
5 Electroweak Interactions

In this section, we turn to the weak force. But, in contrast to the strong force, if we

want to understand the weak force then we really need to take a step back and take in

the full structure of the Standard Model. This is because of the single most important

feature of the weak force: it breaks parity.

The weak force breaks parity because it is a chiral gauge theory. This means that

the gauge bosons interact di↵erently with the left- and right-handed fermions. And, as

we saw in Section 4, this forces us to grapple with the issue of gauge anomalies. And

this, in turn, means that we must look at all the fermions to check consistency.

5.1 The Structure of the Standard Model

As we advertised in the introduction, the Standard Model is built on the gauge group

G = U(1)⇥ SU(2)⇥ SU(3) . (5.1)

Here U(1) is a force known as hypercharge. It is not electromagnetism. We will see how

electromagnetism emerges from the Standard Model in Section 5.2 when we discuss

electroweak symmetry breaking. The group for hypercharge is sometimes denoted

as U(1)Y to distinguish it from electromagnetism. Correspondingly, the charges are

usually denoted as Y .

There are a collection of fermions that are charged under this gauge group. The

fermions for a single generation are:

U(1) SU(2) SU(3)

QL
1

6
2 3

LL �1

2
2 1

uR
2

3
1 3

dR �1

3
1 3

eR �1 1 1

(5.2)

What a weird collection of charges and representations! Why these? We’ll answer this

question below. First some comments.

The hypercharges are taken to be fractional. In some sense, this is merely a con-

vention: we could just have well rescaled the charges so that QL has charge +1 and

eR charge �6. However, as we will see, the slightly odd fractional scaling above will

reproduce our familiar convention for electric charges, in which the electron has charge

�1, the up quark charge 2

3
and the down quark charge �1

3
.
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Each of the fields transforms in either the fundamental representations of SU(2)

or SU(3), denoted by 2 and 3 respectively, or in the singlet representation denoted

by 1. This means that a bold 1 for a non-Abelian group is telling us that a field

doesn’t experience that force. (In contrast, a charge 1 for the U(1) means that the field

very much experiences that force; only charge 0 fields are neutral under U(1).) We will

sometimes denote the representations as (R2,R3)Y , withR2 andR3 the representations

of SU(2) and SU(3) respective, and Y the hypercharge. So, for example, the field QL

transforms as (2,3)1/6.

Each of the fields in the table is a Weyl fermion, either left-handed or right-handed as

denoted by the L and R subscripts. As we saw in Section 1, the conjugate fermion has

the opposite handedness. So, for example, Q̄L is a right-handed fermion that transforms

as (2, 3̄)�1/6. (You might have thought that we should have written 2̄ but the doublet

of SU(2) is pseudoreal, meaning that 2̄ ⇠= 2.)

The fermions that transform in the 3 of SU(3) are the quarks that we met in Section

3.1. That statement is straightforwardly true for the right-handed quarks, which we’ve

labelled uR and dR for the up quark and down quark. But there is just a single left-

handed quark QL, albeit one that transforms in the 2 of SU(2). Indeed, it’s only the

left-handed fermions that transform in the 2 of SU(2). How should we think of the

associated a = 1, 2 index? In other words, what’s the analog of colour for the SU(2)

gauge group?

It turns out that the SU(2) index is the names that we give to di↵erent particles.

We often write the SU(2) gauge structure of the left-handed fermions as

QL =

 
uL

dL

!
and LL =

 
⌫L

eL

!
. (5.3)

For QL, we interpret the SU(2) doublet components as the left-handed up quark and

left-handed down quark. For LL, which we refer to as the left-handed lepton, we

interpret the SU(2) doublet as the left-handed neutrino ⌫L and left-handed electron

eL.

This part of the story is very surprising. For the strong force, the SU(3) gauge

symmetry rotates di↵erent colours into each other. That’s intuitive: we think that

the red quark behaves very much like the blue quark. The analogous statement of

(5.3) is that the SU(2) gauge symmetry rotates, say, the left-handed neutrino into the

left-handed electron. But these particles are nothing like each other, neither in mass

nor their interactions! How can they possibly be related by a gauge symmetry? The
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answer, as we shall see, is that the Higgs field spontaneously breaks the SU(2) gauge

symmetry and, when the dust settles, leaves ⌫L and eL with very di↵erent properties.

Indeed, at this point it’s really misleading to write (5.3) because, before we talk about

spontaneous symmetry breaking, there’s really no sense in which the top component

of QL is related to the up quark and the second component to the down quark. These

properties will only manifest themselves after the Higgs mechanism (and, even then,

only when we’ve made an arbitrary choice of vacuum structure).

Including the gauge degrees of freedom, there are a total of 15 fermions listed above.

(The left-handed quark QL has 2⇥3 = 6. The total number is then 6+2+3+3+1=15.)

It is possible that we should augment these 15 fermions with one additional one. This

is a right-handed neutrino

U(1) SU(2) SU(3)

⌫R 0 1 1
(5.4)

Unfortunately, we don’t yet know if the right-handed neutrino ⌫R exists or not! This is

deeply unsatisfactory and the situation will hopefully change in the near future. The

main reason for our ignorance is that, as shown above, ⌫R doesn’t interact with any

of the forces. That makes it hard to detect and it is sometimes referred to as a sterile

neutrino. It’s interactions with the other particles are only through the Higgs field and

it manifests itself in the way in which neutrinos get masses. We will describe this in

Section ??. On aesthetic grounds, things look marginally nicer if ⌫R exists, in the sense

that each particle has a right-handed fermion and a left-handed counterpart sitting

in the doublet of SU(2). But this is not a particularly compelling argument and the

situation should ultimately be determined by experiment.

There is one final field in the Standard Model: this is the Higgs boson which we

denote as H. It is the only spin 0 particle in the Standard Model and has quantum

numbers

U(1) SU(2) SU(3)

H 1

2
2 1

(5.5)

These are the same quantum numbers as L̄L. As we will see, it turns out that there is

something magical about this choice which allows the whole jigsaw to fit together.

5.1.1 Anomaly Cancellation

The Standard Model is a chiral gauge theory. The first thing that we have to do is

check that it makes sense! As we’ve seen in Section 4.1, there are a number of stringent
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consistency checks that any chiral gauge theory must pass. You will probably not be

surprised to hear that the Standard Model, and hence our universe, is mathematically

consistent. But it should give you a warm fuzzy feeling to check this explicitly.

Only the charged fermions (5.2) contribute to the anomalies. We can go through

each anomaly in turn and check that it cancels. Some of these are straightforward. For

example, for the SU(3)3 anomaly, we require
X

left�handed

A(R) =
X

right�handed

A(R) . (5.6)

All fermions are either singlets with A(1) = 0 or sit in the fundamental representation

with A(3) = 1. Clearly there are two right-handed quarks uR and dR. There is only

the single left-handed quark QL but, when computing the anomaly, we should sum

over the SU(2) gauge index. (From the perspective of the SU(3) gauge field, the

anomaly doesn’t know if QL is two distinct fields, or a single field transforming as an

SU(2) doublet.) The upshot is that
P

A(R) = 2 for both left-handed and right-handed

quarks.

As we mentioned in Section 4.1, there is no perturbative SU(2)3 anomaly, only the

more subtle Witten anomaly which means that we must have an even number of SU(2)

doublets. This is achieved because there are three in QL (when computing the SU(2)

anomaly, we should sum over SU(3) indices) and a single doublet in LL. Note that the

Witten anomaly ties together the quarks and leptons: the theory doesn’t make sense

with just QL alone: we must also have LL.

The remaining gauge anomalies involve the U(1) factor and are even more intricate.

The U(1)3 anomaly requires matching between the sum of the cubes of the charges
X

left�handed

Y 3 =
X

right�handed

Y 3 . (5.7)

As above, in all of these calculations, we must remember to multiply by the dimension

of the representation of the non-Abelian factors. We have

X

left�handed

Y 3 = 6⇥
✓
1

6

◆3

+ 2⇥
✓
�1

2

◆3

= �2

9

X

right�handed

Y 3 = 3⇥
✓
2

3

◆3

+ 3⇥
✓
�1

3

◆3

+ (�1)3 = �2

9
. (5.8)

So that works.
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We also have to check the mixed anomalies between two factors of the gauge group.

The SU(2)2 ⇥ U(1) anomaly requires that
X

left�handed

Y =
X

right�handed

Y (5.9)

where the sum is only over those fermions that sit in the 2 of SU(2). This is satisfied

by virtue of

SU(2)2 ⇥ U(1) : 3⇥
✓
1

6

◆
+

✓
�1

2

◆
= 0 . (5.10)

Meanwhile, the SU(3)2 ⇥ U(1) anomaly requires that (5.9) holds when we sum over

the quarks that sit in the 3 of SU(3) which also holds, by virtue of

SU(3)2 ⇥ U(1) : 2⇥
✓
1

6

◆
=

2

3
� 1

3
. (5.11)

Finally, we want to be able to couple our theory consistently to gravity. This requires

that (5.9) holds when we sum over all fermions. We have

X

left�handed

Y = 6⇥ 1

6
+ 2⇥

✓
�1

2

◆
= 0

X

right�handed

Y = 3⇥ 2

3
+ 3⇥

✓
�1

3

◆
� 1 = 0 . (5.12)

The sum over left- and right-handed fermions vanish individually, which is stronger

than is needed for anomaly cancellation. We see that, happily, our universe makes

sense. This is cause for celebration.

This also explains a statement that we made in the introduction to these lectures:

there is a remarkable unification in the Standard Model. It is not the usual kind of

unification, where seemingly di↵erent phenomena are seen to have the same underlying

cause. Instead, it is something more subtle: the quarks, electron and neutrino are

unified by the need for mathematical consistency. If you remove one of them, then the

delicate cancellations that we saw above fail. The whole collection of fermions (5.2) is

needed for our theory to hold together.

There are variations on this calculation that we could play. For example, we could

keep the matter content of (5.2), but allow the hypercharges Y to be arbitrary. We

could then ask: what values of hypercharge are consistent? It turns out that there are

two possibilities: one gives a non-chiral theory, the other is (up to rescaling) the world

you inhabit. You will be o↵ered the opportunity to do this, and a related calculation,

on the examples sheet.
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5.1.2 Yukawa Interactions

Because the Standard Model is a chiral gauge theory, it’s not possible to write down

gauge invariant mass terms for the fermions. That would need left- and right-handed

fermions to transform the same way under the gauge symmetry which, as shown in

(5.2), they do not. This is striking: it means that all the fermions in the Standard

Model are naturally massless! Needless to say, that’s not our everyday experience and

something must happen along the way to change the situation.

What happens is that all fermions interact with the Higgs boson. We will tell the

full story of how they get mass later, but for now we can look at the form of these

interactions.

The Higgs field plays no role in the anomaly cancellation story above. But its quan-

tum numbers (2,1)1/2 under the gauge group restrict its couplings to the fermions.

And, as we now show, the quantum numbers (5.5) are such that it can couple to all

fermions through Yukawa couplings.

First, consider the quarks. We can form fermion bilinears which are Lorentz scalars

and singlets under SU(3) by contracting Q̄L with either uR or dR. From (5.2), we see

that Q̄LuR has gauge quantum numbers (2̄,1)+1/2 and Q̄Ldr has (2̄,1)�1/2. We can

then form a gauge invariant Yukawa term by contracting these with either H or H†.

At this point, we need to say a word about how the SU(2) representations combine.

Given two SU(2) vectors xa and za, with a = 1, 2, each of which transform in the 2

of SU(2), there are two ways to form singlets. We can either write x†z = x̄aza which

is what we would call a “meson” in the context of the strong force. Or we can write

xz = ✏abxazb, making use of the epsilon symbol. This is what we would call a “baryon”

for the strong force. The group SU(2) is special because you get to make singlets in

two di↵erent ways out of just two vectors. More mathematically, this is the statement

that the representation 2 is pseudoreal because given xa in the 2, we can always form

✏abxb in the 2̄.

For us, Q̄L naturally sits in the 2̄ so we can contract it with H which sits in the 2.

But we need that epsilon symbol if we are to contract it with H†. To this end, it’s

common to define

H̃a = ✏abH†
b

(5.13)

with a, b = 1, 2 the SU(2) gauge indices. We can then construct gauge invariant Yukawa

couplings with the quarks of the form

LYuk = �yd Q̄LHdR � yu Q̄LH̃uR + h.c. . (5.14)
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Here yd and yu are Yukawa coupling constants. Both of these terms are neutral under

hypercharge and, by construction, also singlets under SU(2)⇥ SU(3).

We can also write down Yukawa interactions with the leptons. This time we have

the bilinears L̄LeR with quantum numbers (2̄,1)�1/2 and, if the right-handed neutrino

exists, L̄L⌫R with quantum numbers (2̄,1)+1/2. We can see that both of these also have

gauge invariant Yukawa interactions with the Higgs

LYuk = �ye L̄LHeR � y⌫ L̄LH̃⌫R + h.c. . (5.15)

Again, ye and y⌫ are Yukawa coupling constants and, as above, the neutrino Yukawa

term with H† should have the SU(2) gauge indices contracted with an ✏ab.

If we have a right-handed neutrino ⌫R, then there is one further term that we can

add. This is a Majorana mass of the kind we introduced in (1.59). It’s possible only

for ⌫R because this fermion isn’t charged under the gauge group,

LMaj = M ⌫R⌫R + h.c. . (5.16)

We’ll discuss this further in Section ??.

5.1.3 Three Generations

For reasons that remain mysterious, the pattern of fermions presented in (5.2) is re-

peated twice over. Mathematically, it is straightforward to incorporate this: we just

add a flavour index i = 1, 2, 3 to each of the fermions. We ascribe these additional

fields names that we met in the introduction: strange and charm, and bottom and top

for the quarks. We write these as

di
R
=
�
dR , sR , bR

 
: (1,3)�1/3

ui

R
=
�
uR , cR , tR

 
: (1,3)2/3 (5.17)

and, writing the SU(2) doublets explicitly,

Qi

L
=

( 
uL

dL

!
,

 
cL

sL

!
,

 
tL

bL

! )
: (2,3)1/6 (5.18)

As before, it’s really premature to write this: the labelling only makes sense after we

have taken into account the Higgs mechanism.
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The names that we give to the leptons are the electron, muon, and tau. We write

ei
R
=
�
eR , µR , ⌧R

 
: (1,1)�1 (5.19)

and

Li

L
=

( 
⌫ e

L

eL

!
,

 
⌫ µ

L

µL

!
,

 
⌫ ⌧

L

⌧L

! )
: (2,1)�1/2 (5.20)

where, again, the labelling is premature and should be taken with a grain of salt before

the Higgs mechanism does its thing.

Meanwhile, the Higgs itself is una↵ected by this increase in generations: there is just

a unique Higgs.

The fate of the right-handed neutrino ⌫R is less certain. It seems tempting to also

add an i = 1, 2, 3 index to this field too,

⌫i
R
=
�
⌫ e

R
, ⌫ µ

R
, ⌫ ⌧

R

 
: (1,1)0. (5.21)

Because each of these is sterile, meaning uncharged under the gauge group, they do

not interact directly with any of the forces, nor contribute to anomaly cancellation. It

is quite possible there are no right-handed neutrinos or, indeed, any number!

As far as the gauge interactions are concerned, each generation experiences the same

forces as the others. In particular, anomaly cancellation happens within each individual

generation. There is, as far as we can tell, no necessity to introduce three generations

rather than, say, one or seventeen.

The place where the additional generations really add a level of complexity and

richness is in the Yukawa couplings. In contrast to the gauge couplings, the Yukawa

couplings involve a great deal of inter-generational mixing. The most general Yukawa

interactions that we can write down replace each of the coupling constants yu, yd, ye

and y⌫ with 3⇥ 3 matrices,

LYuk = �yd
ij
Q̄i

L
Hdj

R
� yu

ij
Q̄i

L
H̃uj

R
� ye

ij
L̄i

L
Hej

R
� y⌫

ij
L̄i

L
H̃⌫j

R
+ h.c. . (5.22)

We will devote Section 6 to understanding the structure of these Yukawa couplings.

5.1.4 The Lagrangian

Usually when introducing a quantum field theory, the first thing that we do is write

down an action. But that’s not the case here: instead, we’ve discussed the symmetry

structure of the theory. The reason this is sensible is because the symmetries are

entirely su�cient to determine the structure of the action.
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The game that we play is to write down all possible marginal and relevant terms.

These terms must be Lorentz invariant and gauge invariant, but otherwise you write

down anything that you want. Despite the plethora of fields, there isn’t too much

freedom. The full Lagrangian takes the form

LSM = Lgauge + Lfermi + LHiggs + LYuk . (5.23)

The first two of these are simply kinetic terms for our fields. We will need to give

our gauge fields some names. Back in Section 3, we already dubbed the SU(3) gluon

field strength Gµ⌫ . We will call the SU(2) gauge field strength Wµ⌫ = @µW⌫ � @⌫Wµ �
ig[Wµ,W⌫ ] and the U(1) hypercharge field strength Bµ⌫ = @µB⌫ � @⌫Bµ. The gauge

field kinetic terms are then

Lgauge = �1

4
Bµ⌫B

µ⌫ � 1

2
TrWµ⌫W

µ⌫ � 1

2
TrGµ⌫G

µ⌫ . (5.24)

The kinetic terms for the fermions are

Lfermi = �i
3X

i=1

⇣
Q̄i

L
�̄µDµQ

i

L
+ L̄i

L
�̄µDµL

i

L
+ ūi

R
�µDµu

i

R

+ d̄i
R
�µDµd

i

R
+ ēi

R
�µDµe

i

R
+ ⌫̄i

R
�µ@µ⌫

i

R

⌘
. (5.25)

The exact form of these kinetic terms depends on the representation of the fermion

field. So, for example, QL is charged under each of the three gauge fields and has

kinetic term

DµQL = @µQL � igsGµQL � igWµQL � i

6
g0BµQL . (5.26)

There are similar expressions for all other fields. Buried within these covariant deriva-

tives are the coupling constants: gs for the SU(3) strong force, g for the SU(2) weak

force, and g0 for the U(1) hypercharge.

The Lagrangian for the Higgs term includes both its kinetic term and potential

LHiggs = DµH
† DµH � �

✓
H†H � v2

2

◆2

. (5.27)

The potential is written to emphasise that the minimum will lie away from H = 0. We

will explore the consequences of this shortly. The Higgs kinetic term also follows from

its gauge quantum numbers,

DµH = @µH � igWµH � i

2
g0BµH . (5.28)

Finally, the Yukawa terms are given in (5.22).
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We can start to count the parameters in the Standard Model. There are three gauge

couplings, gs, g and g0, one for each gauge group. And there are two parameters � and

v2 in the Higgs potential. Then there are the plethora of Yukawa couplings that we

will explore further (and count!) in Section 6.

I’ve omitted two possible terms from the Lagrangian (5.23). One is the theta term

for the strong force that we met in Section 3.4. This is omitted on the grounds that,

experimentally, ✓ ⇡ 0. Still, if we’re accounting for parameters of the Standard Model

then we should certainly include this one. The second term that I’ve omitted is the

Majorana masses for the right-handed neutrinos, on the slightly weaker grounds that

we don’t know if they’re there or not. We’ll discuss this more in Section ??.

There’s a lot of repetition in the Standard Model Lagrangian as written. I think that

you could be forgiven for advertising it in the more compact form

L = �1

4

X

a

F a

µ⌫
F aµ⌫ + i

X

i

 ̄i�̄
µDµ i + |DH|2 � V (H)� y H + h.c. . (5.29)

Admittedly, there’s a lot of heavy lifting going on in that
P

a
and

P
i
. Still, it’s

remarkable that everything we know about the universe can be distilled in such a way.

You can sometimes find the Standard Model Lagrangian written out in full compo-

nent form, in which case it looks something like what’s shown in Figure 16. This is

usually done by someone trying to convince you that the theory is inelegant (typically

because they have their own wares to sell). This always strikes me as being deliber-

ately obtuse, like writing out haiku in binary in an attempt to argue that its beauty

is over-rated. The beauty of the Standard Model isn’t in the form of the Lagrangian:

it’s in the consistency conditions inherent in anomaly cancellation that we have taken

pains to explain in these lectures.

5.1.5 Global Symmetries

We’ve built the Standard Model around the gauge group G = U(1)⇥ SU(2)⇥ SU(3).

But it’s natural to ask: what are the global symmetries of the Standard Model?

In the absence of Yukawa terms, this is an easy question to answer: the classical

theory has a U(3)5 global symmetry if there are no right-handed neutrinos, and a

U(3)6 global symmetry if there are right-handed neutrinos. Here the 3 corresponds to

the three generations, and we get a global symmetry group acting on each of QL, LL,

uR, dR, eR and (possibly) ⌫R.
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Figure 16. If you want to write the Standard Model Lagrangian like this, then you should

probably write the Einstein-Hilbert action by expanding out L =
p
�gR in terms of the

metric gµ⌫ .

But the Yukawa terms (5.22) break this symmetry. As we will see later, the values of

the Yukawas are di↵erent for di↵erent generations, ultimately resulting in their di↵erent

masses. There are some approximate symmetries remaining, like isospin or the eightfold

way, but when the dust settles the classical theory has just two exact global symmetries.

This is U(1)B⇥U(1)L, corresponding to baryon number and lepton number respectively.

The charges of the various fields under these two U(1)0s are

QL LL uR dR eR ⌫R

U(1)B
1

3
0 1

3

1

3
0 0

U(1)L 0 1 0 0 1 1

(5.30)

You can see that U(1)B acts only on quarks and U(1)L acts only on leptons. (In

fact, U(1)B is essentially the same as the vector symmetry U(1)V that we saw when

discussing QCD in Section 3.) The normalisation of 1

3
for the charge of the quarks is

just convention: it guarantees that the proton and neutron each have baryon number
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+1. These symmetries U(1)B and U(1)L act the same on each generation. (The Yukawa

interactions include couplings between generations which means that there’s no global

symmetry which acts on one generation, leaving the others untouched.)

Note that we didn’t impose either of these global symmetries U(1)L and U(1)B from

the outset. Instead, we just wrote down all possible terms consistent with the gauge

symmetry and discovered that the end result has U(1)L⇥U(1)B as a global symmetry.

In this sense, we view these symmetries as accidental. There is no particular reason

to think that they survive to arbitrarily high energies (and, indeed, some reasonably

good reasons that we shall explain shortly to think that they do not survive). This

means, in particular, that if we were to add irrelevant terms to the Standard Model in

an attempt to capture the high energy physics then we should include such terms that

break U(1)B and U(1)L.

ABJ Anomalies Revisited

As we saw in Section 4.2, just because a U(1) symmetry is a good symmetry of the

classical theory, doesn’t mean that it is necessarily a symmetry of the quantum theory.

This is because it may su↵er from an ABJ anomaly. And, indeed, both U(1)B and U(1)L
su↵er ABJ anomalies. There is an ABJ anomaly with SU(2) gauge group (because only

left-handed fermions carry SU(2) charge), and also with U(1) hypercharge. For the

latter, the anomaly for a single generation is given by

X

left

BY 2 �
X

right

BY 2 =
1

3

 
6⇥

✓
1

6

◆2

� 3⇥
✓
2

3

◆2

� 3⇥
✓
�1

3

◆2
!

= �1

2
(5.31)

and

X

left

LY 2 �
X

right

LY 2 =

 
2⇥

✓
�1

2

◆2

� (�1)2
!

= �1

2
. (5.32)

So neither U(1)B nor U(1)L are good symmetries of the quantum theory. However,

in contrast to the ABJ anomaly of the axial symmetry of the strong force, these ABJ

anomalies are associated to the gauge fields of the weak force. And the weak force

is, as we shall see, weak. The upshot is that although neither U(1)B nor U(1)L are

strictly symmetries of the Standard Model, they are both extremely good approximate

symmetries. Indeed, neither has been observed to be violated!

We can quantify this. If we focus just on the SU(2) anomaly, then the conservation

of baryon number picks up a term analogous to (4.62),

@µJ
µ

B
=

12g2

8⇡2
TrW ?

µ⌫
W µ⌫ . (5.33)
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where the factor of 12 arises because there are four SU(2) doublets in each of the three

generations, and 3⇥ 4 = 12. There is a similar contribution from Bµ⌫ .

The kind of process that can violate baryon number is an electroweak instanton.

There is a story of fermion zero modes that we will not tell but the end result is that

electroweak instantons cannot, for example, allow a proton to decay into a positron:

the proton is absolutely stable in the Standard Model. Instead, these instantons can

allow a collection of three baryons to decay, where the “three” arises because it’s the

number of generations. This means, for example, that a 3He nucleus could decay. But

the decay is due to instantons and these come with a characteristic suppression factor

of e�8⇡
2
/g

2
, as in (3.120). For electroweak instantons, this turns out to give a lifetime

of around 10173 years! (The age of our universe is roughly 1010 years.) That’s why

baryons seem stable.

All of which means that, for all practical purposes, both baryon number and lepton

number are good symmetries. But, if you’re a purist (and willing to wait 10173 years)

then you should accept that neither are good symmetries.

Importantly, however, the ABJ anomalies for both U(1)B and U(1)L are the same.

This is true both for the mixed anomaly with U(1)Y shown in (5.31) and (5.32) and

also for the mixed anomaly with SU(2). This means that the combination B � L is

non-anomalous. This is the one exact global symmetry of the Standard Model.

We still have to check if there is a gravitational contribution to the B � L anomaly.

You can check that this vanishes only if there is a right-handed neutrino.

The Weak Theta Term

For the strong force, we can write down a theta term. As we discussed in Section 3.4,

this leads to a mystery because, experimentally, ✓ ⇡ 0 and we don’t know why. This is

the strong CP problem.

What about the theta term for the other two gauge groups, U(1) and SU(2)?

For Abelian gauge theories, we can write down a theta term but it doesn’t a↵ect

the local dynamics, such as masses or cross-sections or decay rates. (This is essentially

because there are no U(1) instantons.) Instead, the e↵ects are much more subtle. For

example, this term would endow magnetic monopoles with electric charge through the

Witten e↵ect. We don’t have any experimental insight into these features of the theory

and so the U(1) theta term remains unknown to us.
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That leaves the SU(2) theta term which takes the form

S✓ =
g2✓W
16⇡2

Z
d4x TrWµ⌫

?W µ⌫ . (5.34)

Is this another term that we should add to the Standard Model action? The answer

is no. And the reason is because of the global U(1)L (or, equivalently U(1)B) ABJ

anomaly. As shown in (4.41), if we act with a U(1)L transformation of ei↵L, where L

is the charge of each fermion, then the anomaly can be re-interpreted as shifting the

theta term

U(1)B : ✓W ! ✓W + 3↵ (5.35)

where the factor of 3 comes from the existence of three generations. This means that

the value of ✓W is unphysical and does not a↵ect the physics. Said di↵erently, we

can always use the anomalous U(1)L symmetry to set ✓W = 0. There is no weak CP

problem. In contrast, this mechanism doesn’t work for the strong force.

Black Holes

We have seen that the Standard Model has just a single U(1) global symmetry, namely

B�L. But the standard lore is that there are no global symmetries in the fundamental

laws of physics. The main argument for this is black holes.

Black holes aren’t black. Hawking taught us long ago that they slowly emit radiation

due to quantum e↵ects. While there is much that we don’t understand about quantum

gravity, the existence of Hawking radiation stands out as one of the few robust and

trustworthy calculations that we can do. The prediction of this radiation follows from

the known laws of physics and doesn’t rely on any speculative ideas about what lies

beyond.

If we wait long enough (and we’re talking ridiculously long times here), then any

black hole will eventually evaporate and disappear. So we can ask: what became of

the stu↵ that we threw in?

First, the black hole can’t destroy electric charge. If you throw, say, an electron into

a black hole then the black hole itself now carries the electric charge. Moreover, this is

visible outside of the event horizon because the black hole emits an electric field and

we can detect the electric field by Gauss’ law. (This is the Reissner-Nordström solution

that we described in the lectures on General Relativity.) That electric field can’t just

disappear. So, as the black hole evaporates, it must eventually spit out a charged

particle – maybe an electron, maybe an anti-proton – which carries the electric charge.

The process of black hole evaporation must respect conservation of electric charge.
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In contrast, there is nothing to prevent black holes from destroying baryons and

leptons. When a black hole forms from the collapse of a star, it will typically contain

around 1057 protons, and roughly the same number of electrons. But there’s no way

to detect the baryons from outside the black hole. Furthermore, as the black hole

evaporates there’s no reason that it should spit back these particles in tact. In fact,

the vast majority of the mass of a black hole will be emitted in gravitational and

electromagnetic radiation rather than baryons or leptons. In this way, we expect black

hole evaporation to respect neither baryon number nor lepton number conservation.

This means that, in a full theory of quantum gravity, one doesn’t expect any global

conservation laws, since one can always construct states in the theory in which the

symmetry is violated. What does this mean for our parochial Standard Model? The

usual answer is that we shouldn’t view B � L as something sacrosanct, but rather

just a symmetry that emerges in the infra-red simply because there are no relevant

or marginal operators that we can write down that violate it. When we get to high

energy scales – and certainly by the time we get to the Planck scale – we expect it to

be violated.

5.1.6 What is the Gauge Group of the Standard Model?

The title of this section seems a little daft. After all, we’ve been running through these

lectures safe in the knowledge that the gauge group of the Standard Model is

G = U(1)⇥ SU(2)⇥ SU(3) . (5.36)

Or is it?! In fact, there’s a subtlety here.

To see this subtlety, consider the action on all fermions by the centre (�1) 2 SU(2)

and e2⇡i/3 2 SU(3). A quick check will confirm that

QL ! !�1QL , LL ! !3LL , uR ! !2uR , dR ! !2dR , eR ! eR (5.37)

with ! = e2⇡i/6. If we simultaneously act with the U(1) hypercharge transformation

e2⇡iY , then the result is that every fermion is either left unchanged, or picks up a minus

sign. But a minus sign on a fermion is just part of the Lorentz group. The upshot is

that there is a Z6 subgroup of G that does not act on the fermions (or, indeed, on the

Higgs).

This means that it’s tempting to say that the gauge group of the Standard Model is

G =
U(1)⇥ SU(2)⇥ SU(3)

�
(5.38)
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where � = Z6. But this too is overly hasty! The honest answer is that we don’t know

what the gauge group of the Standard Model is. There are four di↵erent choices, given

by (5.38) where � is a subgroup of Z6, meaning � = Z6, Z3, Z2 or nothing at all.

Strictly, these are all di↵erent quantum field theories, although the di↵erences between

them are rather subtle and don’t show up in correlation functions of local operators.

This means, among other things, that the di↵erences between them won’t show up in

particle colliders like the LHC. Instead, one has to look to more formal aspects of the

theories to see the di↵erence, like the spectrum of allowed magnetic monopoles or what

happens when the theory is placed on a manifold with non-trivial topology9 .

5.2 Electroweak Symmetry Breaking

We now have the full Standard Model laid out before us in (5.23). The next question

is: how does it give rise to the physics that we know and love? The answer largely lies

in the role that the Higgs plays.

The dynamics of the Higgs boson is governed by the action (5.27)

LHiggs = DµH
† DµH � �

✓
H†H � v2

2

◆2

. (5.39)

The potential is such that it causes the Higgs to condense. This breaks the U(1)⇥SU(2)

gauge symmetry under which the Higgs is charged, giving masses to the gauge bosons

in the way we saw in Section 2.3. And, through the Yukawa interactions (5.22), it also

gives masses to the fermions. In this section, we describe these e↵ects.

Including the Maxwell and Yang-Mills terms for the U(1) ⇥ SU(2) gauge fields, we

have the Lagrangian

L = �1

4
Bµ⌫B

µ⌫ � 1

2
TrWµ⌫W

µ⌫ + LHiggs . (5.40)

To understand the physics, we need the Higgs covariant derivative which is given by

DµH = @µH � igWµH � i

2
g0BµH . (5.41)

This reflects the charges (5.5).

9For more details on these ideas, see Ofer Aharony, Nati Seiberg, and Yuji Tachikawa’s Reading
Between the Lines paper. Applications of these ideas to the Standard Model were given in Line
Operators in the Standard Model.
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In the ground state of the potential (5.27), we have H†H = v2/2. As usual, we have

to pick a direction for the Higgs vacuum expectation value to point in. We choose

hHi = 1p
2

 
0

v

!
. (5.42)

Then we parameterise the fluctuations of the Higgs as

H = ei⇠
A
(x)T

A 1p
2

 
0

v + h(x)

!
. (5.43)

Here h(x) is a real scalar field, TA = 1

2
�A with A = 1, 2, 3 are the generators of SU(2)

and ⇠A(x) are the would-be Goldstone bosons. As usual, they are eaten by the gauge

bosons as part of the Higgs mechanism. A quick way to say this is to observe that

we can just eliminate the factor of ei⇠
A
T

A
in (5.43) through a gauge transformation.

Alternatively, to make contact with the what we saw in Section 2.3, we can look at the

covariant derivative. If we write ⌦(x) = ei⇠
A
(x)T

A
, then we have

DµH =
1p
2
⌦

  
0

@µh

!
� i


g

✓
⌦�1Wµ⌦+

i

g
⌦�1@µ⌦

◆
+

g0

2
Bµ

� 
0

v + h

!!
.(5.44)

Here we see that the overall field ⌦ sits in a way that can be eliminated by a gauge

transformation (1.82).

We can always choose to work in unitary gauge in which, through a judicious SU(2)

rotation, we simply take ⇠A(x) = 0 or, equivalently, ⌦ = 1. In this case, the Lagrangian

(5.40) becomes

L = �1

4
Bµ⌫B

µ⌫ � 1

2
TrWµ⌫W

µ⌫ +
1

2
@µh@

µh� �h2

✓
v +

h

2

◆2

� 1

8
(v + h)2

�
g2(W 1

µ
)2 + g2(W 2

µ
)2 + (gW 3

µ
� g0Bµ)

2
�
. (5.45)

To get the second line, we expanded out SU(2) gauge boson fields Wµ in terms of the

generators TA = 1

2
�A, and contracted them with the Higgs field. From this we can

read o↵ the masses from the quadratic term. There is a �v2h2 term that gives a mass

for h. This is the particle that, experimentally, we call the Higgs boson. It’s mass is

measured to be

Mh =
p
2�v ⇡ 125 GeV . (5.46)

We see that this mass is a combination of the Higgs vev v and the dimensionless coupling

�.
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We can also read o↵ the masses of the gauge bosons from the second line in (5.45).

Both W 1

µ
and W 2

µ
have the same mass mW = vg/2. It will prove fruitful to combine

them into the complex combination

W±
µ

=
1p
2
(W 1

µ
⌥ iW 2

µ
) . (5.47)

Note the flip of the ± sign on the right-hand side. We will see shortly that this ensures

that W± has electric charge ±1. The experimentally measured mass of these spin 1

bosons is

MW =
gv

2
⇡ 80 GeV . (5.48)

This mass is set by the Higgs vev v and the SU(2) gauge coupling g.

The final massive gauge boson is slightly more interesting. We see from (5.45) that it

is a linear combination of the W 3

µ
which is part of SU(2) and Bµ which is associated to

the fundamental U(1) hypercharge gauge symmetry. The relevant linear combination

is set by the two coupling constants, g and g0. To this end, we define the Weinberg

angle, also known as the weak mixing angle

cos ✓W =
gp

g2 + g0 2
() sin ✓W =

g0p
g2 + g0 2

. (5.49)

We then define the two linear combinations of gauge fields

Zµ = cos ✓W W 3

µ
� sin ✓W Bµ

Aµ = sin ✓W W 3

µ
+ cos ✓W Bµ . (5.50)

The first of these has a mass from (5.45) which is experimentally measured to be

MZ =
v

2

p
g2 + g0 2 ⇡ 91 GeV . (5.51)

We don’t have any way to determine any of these masses from first principles. They

are combinations of the Higgs vev v, the Higgs coupling � and the gauge couplings g

and g0, none of which we know without going out and measuring them. However, the

theoretical framework does ensure the mild inequality

MW = MZ cos ✓W < mZ (5.52)

which is indeed observed.
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We can do some simple counting here. Our original Higgs boson H was a doublet of

SU(2). This means that it has two complex degrees of freedom or, equivalently, four

real degrees of freedom. One of these remains as the real scalar h that we call the Higgs

boson. The other three got eaten by the three gauge bosons W 1

µ
, W 2

µ
and Zµ.

The discovery of the Higgs boson h was announced at CERN in 2013. But in a

very real sense, 3/4 of the more fundamental Higgs boson H were discovered when the

massive W and Z bosons were first seen in 1983. As we’ve seen, they get their mass

only by eating three of the components of H.

The scales of the masses of the Higgs h and the W and Z bosons are all set by the

Higgs expectation value v, multiplied by some dimensionless coupling constant. This is

a theme that will continue shortly when we discuss matter particles. These couplings

can all be measured directly, through cross-sections or decay rates. We learn that

the only dimensionful parameter in the classical Standard Model Lagrangian takes the

value

v ⇡ 250 GeV . (5.53)

We will later see that this is directly related to the Fermi constant that governs the

strength of weak decays. The dimensionless parameters are

� ⇡ 0.35 and g ⇡ 0.64 and g0 ⇡ 0.34 . (5.54)

Each of these runs under RG; the values above are given at the scale µ = MZ . We also

have the Weinberg angle (5.49) which takes the value

cos ✓W ⇡ 0.88 =) ✓W ⇡ 29� . (5.55)

It’s common to quote the value sin2 ✓W ⇡ 0.223.

5.2.1 Electromagnetism

There is one of the U(1)⇥ SU(2) gauge bosons that escapes the clutches of the Higgs

and remains massless. This is the field Aµ defined in (5.50) and it is the most famous

gauge boson of all: the photon.

We can look at this more closely. From a group theoretic perspective, the photon

remains massless because the Higgs induces the symmetry breaking

U(1)Y ⇥ SU(2) ! U(1)EM . (5.56)

This is why the U(1)⇥SU(2) sector of the Standard Model is referred to as electroweak

theory.

– 196 –



We can identify this unbroken U(1) symmetry by looking at how the Higgs vev (5.42)

transforms under a general U(1)⇥ SU(2) transformation, with parameters ↵A and �,

hHi =
 
0

v

!
�! egi↵

A
T

A
eig

0
�Y

 
0

v

!
. (5.57)

The Higgs has hypercharge Y = 1

2
so, writing the SU(2) generators TA = 1

2
�A, we have

g↵ATA + g0�Y =
g

2

 
↵3 + g0�/g ↵1 � i↵2

↵1 + i↵2 �↵3 + g0�/g

!
. (5.58)

We see that the choice of parameters that leaves hHi invariant is ↵1 = ↵2 = 0 and

g↵3 = g0�. This means that the unbroken generator is the combination

Q = T 3 + Y . (5.59)

We identify this with the generator of the unbroken U(1)EM subgroup which, in more

everyday terms, means that Q determines the electric charge of the fields. We’ll see

how this works in practice for all the fermion fields below.

The electroweak theory also sets the electromagnetic coupling constant e. This is

simplest to see if we look at the general covariant derivative for a field that transforms

in the fundamental of SU(2) and with hypercharge Y ,

Dµ = @µ � igWA

µ
TA � ig0Y Bµ . (5.60)

We work with the fields W±
µ

defined in (5.47) and the corresponding generators T± =

(T 1 ± iT 2)/
p
2. We also work with the fields Zµ and Aµ defined in (5.50) to get

Dµ = @µ � ig(W+

µ
T+ +W�

µ
T�)� i(g cos ✓WT 3 � g0 sin ✓WY )Zµ � ieQAµ . (5.61)

For our immediate interests, it’s that last term that’s important. It involves the charge

Q, together with the coupling

e = g sin ✓W = g0 cos ✓W . (5.62)

The electromagnetic coupling takes value

e ⇡ 0.30 . (5.63)

This particular coupling constant is better known in the form ↵ = e2/4⇡ which is called

the fine structure constant and takes the famous value ↵ ⇡ 1/137.
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The bosons of the electroweak sector are the Higgs, and the W and Z bosons. The

Higgs h is electrically neutral. This must be the case simply because it’s a real scalar

field, but we can check explicitly by noting that it sits in the lower component of the

doublet (5.43) which has T 3 = 1

2
�3 eigenvalue �1

2
. The Higgs also has hypercharge

Y = +1

2
ensuring that Q = T 3 + Y = 0.

The Z boson is similarly neutral. Again, this must be the case because it is a real

field. Operationally, this follows because it carries no hypercharge and commutes with

the SU(2) generator T 3.

That leaves us with the W bosons. Under an SU(2) transformation with ↵1 = ↵2 = 0

and ↵3 constant, we have, from (1.87),

�Wµ = �ig[Wµ,↵
3T 3] = g↵3(�W 1

µ
T 2 +W 2

µ
T 1) (5.64)

We can write this as �W 1

µ
= g↵3W 2

µ
and �W 2

µ
= �g↵3W 1

µ
. We think of this SU(2)

transformation as part of the U(1)EM transformation, with g↵3 = e↵. Then, written in

terms of our fields W±
µ

defined in (5.47), we have

�W±
µ

= ±ie↵W±
µ

. (5.65)

This is telling us that the W boson W±
µ

has electric charge Q = ±1.

5.2.2 Running of the Weak Coupling

The gauge couplings of the electroweak sector run with energy scale. Because hyper-

charge is a U(1) gauge theory, the associated coupling g0 gets smaller as we flow to the

infra-red.

But for the non-Abelian SU(2) gauge symmetry, we have to be more careful. We gave

the general formula for SU(Nc) gauge theory coupled to Nf massless Dirac fermions in

(3.11) when discussing QCD. Now we need the generalisation to include Ns scalars in

the fundamental representation. The result is

1

g2(µ)
=

1

g2
0

� b0
(4⇡)2

log
⇤2

UV

µ2
(5.66)

with the coe�cient given by

b0 =
11

3
Nc �

2

3
Nf �

1

3
Ns . (5.67)

Applied to electroweak theory, we clearly have Nc = 2 and Ns = 1, corresponding to the

Higgs doublet. But what about Nf? We saw in (5.2) that each generation of fermions
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has an SU(2) doublet of quarks QL and a doublet of leptons LL. This is 3 + 1 = 4

Weyl fermions. But the Nf in (5.67) counts Dirac fermions, so each generation has

Nf = 2 Dirac fermions as far as the beta function is concerned. And, of course, we

have three generations. So the coe�cient of the one-loop beta function for the weak

force is b0 = bweak with

bweak =
11

3
⇥ 2� 2

3
⇥ 6� 1

3
= 3 . (5.68)

With bweak > 0, we see that the SU(2) sector of the Standard Model is, like QCD,

asymptotically free. It flows to strong coupling in the infra-red.

This begs the question: do we have to worry about strong coupling e↵ects in the

weak sector, like we did for QCD? The answer is no. And the reason is that the Higgs

mechanism gives masses to the gauge bosons and, in doing so, freezes the running of

the coupling g at the scale µ ⇠ MW . This is where the quoted value of g ⇡ 0.64 in

(5.54) is measured.

It’s worth commenting that, although we call the weak nuclear force “weak”, the

actual value of the coupling is not small. Indeed, ↵W = g2/4⇡ ⇡ 1/30, which is almost

5 times bigger than the fine structure constant! The reason that the weak force is

actually weak has nothing to do with the strength of the coupling and everything to

do with the mass of the W and Z bosons (or, equivalently, the scale of the Higgs vev).

As we will see in Section 5.3, particles that decay through the weak force do so by the

emission of an intermediate W or Z boson. The large mass of these bosons translates

to a small decay rate.

It’s also fruitful to compare the couplings for the weak and strong force. Measured

at the weak scale MZ , we have

↵s(MZ) ⇡ 0.12 and ↵w(MZ) ⇡ 0.034 . (5.69)

So the weak force is indeed weaker than the strong force.

Asymptotic freedom ensures that both gs and gw get smaller as we look at higher

energies. But they do so at di↵erent speeds. The running of the strong coupling

(assuming six massless generations) is dictated by

bstrong =
11

3
⇥ 3� 2

3
⇥ 6 = 7 . (5.70)

Because we have bstrong > bweak, the two couplings will converge as we go to higher

energies. And it’s natural to ask: where does this convergence take place?
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You have to be a little bold to do this calculation. We will take ⇤UV = MW in

(5.66) and then extrapolate the equation to energy scales µ � MW and, moreover, to

energy scales beyond those that we’ve probed experimentally. There’s nothing wrong

with this per se, since the equation is invertible: if you know the coupling at one scale,

then we can always determine it at any other scale, whether lower or higher. But we

are assuming that there’s no additional matter to discover which would change the

coe�cient b0 as we go to higher energies. That seems like a rather big assumption.

With these health warnings in place, the two couplings meet at a scale µ given by

1

g2
s

� bstrong
(4⇡)2

log
M2

W

µ2
=

1

g2
w

� bweak
(4⇡)2

log
M2

W

µ2
. (5.71)

Solving, we find

µ = MW exp

✓
2⇡

bstrong � bweak

✓
1

↵w

� 1

↵s

◆◆
⇡ 2⇥ 1016 GeV . (5.72)

So the two couplings do indeed meet, although it takes them a long time because the

running is only logarithmic.

Nonetheless, the couplings meet in an intriguing place. The Planck scale sits sits at

about Mpl ⇠ 1019 GeV (or a bit less depending on where you put factors of 8⇡.) Had

the two couplings converged at a scale µ � Mpl then we could have simply discarded

this computation. We did it assuming that there was nothing new to find as we went

to higher energies but as soon as quantum gravity e↵ects kick in there’s certainly no

reason to trust the formula (5.66). The fact that the two lines meet at a scale just

below Mpl is, if nothing else, telling us that we don’t have an immediate reason to

discard it. It also suggests that perhaps something more interesting is going on.

That something is the idea of unification. Is it perhaps possible that the two coupling

constants are meeting because the SU(2) and SU(3) forces sit within a larger gauge

group? The answer is: we don’t know. But it is a compelling idea. Proposals for this

larger gauge group include SU(5) and SO(10) (strictly Spin(10)).

There is, of course, a third coupling constant in the Standard Model. This is the

hypercharge coupling g0. This is the smallest of the three couplings and it too runs,

now getting bigger as we go to higher energies. This means that it must also meet the

other two. But where? A similar calculation shows that ↵Y = g0 2/4⇡ meets the strong

and weak couplings at

↵Y = ↵s at µ ⇡ 5⇥ 1019 GeV

↵Y = ↵w at µ ⇡ 1021 GeV . (5.73)
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We see that the three lines don’t meet. Things aren’t as clean as that. Moreover,

the unification of the hypercharge coupling seems to be in the regime where quantum

gravity comes into play. Nonetheless, it’s still in the same ballpark. So, while not

perfect, this also lends credence to the idea of unification. Needless to say, we don’t

know if unification does indeed take place. But if we’re searching the Standard Model

for clues for what lies beyond, this is certainly one of the most striking.

5.2.3 A First Look at Fermion Masses

The Higgs gives mass to the W and Z boson. But it also gives masses to all the funda-

mental fermions in the Standard Model. These arise through the Yukawa interactions.

First, a repeat of a comment that we made previously: it’s not possible to write down

straightforward mass terms for the fermions in the Standard Model. This is because it

is a chiral theory, with left- and right-handed fermions transforming di↵erently under

the gauge group. This means that any mass term necessarily violates gauge symmetry.

The Yukawa terms are the gauge invariant interaction terms and give a mass only once

the Higgs field gets an expectation value.

To kick things o↵, let’s ignore the fact that we have three generations of fermions

and focus only on the first. This will allow us to see how the basic structure of particles

arises. We will then see the complications that arise from having multiple generations

in Section 6.

The Yukawa couplings for a single generation were given in (5.14) and (5.15),

LYuk = �yd Q̄LHdR � yu Q̄LH̃uR � ye L̄LHeR � y⌫ L̄LH̃⌫R + h.c. . (5.74)

Here H is the Higgs doublet that transforms in the 2 of the SU(2) gauge group, and

H̃ is the conjugated Higgs doublet, contracted with an ✏ so that it too transforms in

the 2,

H̃a = ✏abH†
b

with a, b = 1, 2 . (5.75)

Meanwhile, yd, yu, ye and y⌫ are dimensionless Yukawa couplings. We’ll give their values

in Section 6. (This is one place where we really should include all three generations

to appreciate the values.) Recall, also, that we’re not sure if there is a right-handed

neutrino field ⌫R, so we might have to dispense with the final term in (5.74).
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Our immediate interest is to understand the implications of the Higgs vev (5.42)

hHi = 1p
2

 
0

v

!
=) hH̃i = 1p

2

 
v

0

!
. (5.76)

This will distinguish the two components of the SU(2) doublets QL and LL, giving them

di↵erent masses and, as we will see, di↵erent charges under the unbroken symmetry of

electromagnetism. For this reason, it’s useful to introduce di↵erent names for the two

components of these doublets. We write

QL =

 
uL

dL

!
and LL =

 
⌫L

eL

!
. (5.77)

(We already introduced these names in (5.18) and (5.20) although, as we noted at the

time, it was premature before we discussed electroweak symmetry breaking.)

Now we can look at the Yukawa couplings (5.74), focussing only on the role of the

vev v and ignoring the interactions with the fluctuations of the Higgs boson h. We

have

LYuk = � vp
2

⇣
yd d̄LdR + yu ūLuR + ye ēLeR + y⌫ ⌫̄L⌫R

⌘
. (5.78)

We see that each of the fermions gets a mass, given by

mX =
1p
2
yXv (5.79)

where X = d, u, e, ⌫ labels the appropriate Yukawa coupling yX . The scale of all these

masses is, like all particles in the Standard Model, set by Higgs vev. If the Higgs did

not condense, all fermions would be massless.

This is the source of the oft-repeated claim that the Higgs boson is responsible for all

mass in the Standard Model. It is, as we stressed in Section 3, a lie. It is true that the

Higgs vev v is the only dimensionful scale in the Standard Model Lagrangian and that

all fundamental particles would be massless if it were to vanish. But there is another,

more subtle, scale in the Standard Model itself which is ⇤QCD, the scale at which the

strong force lives up to its name. And this scale would exist even in the absence of the

Higgs vev and would continue to give a mass to the proton and neutron. Of course,

that’s not to say that the Higgs is unimportant: in this hypothetical world in which

v = 0, electrons would be massless so physics, atoms, and life would be vastly di↵erent.
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We can also determine the electric charges of each of the fermions using the formula

(5.59)

Q = T 3 + Y . (5.80)

We listed the hypercharges Y of all particles previously. They are

QL LL uR dR eR

Y 1

6
�1

2

2

3
�1

3
�1

(5.81)

Each of the right-handed fermions is uncharged under the SU(2) gauge group and so

we have simply Q = Y . Indeed, we recognise the hypercharge as the usually advertised

electric charge of these particles.

For the SU(2) doublets QL and LL, we have a small calculation to do. The T 3

eigenvalues are ±1

2
, with + for the upper component and � for the lower component.

This means that the electric charges Q = T 3 + Y are:

uL : Q =
1

2
+

1

6
=

2

3
and dL : Q = �1

2
+

1

6
= �1

3

⌫L : Q =
1

2
� 1

2
= 0 and eL : Q = �1

2
� 1

2
= �1 . (5.82)

We see that the electric charges of the left-handed fermions coincide with those of the

right-handed fermions in (5.81), as indeed they must so that the mass terms (5.78) are

invariant under the surviving U(1)EM ⇢ SU(2)⇥ U(1)Y .

The upshot of symmetry breaking is that we are left with four Dirac fermions. These

are the up quark u with charge +2/3, the down quark d with charge �1/3, the electron

e with charge �1, and the neutral neutrino ⌫. If the right-handed neutrino ⌫R doesn’t

exist then the neutrino is a Weyl fermion and cannot get a mass through the simple

mechanism described above. We will discuss the issue of neutrino masses further in

Section ??.

The collection of electric charges of fermions in the Standard Model look kind of

random. And, viewed as a low-energy vector-like theory, they are! But, as we have seen,

there is a deeper reason underlying this choice that only becomes apparent when you

realise that the Standard Model is a chiral theory, subject to the stringent constraints

of anomaly cancellation.
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5.3 Weak Decays

Since the time of Newton, we’ve tended to think of forces as things that push and pull.

That’s an intuition that holds well for QED and the Coulomb force, and also for QCD

which binds quarks together into hadrons. But it’s not the best way to think about

the weak force. Instead, the weak force is an instrument of decay.

One of the consequences of the weak force is that it rents asunder what the strong

force so carefully put together. We saw in Section 3 that quarks are bound into baryons

and mesons. In a world of just QCD, the baryon octet that contains, among other

things, the proton and neutron would be stable. So too would the octet of pseudoscalar

mesons that includes the pions and kaons. But in our world, only the proton is stable.

(Admittedly, we can also have stable nuclei consisting of bound states of protons and

neutrons.) Everything else decays through the weak force.

In this section, we will start to understand how these decay processes take place. We

will start by better understanding what fermions the W and Z bosons couple to and

constructing the relevant Feynman diagrams.

5.3.1 Electroweak Currents

To start, we understand how the various gauge bosons couple to the fermions. For now,

we will again stick with just a single generation. (There is an interesting twist to the

story when we introduce multiple generations that we describe in Section 6.)

The fermion kinetic terms are

Lfermi = �i
⇣
Q̄L�̄

µDµQL + L̄L�̄
µDµLL + ūR�

µDµuR + d̄R�
µDµdR + ēR�

µDµeR
⌘
.(5.83)

We haven’t included the right-handed neutrino ⌫R because it is neutral under all gauge

symmetries. We’ll ignore the gluon fields for now, and just focus on the terms that

involve interactions with the electroweak gauge bosons. These are

Lkin

���
weak

= �g

2
W 3

µ

�
ūL�̄

µuL � d̄L�̄
µdL + ⌫̄L�̄

µ⌫L � ēL�̄
µeL

�

� gp
2
W+

µ
(ūL�̄

µdL + ⌫̄L�̄
µeL) +

gp
2
W�

µ
(d̄L�̄

µuL + ēL�̄
µ⌫L)

� g0Bµ

⇣1
6
ūL�̄

µuL +
1

6
d̄L�̄

µdL � 1

2
⌫̄L�̄

µ⌫L � 1

2
ēL�̄

µeL

� 2

3
ūR�

µuR � 1

3
d̄R�

µdR � ēR�
µeR

⌘
. (5.84)
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If we replace W 3

µ
and Bµ with the Z boson and photon fields, as in (5.50), these terms

can be written as

Lkin

���
weak

= � ep
2 sin ✓W

(W+

µ
Jµ

+ +W�
µ
Jµ

�)�
e

sin ✓W cos ✓W
ZµJZ

µ
� eAµJEM

µ
. (5.85)

Here we’ve replaced the two coupling constants g and g0 with the Weinberg angle

tan ✓W = g0/g and the electromagnetic coupling e = g sin ✓W = g0 cos ✓W and we’ve

introduced various currents that interact with the gauge fields. The electromagnetic

current that couples to the photon is given by

JEM

µ
=

2

3
(ūL�̄µuL + ūR�

µuR)�
1

3
(d̄L�̄µdL + d̄R�

µdR)� (ēL�̄µeL + ēR�
µeR)

=
⇣2
3
ū�µu� 1

3
d̄�µd� ē�µe

⌘
. (5.86)

This takes the expected form, with each fermion multiplied by its electric charge. In

the second line, we’ve written this in terms of Dirac spinors u, d, and e and the gamma

matrices �µ to emphasise that, despite its chiral origins, this is the kind of vector-like

current that we’re used to in QED.

For the Z boson, we have a little more work to do. Some algebra reveals that the

current takes the form

JZ

µ
=

1

2
(ūL�̄µuL � d̄L�̄µdL + ⌫̄L�̄µ⌫L � ēL�̄µeL)� sin2 ✓W JEM

µ
. (5.87)

Finally, the currents for the W bosons can be read o↵ immediately from (5.85); they

are

J+

µ
= ūL�̄µdL + ⌫̄L�̄µeL and J�

µ
= d̄L�̄µuL + ēL�̄µ⌫L . (5.88)

The currents for both the W and Z bosons are chiral, treating left-handed fermions

di↵erently from their right-handed counterparts.

5.3.2 Feynman Diagrams

From the interaction terms (5.85), we can read o↵ the Feynman rules for the electroweak

sector. We see from (5.86) that the photon couples in the usual way to the up and down

quarks and to the electron, with coupling constant given by eq with q the charge. This

gives rise to the kind of Feynman diagram that we met in our first course on Quantum

Field Theory.
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ē

e

�

ū

u

�

d̄

d

�

The photon couples to the up and down quarks and the electron. It doesn’t couple to

the neutrino because it’s neutral.

From (5.87), we see that there are similar diagrams involving the Z boson. But, in

contrast to the photon, this couples to all low energy particles, including the neutrino.

So we have diagrams of the form

fermion

fermion

Z

where the fermion could be u, d, e or ⌫. This time, the coupling is more complicated:

there is an overall factor of e/ sin ✓W cos ✓W , with di↵erent coe�cients depending on

the fermion species. And more care is needed with the spinor indices because of the

chiral nature of the coupling.

Finally, the W boson relates two di↵erent fermions. We have the Feynman diagrams:

d̄

u

W+

e+

⌫

W+

The two fermions in these diagrams have electric charges that di↵er by ±1 to ensure

that the overall electric charge is conserved at the vertex. We’ve included an arrow on

the gauge boson propagator because it is now a complex spin 1 field. The arrow going

the other way corresponds to the anti-particle W�.

Here, we’ve only focussed on a single generation. There are similar diagrams where

u, d, e and ⌫e are replaced by their higher generational cousins. So, for example, there

are additional W boson diagrams that connect the strange and charm quark, and the

bottom and top quark:
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s̄

c

W+

b̄

t

W+

There are also diagrams with muons and taus replacing electrons. In fact, it turns out

that there is an additional subtlety when considering these higher generations that we

will turn to in Section 6.

5.3.3 A First Look at Weak Processes

Historically, the weak force was first observed in beta decay of nuclei. We can view this

as a neutron decaying to a proton, electron and anti-neutrino

n ! p+ e� + ⌫̄e . (5.89)

The possibility of such a process follows immediately from our discussion above. As

we saw in Section 3, a neutron is a baryon with quark content udd. This decays to a

proton with quark content uud through the tree level Feynman diagram

d
u

W�

e�

⌫̄e

The lifetime of the neutron is about 10 minutes.

An obvious comment: the reason that down quarks decay into up quarks, rather

than the other way around, is because the mass of the down quark is heavier than the

masses of the decay products, md > mu +me +m⌫e . As we’ve mentioned previously,

we have no understanding of why the masses of fundamental particles are ordered in

this way.

Neutrons are not the only victim of the weak force. A world without the weak

force would be awash with pions which, as we saw in Section 3, are the lightest of the

hadrons. The vast majority of the time (something like 99.99%) charged pion ⇡� = dū

decays through the weak force to a muon and anti-neutrino. This occurs through a

similar Feynman diagram to that responsible for beta decay, but with muons replacing

electrons as the end products,
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d
u

W�

µ�

⌫̄µ

The resulting up quark then combines with the anti-up quark in the pion, and the two

rapidly decay into photons. The lifetime of the charged pion is about 10�8 seconds.

The resulting muons don’t live too long either. Their demise is also due to the weak

force and they decay to electrons and neutrinos through the process

µ� ⌫µ

W�

e�

⌫̄e

The lifetime of the muon is around 2 ⇥ 10�6 seconds. All other particles involving

quarks and leptons from the second and third generation have the same fate, decaying

through the weak force to the more familiar particles from the first generation.

5.3.4 4-Fermi Theory

Although the weak force is mediated by W and Z bosons, if we focus on processes that

take place at low energies, E ⌧ MW , MZ , then it’s possible to ignore these gauge

bosons and write down interaction terms that describe the relevant physics directly.

There are a couple of (essentially equivalent) ways to remove the W and Z bosons

while leaving behind the processes that they induce. The first, and most direct, way

to see this is to start with the terms linear and quadratic in W bosons. (We’ll ignore

the Higgs field h in what follows but, crucially, keep its vev v.) We have

Lweak = �1

2
(@µW

+

⌫
� @⌫W

+

µ
)(@µW� ⌫ � @⌫W�µ)

� g2v2

4
W+

µ
W�µ � gp

2
(W+

µ
Jµ

+ +W�
µ
Jµ

�) . (5.90)
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At low energies, we can neglect the kinetic terms for the W bosons. We then proceed

by completing the square in the remaining terms,

Lweak ⇡ �g2v2

4

 
W+

µ
+

2
p
2

gv2
J�µ

! 
W�µ +

2
p
2

gv2
Jµ

+

!
+

2

v2
J+µJ

µ

� . (5.91)

Performing the path integral over the W bosons e↵ectively sets the first term to zero,

leaving us just with the current-current interaction. We write this, for historic reasons,

as

Lweak =
4GFp

2
J+µ J

µ

� (5.92)

with

GF =
1p
2v2

⇡ 1.16⇥ 10�5 GeV�2 . (5.93)

Our final result (5.92) is a 4-fermion interaction. The coupling constant GF is called the

Fermi coupling and provides a direct measurement of the Higgs vev. It has dimensions

[GF ] = �2 (because the fermion has dimension 3/2 so the JµJµ term has dimension 6).

This means that the four fermi term is irrelevant in the renormalisation group sense. It

is, however, very relevant in the cosmic sense. For example, it is what makes the Sun

shine.

There is a second way to arrive at the same result (5.92) using Feynman diagrams.

In this approach, we start by examining the propagator for a massive vector field. In

momentum space, it takes the form

Dµ⌫(p) =
i

p2 �M2

⇣
�⌘µ⌫ +

pµp⌫
M

⌘
. (5.94)

In the limit E ⌧ M , we ignore the momentum terms and get

Dµ⌫(p) ⇡
i

M2
⌘µ⌫ =) Dµ⌫(x� y) =

i

M2
⌘µ⌫�

4(x� y) . (5.95)

In this limit, the propagator in position space becomes a delta-function, as shown, and

the kind of couplings induced by the massive gauge boson, which are generally of the

form Jµ(x)Dµ⌫(x, y)J⌫(y) collapse to the direct current-current interaction that we saw

in (5.92).
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We can see what this means for, say, muon decay. If we ignore the quarks for now,

but include both electron and muon contributions, then the W boson current (5.88)

includes the term

J+

µ
= ⌫̄ e

L
�̄µeL + ⌫̄ µ

L
�̄µµL . (5.96)

The 4-fermi terms then include

Lweak ⇠
4GFp

2
(⌫̄ e

L
�̄µeL)(µ̄L�̄

µ⌫ µ

L
) . (5.97)

This gives rise directly to muon decay through the Feynman diagram

µ� ⌫µ

e�

⌫̄e

It’s as if we’ve squinted and ignored the W boson that mediates the weak force.

These kinds of 4-fermion interactions were first written down by Fermi in 1933. His

purpose was to describe beta decay, with the neutron coupled to the proton, electron

and neutrino fields (the latter later realised to be an anti-neutrino). This was an

important breakthrough in our understanding of particle physics because it changed

the way we think about particles. In beta decay, a neutron decays into a proton and

electron. But that doesn’t mean that the neutron is made of a proton and electron!

They’re not sitting there inside the neutron all along, waiting to escape. Instead, the

key idea of quantum field theory is that the four-fermion couplings allow one type of

field to transmute into the others.

Second, there’s some spin structure going on in (5.97) that Fermi was unaware of.

This arises because the W boson couples only to left-handed fermions, not their right-

handed counterparts. We can also write the resulting coupling in terms of Dirac spinors

where we need a projection operator onto the left-handed part. The coupling (5.97)

can then be written as

Lweak ⇠
GFp
2

�
⌫̄e�µ(1 + �5)e

��
µ̄�µ(1 + �5)⌫µ

�
. (5.98)

This is referred to as the “V-A” theory, because the coupling involves the di↵erence

between the vector current  ̄�µ and the axial current  ̄�5�µ . (Admittedly, the term

V-A would probably have made more sense if I’d defined my �5 matrix with a di↵erent

sign so that it appeared as (1� �5) rather than (1 + �5) in the expressions above. Oh

well.
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