-independent configurations

�(x, y). Then the equation of motion (2.105) reads

r2� = ��(|�|2 � v2) . (2.116)

This equation contains a natural length scale ⇠, given by

⇠2 =
1

�v2
. (2.117)

This is known as the coherence length. It is roughly equal to the inverse mass of

the scalar (2.97) in the relativistic theory: ⇠ =
p
2/m. (That factor of

p
2 is just
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Figure 5. The spatial profile of the magnetic field and condensate for a vortex.

annoying convention.) The coherence length sets the scale over which the condensate

� is roughly zero (or, more precisely, exponentially small) in the vortex solution. In

most superconductors, the coherence length is within a couple of orders of magnitude

of the penetration depth, �, the analogous quantity for the magnetic field.

We could put more meat on this discussion by explicitly solving the equations of

motion for the gauge field and scalar. By making a suitable, rotationally invariant

ansatz, you can reduce these equations to two, coupled ordinary non-linear di↵erential

equations. There is no solution in closed form, but it is straightforward to solve them

numerically. A schematic picture of the resulting condensate and magnetic flux, as a

cut-through in the x-direction, is shown in Figure 5 in the case where � > ⇠, so the

magnetic field spills out over the region where � = 0.

The discussion above took place in the z = 0 plane. But we can repeat the story as

we move the contour C in the z-direction. The winding can’t change, and so the region

with � = 0 and magnetic flux necessarily extends in the z-direction. In other words,

we have a magnetic flux tube. This is the vortex.

The fact that non-linear equations of motion have novel localised solutions like the

vortex is interesting. In particular, the existence of this solution can be traced to the

topological nature of the winding. The general name given to solutions of this kind is

soliton.

For the story above, we restricted attention to the minimal k = 1 sector. What

happens for higher k � 2 is also interesting and depends on the ratio of the two length

scales ⇠/�. There are three possibilities:
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Figure 6. The Abrikosov vortex lattice, observed in the high temperature superconductor

YBCO.

• For ⇠ >
p
2�, the scalar field � spreads out further than the magnetic flux. But

there is a general story that magnetic flux repels, while scalar fields attract. (For

example, the Yukawa force is always attractive.) This means that two vortices

will feel an attractive force, albeit one that is exponentially suppressed on scales

r � ⇠. This is what happens in a Type I superconductor.

What actually happens in practice is that, if you apply a magnetic field to a Type

I superconductor, then the whole material will transition to the normal, metallic

phase at some critical magnetic field Bc. This means that you don’t see vortices

in this case.

• For ⇠ <
p
2�, the magnetic field spreads out further than the scalar field, as

shown in Figure 5. In this case, two nearby vortices experience a repulsive force.

This is known as a Type II superconductor.

If you apply a magnetic field to a Type II superconductor then, initially, the

superconductor will resist. But if you crank up the magnetic field suitably high

then the superconductor will relent by allowing vortices to penetrate. These

vortices repel, and so form a crystal-like structure known as an Abikosov lattice.

• The case ⇠ =
p
2� is of less relevance physically, because you have to fine tune two

length scales, but is the situation with the richest mathematical structure. Now

the attractive scalar force and repulsive magnetic force cancel, at least to leading

order. Somewhat miraculously, it can be shown that this cancellation persists to

all orders and the equations of motion exhibit solutions where k vortices can sit

at k arbitrary points on the plane. These are known as BPS vortices.
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Figure 7. The magnetic field lines between a monopole anti-monopole pair. In a vacuum, the

field lines spread out as a dipole configuration as shown on the left. But in a superconductor,

the field lines form a flux tube as shown on the right, resulting in the confinement of magnetic

monopoles.

Magnetic Monopoles are Confined

There is a lesson to take from the theory of superconductivity that will be important

for particle physics. For this, we set up a thought experiment.

Our thought experiment involves a hypothetical object called a magnetic monopole,

a particle that emits a radial magnetic field

B =
gr̂

4⇡r2
. (2.118)

Here g is the magnetic charge. If you’ve been told that magnetic monopoles can’t exist

because the Maxwell equation r ·B = 0 is sacrosanct, then you’ve been lied to. (See,

for example, the lectures on Gauge Theory for a discussion of how magnetic monopoles

are compatible with everything you know and love.)

Suppose that we have two magnetic monopoles, one with charge g = 1 and the other

an anti-monopole with charge g = �1. If we place these monopoles a distance r apart

in the vacuum, then the magnetic field lines will form the kind of dipole configuration

that is familiar from our first course on Electromagnetism. This is shown on the left in

Figure 7. The potential energy V (r) between two monopoles scales like the Coulomb

force,

V (r) ⇠ g2

r
. (2.119)

Things are more interesting if we put the monopoles inside a superconductor. Now,

the Meissner e↵ect means that it’s no longer energetically preferable for the magnetic
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field lines to spread out all over space. Instead, the field lines will clump together to

form a magnetic flux tube that, at least far from the monopoles, is described by the

vortex solution that we met above. A cartoon of the field lines is shown on the right

of Figure 7. Now the potential energy scales linearly with the separation,

V (r) ⇠ Er (2.120)

where E is the energy per unit length of the vortex. This makes it very di�cult to

separate the monopole and anti-monopole: the further you want to pull them apart,

the more energy it will cost. This is because they are attached by the flux tube which

acts a little like an elastic band. (A little like an elastic band, but not a lot. Hooke’s

law is V ⇠ r2 while here we have linear potential energy, V ⇠ r, corresponding to a

constant force.)

Particles that experience a linear potential, like (2.120), are said to be confined. In

Section 3, we will see that quarks in QCD exhibit a similar behaviour, albeit for more

mysterious reasons.

2.3.3 Non-Abelian Higgs Mechanism

The idea of the Higgs mechanism extends naturally to non-Abelian theories. This is

the context in which we will need it when discussing electroweak theory in Section 5.

One novelty is that the gauge group G need not be broken completely, and there

could be some surviving massless gauge bosons. We will illustrate this with an example.

Consider again the O(3) sigma model that we previously discussed in Section 2.2 in the

context of spontaneous symmetry breaking of global symmetries. This time, however,

we will promote the SO(3) symmetry to a gauge symmetry.

We have a 3-vector of real scalars, �a with a = 1, 2, 3 and define the covariant

derivative

Dµ�
a = @µ�

a + g✏abcAb

µ
�c . (2.121)

Here the ✏ symbol appears in its role as the generators for SO(3),

T a

bc
= �i✏abc . (2.122)

Alternatively, we could view this as an SU(2) gauge theory with the field � transforming

in the adjoint representation. We consider the action

S =

Z
d4x

✓
�1

4
F a

µ⌫
F aµ⌫ +

1

2
Dµ�

aDµ�a � �

2
(�a�a � v2)2

◆
. (2.123)
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Here F a

µ⌫
= @µAa

⌫
� @⌫Aa

µ
+ g✏abcAb

µ
Ac

⌫
. In contrast to our previous Yang-Mills action

(1.91), we’ve written the action in terms of the components of the gauge field, Aa

µ
with

a = 1, 2, 3 rather than packaging them into a 3 ⇥ 3 matrix. (This presentation turns

out to be marginally simpler for the case of SO(3).)

In the ground state, we have � · � = v2. We can make a choice of vacuum, say

� = (0, 0, v). When we were talking about global symmetries, we saw that this broke

G = SO(3) ! H = U(1) (or, equivalently, SO(2)), and the same is true now that

the symmetries are gauged. This means that we expect a massless photon to remain,

corresponding to H = U(1), while the other two gauge bosons should become massive

due to the Higgs mechanism. We will now see that this is indeed what happens.

As in the Abelian case, we sit in our chosen vacuum and look at fluctuations. The

key is in finding the right parameterisation. We choose

�a(x) = ei(⇠
1
(x)T

1
+⇠

2
(x)T

2
)

0

BB@

0

0

v + �(x)

1

CCA (2.124)

with T 1 and T 2 the appropriate SO(3) generators (2.122). If we were dealing with a

global G = SO(3) symmetry, then the fields ⇠1(x) and ⇠2(x) would be the Goldstone

bosons. (They are related to the scalars that we called ✓(x) and '(x) in the O(3)

sigma-model (2.56).)

Crucially, however, we’re now thinking about the situation in which SO(3) is gauged,

and the two would-be Goldstones ⇠1(x) and ⇠2(x) can both be removed by an SO(3)

gauge transformation which acts on the scalar as �! ei↵
a
T

a
� for some choice of ↵i(x).

In this way, they get eaten by the gauge fields A1

µ
and A2

µ
, just as in the Abelian case.

In the resulting unitary gauge, the gauge fields and remaining fluctuating scalar �(x)

are then described by the action

S =

Z
d4x

✓
�1

4
F a

µ⌫
F aµ⌫ +

1

2
@µ�@

µ� +
1

2
g2(v + �)2(A1

µ
A1µ + A2

µ
A2µ)� V (�)

◆

with

V (�) =
�

2
�2(� + 2v)2 . (2.125)

As we anticipated, we have two massive gauge bosons, A1

µ
and A2

µ
, each with mass

m2

�
= g2v2. But the gauge boson A3

µ
remains massless. This is the photon associated

to the unbroken symmetry group H = U(1). There is also the massive Higgs field �

with mass m2

�
= 4�v2.
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As we commented previously, the gauge boson and Higgs boson have parametrically

di↵erent masses, so it naively looks like it’s possible to take a limit such that m�/m� !
1 and so we can decouple the Higgs and be left with a theory of only massive interacting

gauge bosons. This time, however, the limit turns out to be problematic. This can’t

be seen in the classical analysis that we’re focussing on here, but requires us to look

more closely at the quantum amplitudes. Ultimately, it boils down to the fact that the

theory of purely Goldstone modes is an interacting sigma-model (2.56) and, as such

is non-renormalisable. This contrasts with the Abelian situation where the Goldstone

that gets eaten is free before gauging. We will return to this issue in Section 5 when

we discuss the Higgs mechanism in the Standard Model.
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