
6 Flavour

The purpose in this section is to understand how the three di↵erent generations of the

Standard Model fit into the story. We will focus on the quark fields, where this topic

usually goes by the name of flavour physics. We will comment briefly on the leptons,

but their full story will only be told in Section 7 when we discuss neutrino masses.

6.1 Diagonalising the Yukawa Interactions

Including three generations, the quark Yukawa terms read (5.22)

LYuk = �yd
ij
Q̄i

L
Hdj

R
� yu

ij
Q̄i

L
H̃uj

R
+ h.c. . (6.1)

Here the i, j = 1, 2, 3 indices label the generations. We can expand the fields out in

terms of the more familiar quark names,
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. (6.2)

Now the Yukawa couplings yd and yu in (6.1) are each 3⇥ 3 matrices. Generally these

coe�cients can be complex, which means that we have 2⇥3⇥3 = 18 complex parameters

or, equivalently, 36 real parameters. That’s a lot of parameters! The purpose of flavour

physics is to understand what they mean and to put some order to them.

6.1.1 Counting Yukawa Parameters

Happily, many of these parameters are redundant. At this point, there are two ways

to proceed. The first is to follow the restrictions imposed by gauge invariance. The

second is to do something practical that helps comparison with experiment. For once,

it turns out, these two requirements are rather di↵erent.

Let’s first bow to the altar of gauge symmetry. The kinetic terms are (5.25)

Lkin = �i
3X

i=1

⇣
Q̄i

L
�̄µDµQ

i

L
+ ūi

R
�µDµu

i

R
+ d̄i

R
�µDµd

i

R

⌘
. (6.3)

We can always rotate the fermions among themselves, leaving these kinetic terms in-

variant, by acting with

Qi

L
! V i

j
Qj

L
, di

R
! (Ud)i

j
dj
R
, ui

R
! (Uu)i

j
uj

R
(6.4)
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with V, Uu, Ud 2 U(3). These transformations leave the kinetic terms invariant, but

they change the Yukawa couplings which become

yd ! V †ydUd and yu ! V †yuUu . (6.5)

Such field redefinitions don’t change the physics. This means that we can use these

rotations to diagonalise one of the Yukawa couplings – say yu – but, because the

same matrix V 2 U(3) appears in both the transformations of yu and yd, we cannot

diagonalise both. The upshot is that if we insist on doing transformations (6.4) that

respect the full gauge invariance of the Standard Model, then the mass terms for quarks

will typically be non-diagonal.

Ultimately, we’ll work with a di↵erent set of transformations that do not respect

gauge invariance. But, before we do this, it’s useful to do a little counting. We’ve

already seen that the two Yukawa matrices yd and yu contain 36 real parameters. But

we can act with U(3)3 to rotate away some of these. We have dimU(3) = 9, so naively

we can remove 3⇥ 9 = 27 parameters. But, a closer inspection, shows that there’s an

overall U(1) ⇢ U(3)3 that doesn’t a↵ect the Yukawa couplings in (6.5). This means

that we can, in fact, eliminate 26 of the parameters in the Yukawa couplings by this

method. We’re left with

36� 26 = 10 (6.6)

physical parameters in yu and yd.

In fact, we can be a bit more precise than that. We can think of each of the elements

of the Yukawa matrix as consisting of a real parameter, together with a complex phase,

so that yij = rijei✓ij . So our original Yukawa matrices yd and yu each contain 9 real

parameters and 9 complex phases.

How many of each of these are eliminated? Here’s a slick argument. A real N ⇥ N

unitary matrix O obeys OTO = 1 which is the same thing as an orthogonal matrix.

This suggests that, of the N2 components of a unitary matrix, 1

2
N(N � 1) of them are

“real parameters” and the remaining 1

2
N(N +1) of them are “complex phases”. So our

U(3)3 consists of 9 real parameters and 18 complex phases, with one complex phase

corresponding to the overall U(1) that doesn’t a↵ect the Yukawas. This means that,

of the 10 physical parameters sitting inside yd and yu, we have

(2⇥ 9)� 9 = 9 real parameters (6.7)

and

(2⇥ 9)� (18� 1) = 1 complex phase . (6.8)
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Why is this distinction important? It’s because a theory with non-vanishing complex

phases violates CP symmetry. We’ll look at this more closely in Section 6.4. For now,

we note that if we took the Standard Model with N = 1 or N = 2 generations, then

there’s no possibility of writing down Yukawa matrices that violate CP. (You can do the

same counting as above and see that there are no physical phases remaining after using

the U(N)3 symmetries.) The first time that CP violation becomes a possibility is with

N = 3 and, moreover, it is a possibility that the Standard Model chooses to embrace.

Presumably it is no coincidence that N = 3 is the minimal number of generations that

allows for CP violation although the deeper significance of this remains something that

we have yet to fully appreciate.

There is also a remarkable historical fact here. A counting similar to the one above

was first done by Kobayashi and Maskawa in 1972 who argued that there must be a

third generation of quarks to account for the observed CP violation in hadronic physics.

This was before the discovery of the charm quark!

6.1.2 The Mass Eigenbasis

There’s nothing wrong with the analysis above, but it doesn’t jibe with how we usually

do quantum field theory.

Typically, we start with terms in the Lagrangian that are quadratic in fields and

make sure that they’re diagonal. This is akin to working in the energy, or equivalently

mass, eigenbasis of the free theory. We then add interaction terms which, as always in

quantum mechanics, change the energy eigenstates. If the interaction terms are small,

so that we can use perturbation theory, then this approach is the one that most clearly

highlights the physics.

But, as we’ve seen, if we keep with gauge invariant fields then the transformation

(6.5) is not su�cient to diagonalise both Yukawa matrices. We can achieve this only

if we’re willing to sacrifice gauge invariance and rotate the two components of QL

independently, so

di
L
! (V d)i
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L
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dj
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uj
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(6.9)

with V u, V d, Uu, Ud 2 U(3). While this is necessary if we want to diagonalise both

Yukawa matrices, it is only tenable because we have already spontaneously broken the

SU(2) gauge symmetry through the Higgs mechanism. The Yukawa couplings now

transform independently as

yd ! V d †ydUd and yu ! V u †yuUu . (6.10)
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By a prudent choice of these unitary matrices, we can now diagonalise both Yukawa

couplings

yd = diag(yd, ys, yb) and yu = diag(yu, yc, yt) . (6.11)

These Yukawa couplings dictate the masses of the quarks, with

mX =
1p
2
yXv (6.12)

now withX running over all quark fields, X = d, u, s, c, b, t. These diagonal components

of the Yukawa matrices are such that they reproduce the quark masses that we met in

Section 3,

top : yt ⇡ 1 =) mt ⇡ 173 GeV

bottom : yb ⇡ 2.5⇥ 10�2 =) mb ⇡ 4.2 GeV

charm : yc ⇡ 7.5⇥ 10�3 =) mc ⇡ 1.3 GeV

strange : ys ⇡ 5.5⇥ 10�4 =) ms ⇡ 93 MeV

up : yu ⇡ 1.3⇥ 10�5 =) mu ⇡ 2 MeV

down : yd ⇡ 2.7⇥ 10�5 =) md ⇡ 5 MeV

Although we’ve reduced the masses of the various quarks to dimensionless coupling

constants yX , we currently have no understanding of why the Yukawa couplings take

these values. The Yukawa couplings span 5 orders of magnitude and we don’t know why.

In particular, the top Yukawa is apparently almost exactly one. Is this coincidence?

We don’t know. (I’ve not heard any convincing idea for it being anything other than a

coincidence.)

Our counting in Section 6.1.1 told us to expect 10 physical parameters in the two

Yukawa matrices. Yet now we’ve diagonalised the two Yukawa matrices to leave our-

selves with just 6 masses. Which suggests that there are still 4 other parameters

lurking somewhere. As we will see in Section 6.2, these have been pushed, like a bubble

in wallpaper, to a di↵erent part of the theory.

6.1.3 A Brief Look at Leptons

So far, our attention has been solely on the quarks. We can ask: what’s the analogous

story for leptons? We decompose the left-handed leptons as (5.20)

Li

L
=

( 
⌫ e

L

eL

!
,

 
⌫ µ

L

µL

!
,

 
⌫ ⌧

L

⌧L

! )
. (6.13)
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Their Yukawa couplings are given by

LYuk = �ye
ij
L̄i

L
Hej

R
� y⌫

ij
L̄i

L
H̃⌫j

R
+ h.c. . (6.14)

However, as we mentioned previously, there remains a question mark about the exis-

tence of the right-handed neutrino. This is all tied up with how the neutrinos get a

mass, a subject that we will discuss in Section 7. To avoid getting into this can of

worms, lets for now assume that there is no right-handed neutrino, in which case the

lepton Yukawa terms are just

LYuk = �ye
ij
L̄i

L
Hej

R
+ h.c. . (6.15)

Then we have a single 3⇥ 3 Yukawa matrix ye and there is no obstacle to rotating the

two fields, LL and eR, to ensure that this matrix is diagonal

ye = diag(ye, yµ, y⌧ ) . (6.16)

The values of these Yukawa couplings determine the masses of the electron, muon,

and tau through the same formula (6.12) as the quarks. The experimentally measured

values of these couplings are

tau : y⌧ ⇡ 1⇥ 10�2 =) m⌧ ⇡ 1.8 GeV

muon : yµ ⇡ 6.1⇥ 10�4 =) mµ ⇡ 106 MeV

electron : ye ⇡ 2.9⇥ 10�6 =) me ⇡ 0.5 MeV .

We won’t say any more about leptons in this section. Instead, we’ll return to the quarks

where the need to simultaneously diagonalise two Yukawa matrices implies something

interesting. Having understood what happens for quarks, we’ll then return to leptons

in Section 7 and see how something similar plays out in the world of neutrinos.

6.2 The CKM Matrix

Although we’ve diagonalised the quark mass matrices, there’s a price to pay. And

this comes in the interactions with the gauge bosons. We computed these for a single

generation in (5.85) where we saw that the interactions take the form

Lkin

���
weak

= � ep
2 sin ✓W

(W+

µ
Jµ

+ �W�
µ
Jµ

�)�
e

sin ✓W cos ✓W
ZµJZ

µ
� eAµJEM

µ
(6.17)

with the various currents computed in (5.86), (5.87) and (5.88). To extend these results

to multiple generations is easy: we simply sum over all generations. For our immediate
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purposes, we will ignore the coupling to leptons so the electromagnetic current (5.86)

becomes

JEM

µ
=

3X

i=1

⇣2
3
(ūi

L
�̄µu

i

L
+ ūi

R
�µui

R
)� 1

3
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L
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i

L
+ d̄i

R
�µdi

R
)
⌘
. (6.18)

The coupling to the Z bosons (5.87) is

JZ

µ
=

1

2

3X

i=1
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ūi

L
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i

L
� d̄i

L
�̄µd

i

L

⌘
� sin2 ✓W JEM

µ
. (6.19)

And, finally, the couplings to the W bosons (5.88) are

J+

µ
=

3X

i=1

ūi

L
�̄µd

i

L
and J�

µ
=

3X

i=1

d̄i
L
�̄µu

i

L
. (6.20)

Each of these currents is diagonal in flavour, but this is before we do the rotation (6.9)

needed to diagonalise the Yukawa matrices. What becomes of the currents after we

rotate the quarks to go to the mass eigenbasis?

Neither the electromagnetic current JEM

µ
nor the Z boson current JZ

µ
are a↵ected by

the change of basis (6.9). This is because the quarks in these currents always appear

together with the corresponding anti-quark as q̄iqi.

The novelty comes when we look at the W boson current. Here there are di↵erent

kinds of quarks, ūi

L
di
L
and these rotate di↵erently when we diagonalise the Yukawa

matrices. This means that if we work in the mass eigenbasis, the coupling to the W

boson takes the form

J+

µ
= ūi

L
�̄µVij d

j

L
and J�

µ
= d̄i

L
�̄µV

†
ij
uj

L
. (6.21)

where

V = (V u)†V d (6.22)

captures the mismatch between the rotations of the left-handed up and down quarks.

This matrix V is the CKM matrix, sometimes denoted as VCKM and named after

Cabibbo, Kobayashi and Maskawa. This is where the remaining parameters of the

Yukawa couplings are hiding after we diagonalise them.
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6.2.1 Two Generations and the Cabibbo Angle

Before we turn to the full CKM matrix, it’s useful to look at what happens when we

have just two generations. In this case the analogous matrix V is a 2 ⇥ 2 matrix.

Moreover, as we can see from the form (6.22), the matrix is necessarily unitary. The

most general unitary 2 ⇥ 2 matrix can be written as a rotation matrix, dressed with

various complex phases

V2⇥2 =

 
ei�1 cos ✓ ei�2 sin ✓

�e�i�3 sin ✓ ei�4 cos ✓

!
(6.23)

where unitarity requires �1 � �2 � �3 + �4 = 0. Here we see the decomposition that we

described in Section 6.1.1: the four parameters comprise of 3 complex phases and a

single real angle ✓.

However, we can eliminate all the complex phases in this case. This is because the

diagonal mass terms are invariant under the U(1)4 symmetry

di
R ,L

! ei↵i di
R ,L

and ui

R ,L
! ei�iui

R ,L
with i = 1, 2 . (6.24)

Of these, U(1)3 acts on V2⇥2, leaving the overall sum �1 � �2 � �3 + �4 unchanged. This

means that the lone physical parameter in V2⇥2 is the angle ✓. This is known as the

Cabibbo angle and we denote it ✓ = ✓c. We have

V2⇥2 =

 
cos ✓c sin ✓c

� sin ✓c cos ✓c

!
. (6.25)

To see the physical meaning of this, we can return to the W boson currents (6.21). For

two generations, the quark labels are d = (d, s) and u = (u, c), so the current is

J+

µ
= cos ✓c (ūL�̄µdL + c̄L�̄µsL) + sin ✓c (ūL�̄µsL + c̄L�̄µdL) . (6.26)

We see that we get two terms: the first, proportional to cos ✓c, relates quarks within the

same generation: up to down, and charm to strange. The second term, proportional to

sin ✓c, relates quarks within di↵erent generations: up to strange, and charm to down.

This is what the additional parameters in the Yukawa matrices buy us.
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This means that we have additional Feynman diagrams. The diagram that we met

previously comes with a factor of cos ✓c,

⇠ cos ✓c

But we also get a diagram that relates quarks in di↵erent generations,

⇠ sin ✓c

This inter-generational mixing occurs only for interactions involving W bosons. They

are referred to as flavour changing currents.

The value of the Cabibbo angle is, like all other things Yukawaesque, something that

we cannot predict from first principles and have to go out and measure. It takes the

value

sin ✓c ⇡ 0.22 =) ✓c ⇡
⇡

14
⇡ 13� . (6.27)

We don’t currently have any deeper explanation for this value.

This resolves an issue that we gracefully swept under the rug when describing weak

decays in Section 5.3. How does the kaon decay?

Consider the kaon K� whose quark content is ūs. If there was no way for the

flavour to change, then there would be nowhere for the strange quark to go. It cannot

decay into a charm quark because that is significantly heavier. But the quark mixing

described above means that there is a Feynman diagram that allows the strange quark

to decay to an up quark,

s
u

W�
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The resulting up quark can then annihilate with the ū in the kaon, while the W� can

decay into, say, an electron and anti-neutrino in the usual way. This Feynman diagram

comes with a factor of sin ✓c which, in turn, means that the decay rate is suppressed

by sin2 ✓c ⇡ 0.05. This results in an increased lifetime for mesons containing strange

quarks.

6.2.2 Three Generations and the CKM Matrix

Now we can turn to the full CKM matrix (6.22). This is a unitary 3 ⇥ 3 matrix with

the general form

VCKM =

0

BB@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CCA . (6.28)

Each of these elements can, in principle, be complex and we will discuss the phases

shortly. But for now we can give the experimentally measured absolute values, which

are roughly

|VCKM| =

0

BB@

|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

1

CCA ⇡

0

BB@

0.97 0.22 0.004

0.22 0.97 0.04

0.009 0.04 0.999

1

CCA . (6.29)

You can see the Cabibbo angle sitting there in Vus ⇡ sin ✓c ⇡ 0.22.

Just like we have no understanding of why the Cabibbo angle takes its particular

value, nor do we have any good understanding of the CKM matrix. As you can see,

it’s not far from a diagonal matrix, with the Cabibbo terms Vus and Vcd the only ones

that aren’t completely tiny. We don’t know why.

Not all the parameters in matrix (6.29) are independent. The CKM matrix is unitary

and a general unitary matrix contains a total 9 parameters which decompose as 3 real

angles and 6 phases. But, as in the 2⇥ 2 case, we can eliminate some of these because

the diagonal mass terms are invariant under the U(1)6 symmetry

di
R ,L

! ei↵i di
R ,L

and ui

R ,L
! ei�iui

R ,L
. (6.30)

Of these, U(1)5 acts on the CKM matrix and can be used to set 5 of the phases to zero.

The U(1) symmetry that fails to act has ↵i and �i all equal and corresponds to the

baryon number symmetry of the Standard Model. All of which means that we expect

the CKM matrix to depend on four parameters, 3 real angles and one complex phase.

This agrees with our counting in Section 6.1.1.
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This prompts the question: how should we write the CKM matrix in terms of these

four parameters? There’s no right and wrong answer here: merely more or less conve-

nient ways of doing things. One of the most standard choices is to take Vud, Vus, Vcb

and Vtb to be real and to write the CKM matrix in terms of three angle ✓12, ✓13 and ✓23,

together with a complex phase ei�, constructed in a similar way to the Euler angles for

rotating rigid bodies,

VCKM =

0

BB@

1 0 0

0 c23 s23

0 �s23 c23

1

CCA

0

BB@

c13 0 s13e�i�

0 1 0

�s13ei� 0 c13

1

CCA

0

BB@

c12 s12 0

�s12 �s23 0

0 0 1

1

CCA

=

0

BB@

c12 c13 s12 c13 s13e�i�

�s12 c23 � c12 s23 s13ei� c12 c23 � s12 s23 s13ei� s23 c13

s12 s23 � c12 c23 s13ei� �c12 s23 � s12 c23 s13ei� c23 c13

1

CCA . (6.31)

where we’re using the convention

cij = cos ✓ij and sij = sin ✓ij . (6.32)

Here ✓12 = ✓c is the Cabibbo angle. The angles are given in degrees by

✓12 = 13.02� ± 0.004�

✓13 = 0.20� ± 0.02�

✓23 = 2.56� ± 0.03�

� = 69� ± 5� . (6.33)

We see that the complex phase � is not at all small, but it appears in the elements of

the CKM matrix multiplying sin ✓13 so its e↵ects are tiny. We will see these e↵ects in

Section 6.4.

It’s worth pausing to take in a bigger perspective here. In the first part of Section 5,

we described how the matter content of the Standard Model interacts with the di↵erent

forces. There we found a beautiful consistent picture – a perfect jigsaw – in which the

interactions were largely forced upon us by the consistency requirements of anomaly

cancellation. For a theoretical physicist, it is really the dream scenario. This contrasts

starkly with the story of flavour. Even focussing solely on the quarks, we find that

there are 6 Yukawa couplings that determine their mass, plus a further 4 entries of the

CKM matrix that determine their mixing. And none of these parameters are fixed or

understood at a deeper level.
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Somewhat ironically, much of this complexity can be traced to the simplicity of

the Higgs. Yang-Mills theories and Weyl fermions all come with subtleties that are

responsible for the quantum consistency conditions. But the Higgs is a spin 0 particle

and, as we observed earlier: scalars are basic. There are no consistency conditions

beyond the requirements of Lorentz invariance and gauge invariance so the Higgs can

do what it likes. This is what leads to the plethora of extra parameters that we’ve seen,

and it is why the Higgs is simultaneously both the simplest and the most complicated

field in the Standard Model.

Turning this on its head, the flavour sector of the Standard Model may well o↵er a

unique opportunity. The structure of quark masses, together with the CKM matrix,

surely contains clues for what lies beyond the Standard Model. Why the hierarchy of

masses? Why these values of the CKM matrix? Hopefully one day we will find out.

6.2.3 The Wolfenstein Parameterisation

There is a way to write the CKM matrix that highlights the numerical values that the

various elements take. This is motivated by the observation that the absolute values

(6.29) seem to roughly follow the pattern

|VCKM| ⇠

0

BB@

1 � �3

� 1 �2

�3 �2 1

1

CCA (6.34)

with � ⇡ 0.2. The idea of the Wolfenstein parameterisation is that we take this as a

starting point and then add corrections. We parameterise these corrections by one real

number that we call A and one complex number that we write as ⇢ � i⌘, so that the

overall number of parameters is the same as the CKM matrix. Then numbers A and

⇢� i⌘ are all of order one. We then write

VCKM ⇡

0

BB@

1� �2/2 � A�3(⇢� i⌘)

�� 1� �2/2 A�2

A�3(1� ⇢� i⌘) �A�2 1

1

CCA . (6.35)

You will recognise the upper-left 2⇥ 2 matrix as the Taylor expansion of V2⇥2 given in

(6.25), with � = ✓c.

The Wolfenstein parameterisation (6.35) is not unitary. It sacrifices that property of

the CKM matrix to highlight some other numerical structure. Note, in particular, that

only the far o↵-diagonal elements Vub and Vtd have an imaginary piece. This contrasts
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Figure 17. The unitarity triangle, plotted on the complex plane.

with the exact CKM matrix (6.31) where Vcd, Vcs and Vts also have imaginary parts

but you can check that these are one or two orders of magnitude smaller than Im(Vub)

and Im(Vtd), which is why they are neglected in (6.35).

6.2.4 The Unitarity Triangle

The CKM matrix is unitary,

V †
CKM

VCKM = 1 . (6.36)

This means, in particular, that a given row of V †
CKM

is orthogonal to two of the three

columns of VCKM.

For example, if we contract the middle row of V †
CKM

with the first column of VCKM,

we have the requirement

3X

i=1

V ?

is
Vid = V ?

us
Vud + V ?

cs
Vcd + V ?

ts
Vtd = 0 . (6.37)

If we look at this in the Wolfenstein parameterisation, then we see that the first two

terms are of order � while the final term is of order �5. This means that the equation

essentially boils down to the requirement that V ?

us
Vud ⇡ V ?

cs
Vcd.

We get something more interesting if we contract the bottom row of V †
CKM

with the

first column of VCKM. This reads

3X

i=1

V ?

ib
Vid = V ?

ub
Vud + V ?

cb
Vcd + V ?

tb
Vtd = 0 . (6.38)
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Figure 18. The experimental data, constraining the unitarity triangle. Taken from the

CKMfitter website.

Now each of the terms has a comparable magnitude ⇠ �3, but they have di↵erent

phases. But we can go out and measure each of the terms in this equation and check if

they do, indeed, add up to zero. This gives us a very useful test on the whole framework

of flavour, not to mention an opportunity to search for physics beyond the Standard

model. So far, it is a test that the Standard Model has passed with flying colours.

To perform this test, it’s traditional to divide by V ?

cb
Vcd and write the constraint as

V ?

ub
Vud

V ?

cb
Vcd

+ 1 +
V ?

tb
Vtd

V ?

cb
Vcd

= 0 . (6.39)

Each of the two non-trivial terms is a complex number whose magnitude is of order 1.

We can then plot these numbers on the complex plane. You can check that, to leading

order in �, we have V ?

ub
Vud/V ?

cb
Vcd = �(⇢+i⌘). The result is called the unitarity triangle

and is shown in Figure 17. The data from a multitude of experiments, constraining the

corners of the triangle, is shown in Figure 18.
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6.3 Flavour Changing Neutral Currents

When we diagonalise the mass matrices for quarks, neither the electromagnetic current

(6.18) nor the Z boson current (6.19) are a↵ected. It’s only the W boson current that

couples up-type and down-type quarks that gets hit by this diagonalisation, and that

is where the CKM matrix sits.

This means that the tree level processes that change one generation of quarks with

another always involve charged currents. So, for example, we can change a strange

quark into an up quark by emitting a W boson. But we can’t change a strange quark

directly into a down quark which has the same charge. We phrase this as saying that

there are no tree level flavour changing neutral currents, often abbreviated as FCNC.

That’s not to say that flavour changing neutral currents don’t exist. We can cook

them up at loop level, and an example is given by the neutral kaon mixing that we

will discuss in Section 6.4 where K0 turns into the K̄0 by exchanging s and d quarks.

But it does mean that these processes are suppressed because they can only come from

loop diagrams.

In fact, the situation is even more interesting than that. The structure of the Stan-

dard Model is such that these one-loop contributions are further suppressed. A par-

ticularly simple example arises if we look at how a bottom quark might decay into a

strange quark, with b ! s�. The simplest Feynman diagrams take the form

b s

�

u,c,t

W�

As shown, we should sum over all up-like quarks running in the loop. But this means

that the amplitude comes with factors of the CKM matrix,

M ⇠
3X

i=1

VibV
?

is
= 0 (6.40)

which vanishes by unitarity of the CKM matrix. This observation is known as the GIM

mechanism, named after Glashow, Iliopoulos, and Maiani.
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In fact, the cancellation isn’t precise because the quarks running in the loop have

di↵erent masses. This means that we actually get terms that are of the form

M ⇠
3X

i=1

VibV
?

is
f(mi) (6.41)

for some function f(mi). These diagrams also contain a W boson running in the loop

and, because mi ⌧ mW for each of the u, c, and b quarks, it can be shown that this

function takes the form f(mi) ⇠ m2

i
/m2

W
.

Remarkably, this kind of argument was first used by GIM to predict the existence

of the charm quark in 1970, before its discovery in 1974. (This was also before the

Standard Model had been fully constructed, and certainly before the importance of

anomaly cancellation was realised.) The issue arose from looking at decays of the

neutral kaon K0 with quark content ds̄ to a pair of muons.

K0 ! µ+µ� . (6.42)

This proceeds through the one loop diagram

d µ�

s̄ µ+

W�

W+

u ⌫̄µ

The problem is that this diagram gives a contribution to K0 ! µ+µ� that is much

greater than observed. The suggestion by GIM was to add an additional quark – the

charm – that contributes with a similar diagram

d µ�

s̄ µ+

W�

W+

c ⌫̄µ

Under the (obviously wrong!) assumption that the up and charm quark have similar

masses, these two diagrams would cancel. This is because each is proportional to the

appropriate CKM matrix elements which, with just two generations, can be written in

terms of the Cabibbo angle. The resulting amplitude scales as

M ⇠ VudV
?

us
+ VcdV

?

cs
= cos ✓c sin ✓c � sin ✓c cos ✓c = 0 . (6.43)

– 226 –



This illustrates the general idea captured in (6.40). When you take into account the

fact mu 6= mc, there is still partial cancellation but it is not complete. The amplitude

scales as

M ⇠ g4
m2

c

m2

W

✓
1� m2

u

m2
c

◆
. (6.44)

It’s that overall factor of g4m2

c
/m2

W
that makes the decay rate to muons so small.

The lack of flavour changing neutral currents is special to the Standard Model and

any attempt to introduce new physics that goes beyond the Standard Model will typi-

cally generate these currents. This means that experiments involving neutral currents

provide an important class of constraints on what theories govern the next level of

reality.

Here’s an example. It’s possible that flavour changing neutral currents could be

generated by the Higgs field. But that doesn’t happen in the Standard Model because

the Higgs field couples, like its vev, to the mass matrix which, as we have seen, can be

diagonalised for both up and down sectors. This means that we have, for example,

LYuk = �yd
ij
(v + h)d̄i

L
dj
R

(6.45)

with a diagonal Yukawa matrix yd = diag(yd, ys, yb). There is a similar term for the up

sector.

Now suppose that we had a theory with two Higgs fields, H1 and H2. We’ll assume

(without any justification) that their vacuum expectation values align, so that hH1i =
(0, v1) and hH2i = (0, v2). Then we should include two sets of Yukawa interactions

that, for the down sector, take the form

LYuk = y1
ij
(v1 + h1)d̄

i

L
dj
R
+ y2

ij
(v2 + h2)d̄

i

L
dj
R
. (6.46)

Now the fermion mass matrix is Mij = v1y1ij + v2y2ij. We could rotate the quarks to

ensure that this is diagonal, but the Higgs fields h1 and h2 will couple to the fermions

through y1
ij
and y2

ij
respectively and there is no reason that these will be diagonal. This

means that in a model with two Higgs fields, there will generically be flavour changing

neutral currents at tree level, mediated by the two Higgses, in contradiction to what is

observed in experiment. If you want to make a two-Higgs model fly (and many people

do), then you need to find a way to suppress these currents.
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6.4 CP Violation

The complex phase ei� in the CKM matrix (6.31) is important. This is because it is

responsible for the laws of physics violating the symmetry CP. Said di↵erently, because

any relativistic quantum field theory is invariant under CPT, a non-vanishing phase �

means that the laws of physics are not invariant under time reversal.

We discussed the discrete symmetries of C, P and T in Section 1.4. There we saw

that parity and charge conjugation both exchange left-handed and right-handed spinors.

The electroweak sector of the Standard Model violates both parity and charge conju-

gation from the get go because, as a gauge chiral theory, the left- and right-handed

fermions transform di↵erently under the gauge symmetries. But the combination CP

is more subtle.

We derived how CP acts on left-handed and right-handed Weyl spinors in (1.132).

For fermions with real masses, we have

CP :  L(t,x) 7! ⌥i�2 ?

L
(t,�x) and CP :  R(t,x) 7! ±i�2 ?

R
(t,�x) . (6.47)

From this, you can check that the fermion bilinear  ̄L R transforms under CP as

CP :  ̄L R(t,x) 7!  ̄R L(t,�x) . (6.48)

A Yukawa coupling between two fermions and a scalar � takes the form

LYuk = y ̄L� R + y? ̄R�
† L (6.49)

where the second term is what was hiding in the + h.c. in our previous expressions

(5.74) and (6.1). The scalar gets mapped to its conjugate under CP, so these two

terms get mapped into each other, with CP :  ̄L� R 7!  ̄R�† L. This means that the

Yukawa terms (6.49) are invariant under CP only if the Yukawa coupling is real, so

y = y?.

There’s a quicker argument that gets us to the same conclusion. This is to note that

T is an anti-unitary symmetry: it maps i 7! �i. Only theories with real parameters

are invariant under time reversal.

From the structure of CKM matrix (6.31), we see that CP violation will only occur in

processes that mix di↵erent generations. Moreover, as emphasised in the Wolfenstein

parameterisation (6.35), CP violation will be strongest in processes that mix the first

and third generations of quarks, even though this is the smallest element of the CKM

matrix in magnitude.

– 228 –



6.4.1 How to Think of the Breaking of Time Reversal

The fact that the fundamental laws of physics are not invariant under time reversal is

an extraordinarily big deal. And yet, when we get to see the details one can’t help but

be a little disappointed. It just boils down to a complex phase ei� in the CKM matrix

that can’t be removed by a field redefinition. Surely there’s more to it than that!

The purpose of this section is to give some intuition for why such a complex phase

results in the breaking of time reversal symmetry. We will do this by providing an

analogy with the meaning of time-reversal in quantum mechanics.

Let’s return to our Yukawa coupling matrices yd
ij
and yu

ij
in (6.1). We will consider

the general case where we have i, j = 1, . . . , N generations rather than setting N = 3.

Before we do any field redefinitions, each of these is an N ⇥ N complex matrix. Any

complex matrix y can be written in terms of a matrix polar decomposition as

y = Y U . (6.50)

with U a unitary matrix and Y a Hermitian matrix, so Y = Y †. Because Y is Hermitian,

it necessarily has real eigenvalues and these can always be taken to be non-negative.

This is the matrix version of writing a complex number as z = rei✓. But, for each

Yukawa coupling, the unitary matrix U can be absorbed into a redefinition of the

right-handed quarks, as in (6.4). This means that we can always take the Yukawa

matrices to be Hermitian. We will denote these two Hermitian Yukawa matrices as Y u

ij

and Y u

ij
.

One benefit of having Hermitian Yukawa matrices is that we can start to import

some intuition from quantum mechanics. For example, we can consider conjugating

the two matrices by a unitary matrix V ,

Y d ! V †Y dV and Y u ! V †Y uV . (6.51)

These are the remaining field redefinitions (6.5) that keep the matrices Hermitian. We

know from quantum mechanics that it is possible to simultaneously diagonalise both

Y d and Y u by such a transformation if and only if

[Y d, Y u] = 0 . (6.52)

The fact that this condition isn’t satisfied for the Yukawa matrices of the Standard

Model is what leads to the CKM matrix. Said di↵erently, the CKM matrix is a measure

of the failure of Y d and Y u to commute.
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There’s also a less familiar question that we can ask: is it possible to find a unitary

matrix V such that, by conjugation (6.51), we can make both Y d and Y u real? If this

is possible, we will say that Y d and Y u are mutually real. First note that if Y d and

Y u are simultaneously diagonalisable then they are necessarily mutually real. But the

requirement that matrices are mutually real is weaker than the requirement that they

commute.

Next we will show that if Y d and Y u are mutually real then the CKM matrix is

real. (In fact, the converse also holds: a real CKM matrix implies that Y d and Y u are

mutually real.) To see this, note that if V †Y dV and V †Y uV are both real then each

can be diagaonalised by a (di↵erent) orthogonal real matrix, Od and Ou:

(Od)TV †Y dV Od = diag(yd, ys, . . .) and (Ou)TV †Y uV Ou = diag(yu, yc, . . .) .(6.53)

Comparing to (6.10), we see that we can identify the unitary matrices V d and V u that

diagonalise the Yukawa interactions as V d = V Od and V u = V Ou so the CKM matrix

is

VCKM = (V u)†V d = (Ou)TOd . (6.54)

This is now real as both Ou and Od are real.

So far we’ve just phrased our previous results in a slightly di↵erent language. The

Standard Model is not invariant under time reversal if the CKM matrix is not real.

And this, in turn, holds if the Hermitian Yukawa matrices are not mutually real. Now

we’d like to explain why this should result in breaking time reversal. We will do so by

analogy with quantum mechanics.

A Quantum Mechanical Analogy

To this end, suppose that we have two N ⇥N Hermitian matrices A and B that act on

an N -dimensional Hilbert space. These will be analogous to our two Yukawa matrices

Y d and Y u. What is the implication in quantum mechanics if A and B are mutually

real? The answer, as we now explain, is related to time reversal invariance.

One particularly physical way to think of this is to take A to be the Hamiltonian of

the system. We then measure B. Suppose that we find ourselves in one eigenstate |bii
of B, evolve for some time under A, and then measure B again. The probability that

we find ourselves in an eigenstate |bji is

P (i ! j; t) =
��hbj|e�iAt|bii

��2

= hbj|e�iAt|biihbi|e+iAt|bji . (6.55)
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We can compare this to the same probability if we instead run time backwards

P (i ! j;�t) =
��hbj|e+iAt|bii

��2

= hbj|e+iAt|biihbi|e�iAt|bji . (6.56)

First we see that

P (i ! j;�t) = P (j ! i; +t) . (6.57)

Now we can ask about time reversal invariance. When is the probability the same,

regardless of whether we run backwards or forwards in time? In other words, when is

P (i ! j; t) = P (j ! i; t)?

The answer is that these two probabilities are equal whenever A and B are mutually

real or, equivalently, whenever the CKM-type matrix is real. First we introduce some

notation. We introduce unitary matrices VA and VB that diagonalise A and B,

V †
A
AVA = diag(a1, . . . , aN) and V †

B
BVB = diag(b1, . . . , bN) . (6.58)

If we introduce the basis |ii, then the eigenvectors of A are

|aii = (VA)ij|ji =) A|aii = ai|aii (6.59)

and similar for B. If we’re avoiding using subscripts, we will sometimes write this as

|aii = VA|ii. The eigenvectors of A and B are then related by

|bii = Uij|aji with Uij = (VBV
†
A
)ij . (6.60)

Notice that this isn’t quite of the CKM matrix form (6.22); the CKM matrix is VCKM =

V †
B
VA while here we have U = VBV

†
A
. We’ve already shown that VCKM is real if A and

B are mutually real. It will turn out that the probability is time reversal invariant if

we can pick phases for the bases |aii and |bii so that U is also real.

To show this, we will consider an anti-unitary time reversal operator ⇥ in our quan-

tum mechanics. We will show that whenever A and B are mutually real, it’s possible to

construct a time reversal operator such that [⇥, A] = [⇥, B] = 0. We do this by showing

that the eigenvectors |aii and |bii, with suitably chosen phases, are also eigenvectors of

⇥.
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We start by taking the basis of states |ii, with i = 1, . . . , N , and introduce the

anti-linear involution K defined by

K|ii = |ii . (6.61)

If K were a linear operator, this equation would tell us that K = 1. But k is an

anti-linear operator which means that, for any ↵ 2 C, we have

K(↵|ii) = ↵?|ii . (6.62)

Now we define the time reversal operator

⇥ = VAKV †
A
. (6.63)

With this definition, it’s straightforward to check that the eigenvectors of A, |aii, are
also eigenvectors of time reversal

⇥|aii = |aii . (6.64)

But, importantly, so too are the eigenvectors of B provided that A and B are mutually

real. This follows by plugging in the various definitions,

⇥|bii = VAKV †
A
VB|ii = VA(V

†
A
VB)

?K|iin = VAV
†
A
VB|ii = |bii (6.65)

where, in the third equality, we’ve used the fact that the CKM-like matrix V †
A
VB is real

if A and B are mutually real.

But we can look at what this time reversal means for the matrix U defined in (6.60).

We have

⇥|bii = ⇥Uij|aji = U?

ij
|aji = |bii = Uij|aji =) U?

ij
= Uij . (6.66)

Finally, we can now use this to prove that our forward probability (6.55) and backward

probability (6.56) are equal, so that P (i ! j; t) = P (j ! i; t). We could do this

directly using the time reversal operator ⇥, but it’s a bit fiddly as we need to think

about how anti-unitary operators act on the dual vectors |bii. Instead, we can proceed

in a more pedestrian fashion. We have

hbj|e�iAt|bii =
X

k

hak|U?

kj
Ukie

�iakt|aki

=
X

k

hak|UkjU
?

ki
e�iakt|aki = hbi|e�iAt|bji (6.67)

where, in the second line, we’ve used the fact that U?

ij
= Uij. This is exactly what

we need to equate the probabilities in the forwards (6.55) and backwards (6.56) time

directions.
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This quantum mechanical story was designed to give some intuition for why having

two mutually real Hermitian matrices – A and B above, or Y d and Y u in the Standard

Model – implies time reversal symmetry. And why, conversely, the failure of these two

matrices to be mutually real implies time reversal symmetry breaking. The analogy

with the Standard Model isn’t perfect but you could, for example, think of diagonalising

Y d so that this gives mass eigenstates, and then measuring flavour eigenstates of Y u.

Indeed, this way of thinking works better in the lepton sector where there is a similar

issue that results in neutrino mixing, as explained in section 7.)

6.4.2 The Jarlskog Invariant

We can ask: how much does the CKM matrix violate CP or, equivalently, time reversal?

Clearly the answer is “not much” but it would be nice to find a way to quantify this.

There is a way that is independent of the choice of basis. This is known as the Jarlskog

invariant.

To see this, it’s useful to work with Hermitian Yukawa couplings Y d and Y u; this is

always possible as explained above. Then we know that there can be no CP breaking

whenever [Y d, Y u] = 0. This suggests that we look at the Hermitian matrix

C = [Y u, Y d] (6.68)

as a way to measure CP breaking. We can individually diagonalise each of these Yukawa

matrices by

(V d)†Y dV d = Dd := diag(yd, ys, yb)

and (V u)†Y uV u = Du := diag(yu, yc, yt) . (6.69)

The commutator then becomes

C = V u[Du, VCKM Dd V †
CKM

]V u † . (6.70)

We would like to construct something that is invariant under the field redefinitions

Y d ! V †Y dV and Y u ! V †Y uV . The obvious way to do this is to take traces of

powers of C. Clearly TrC = 0 while TrC2 is a measure of the failure of Y u and Y d to

commute or, in other words, a measure of the size of VCKM. However, for a measure of

CP violation, the relevant quantity is

TrC3 = 3detC . (6.71)

It’s straightforward to see why this is the appropriate measure of CP violation. From

(6.70), the matrix C shares its eigenvalues with the matrix [Du, VCKM Dd V †
CKM

]. But
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if VCKM is real then this is an anti-symmetric matrix and so are pure imaginary and

come in conjugate ± pairs. That means in particular that, for N = 3 generations, the

matrix C must have a zero eigenvalue whenever VCKM is real and hence detC = 0.

We can see this through an explicit calculation: we have

detC = �2iF uF dJ (6.72)

where

F u = (yt � yc)(yt � yu)(yc � yu)

and F d = (yb � ys)(yb � yd)(ys � yd) . (6.73)

We see that these factors vanish if any of the quark masses of the same type are equal.

That’s because, in this case the CKM matrix degenerates to become analogous to the

situation with just two flavours, but we know that there can be no CP violation in

that case. For the situation where all quark masses di↵er, the relevant measure of CP

violation lies in the remaining factor J which is given by

J = Im (VudV
?

ub
VtbV

?

td
) . (6.74)

This is the Jarlskog invariant. Its measured value is

J = s12 s23 s13 c12 c23 c
2

13
sin � ⇡ 3⇥ 10�5 . (6.75)

The Jarlskog invariant depends on each of the mixing angles ✓ij. If any of them vanishes

(or, indeed, if any of them equals ⇡/2) then the situation e↵ectively reduces to that of

just two flavours where, as we have already seen, there is no CP violation. Conversely,

you can show that the theoretical maximum value of the Jarlskog invariant is Jmax =

1/6
p
6 ⇡ 0.07. The measured value of the Jarlskog invariant J/Jmax ⇡ 4 ⇥ 10�4 is

telling us that CP violation in the quark sector of the Standard Model is really small.

As we’ve mentioned before, this isn’t because the complex phase � is small: it’s not. It’s

all those other angles that kill us. We can see this in the Wolfenstein parameterisation,

which gives

J ⇡ �6A2⌘ . (6.76)

CP violation is small because it’s proportional to �6.
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The Jarlskog invariant has a nice interpretation in terms of the unitarity triangle.

The area of the triangle (6.38) (computed before normalising one of the sides to have

length 1) is of order ⇠ �6. One can show that it is given by the Jarlskog invariant

Area =
J

2
. (6.77)

In fact, this result is stronger. If one considers the area of the triangle formed by the

(extremely squashed) triangle defined by the complex numbers in (6.37), that too obeys

(6.77). Indeed, the areas of all such triangles are equal and given by J/2.

6.4.3 The Strong CP Problem Revisited

In Section 3.4, we described the theta term of QCD,

S✓ =
✓g2

s

16⇡2

Z
d4x TrGµ⌫

?Gµ⌫ . (6.78)

This would provide a contribution to CP violation directly within the strong force

except that, as far as we can tell, the theta angle takes the value ✓ = 0. (Or, more

precisely, ✓ < 10�10.) Understanding why ✓ = 0 is known as the strong CP problem.

It’s worth revisiting this now that we understand how CP is violated in the weak

sector. In particular, this new perspective gives the strong CP problem extra bite.

The issue comes when we choose to remove various phases of the CKM matrix by

shifting the phases of the up and down quarks in (6.30). As we saw in Section 4, the

U(1) symmetries in (6.30) have a mixed anomaly with the SU(3) gauge group. This

means that the phase rotations (6.30) are not entirely innocuous because they shift the

QCD theta angle as described in Section 4.2.1.

This suggests that the strong CP problem is tied up with the question of flavour and

the CKM matrix. The fuller statement is that ✓ ⇡ 0 when we remove all but one of

the phases from the CKM matrix.

6.4.4 Neutral Kaons

How does CP violation manifest itself in our world? Although the imaginary part of

the CKM matrix is largest in the Vub and Vtd components, the place where CP violation

shows up most clearly is among kaons, for the simple reason that it’s easy to produce

a gazillion kaons and study them with precision.

Recall from Section 3 that the neutral kaon K0 contains the quarks ds̄. Its anti-

particle K̄0 contains sd̄. These mesons have mass mK ⇡ 498 MeV.
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The mesons K0 and K̄0 are degenerate eigenstates of the strong interactions. (For

example, they have well defined strangeness, which is a symmetry of QCD, but not of

the full Standard Model.) However, the weak interactions can act to mix these two

degenerate eigenstates. This happens through so-called box diagrams of the form

d s

s̄ d̄

W�

W+

q q0

d s

s̄ d̄

q

q0

W� W+

where the q and q0 quarks in the diagrams can be either u, c or t. Each of these vertices

comes with the corresponding CKM matrix element Vdq or V ?

sq
and, as we’ve seen, some

of these have imaginary parts, reflecting the fact that CP is broken. As we now explain,

this has an interesting consequence for these kaons.

As usual in degenerate perturbation theory in quantum mechanics, we should figure

out the new linear combinations of states that are energy eigenstates which, in the

context of quantum field theory, is the same as a mass eigenstate.

To start, let’s assume that CP is a good symmetry of the weak interactions. We will

deduce the consequences of this and then see that these consequences are almost, but

not quite, respected by nature, reflecting the fact that CP is almost, but not quite, a

good symmetry.

If CP is a good symmetry of the weak force, then the mass eigenstates should be

eigenstates of CP. But neither K0 nor K̄0 are eigenstates of CP . To see this, first note

that the kaon is a pseudoscalar meson (recall that it was a Goldstone boson from chiral

symmetry breaking) and so, under parity, we have

P : |K0i 7! �|K0i and P : |K̄0i 7! �|K̄0i . (6.79)

Meanwhile, under charge conjugation we have C : ds̄ 7! d̄s and so

C : |K0i 7! |K̄0i and C : |K̄0i 7! |K0i . (6.80)

The upshot is that we can construct eigenstates under CP by taking

|K1i =
1p
2
(|K0i � |K̄0i) and |K2i =

1p
2
(|K0i+ |K̄0i) (6.81)

with

CP : |K1i 7! +|K1i and |K2i 7! �|K2i . (6.82)
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So we have two eigenstates of CP, |K1i and |K2i, and if CP were a good symmetry

then these would also be mass eigenstates. Let’s now figure out what this means for

the decay of kaons.

Kaons decay primarily to pions. The pions have mass m⇡ ⇡ 140 MeV which means

that, in principle, a kaon could decay to either two pions or to three pions (because

140⇥ 3 < 498). Which of these happens is dictated by their CP quantum numbers.

Claim Two pion states have CP = +1.

Proof: There are actually two possible two pion decays: ⇡0⇡0 and ⇡+⇡�. We deal

with each in turn.

The intrinsic parity of all pions is P = �1. (This was described in Section 3 and,

as for the kaons, follows because they are Goldstone modes for chiral symmetry.) So

the parity of a pair of pions is P = (�1)2 ⇥ (�1)L where L is the orbital angular

momentum. But because the pions arise from the decay of a spin 0 particle, we must

have L = 0 and hence P = +1.

That leaves us with charge conjugation. The neutral pion has quark content ⇡0 =
1p
2
(uū�dd̄) and so has C = +1. Meanwhile, the charged pions are exchanged under C.

This means, in particular, that their positions are swapped and so charge conjugation

acts in the same way as parity, meaning C(⇡+⇡�) = P (⇡+⇡�) = (�1)L. But, as we’ve

seen, L = 0 and so ⇡+⇡� also has C = +1.

Putting this together, we learn that the pair of pions has CP = +1. ⇤

Claim: The three pion states nearly always have CP = �1.

Proof: Again, we have two cases to consider: ⇡0⇡0⇡0 and ⇡+⇡�⇡0.

Each of these states has intrinsic parity (�1)3 = �1, leaving us with the contribution

from orbital angular momentum to worry about. Let’s start with the ⇡0⇡0⇡0 state. We

can think of the first two pions as having mutual angular momentum L1 and the

third as orbiting this pair with angular momentum L2. The contribution to the parity

of the state is then (�1)L1(�1)L2 . We add angular momentum in the usual quantum

mechanical way, L1�L2 = |L1�L2|+. . .+|L1+L2|. But for this to include the required
angular momentum L = 0 state, we must have L1 = L2 and so (�1)L1(�1)L2 = +1.

We learn that ⇡0⇡0⇡0 has parity (�1)3(�1)L1(�1)L2 = �1. It also has C = +1, and so

CP = �1.

– 237 –



Things are a little more complicated for ⇡+⇡�⇡0. We again have total parity

P = (�1)3(�1)L1(�1)L2 = �1 . (6.83)

The charge conjugation of ⇡0 is again C = +1, but the charge conjugation of the ⇡+⇡�

pair is now C(⇡+⇡�) = P (⇡+⇡�) = (�1)L1 and this time there is no reason that L1

should be even. This is why we’ve got the weasel words “nearly always” in the claim

above. If the three pion state ⇡+⇡�⇡0 has L1 = 0 then it does indeed have CP = �1

as claimed. But for L1 = +1, the CP di↵ers. Happily, this isn’t an issue in practice

because it costs extra kinetic energy for the pions to decay in the L1 = 1 state but,

with only mK � 3m⇡ ⇡ 80 MeV to play with, these decay products with L1 6= 0 are

strongly suppressed. ⇤

The upshot of this argument is that, if CP is conserved, then the state |K1i will

decay to two pions, and the state |K2i will decay to three pions. But there’s a vast

di↵erence in the energy available for these decays. We have

mK � 2m⇡ ⇡ 220 MeV and mK � 3m⇡ ⇡ 80 MeV . (6.84)

This means that there’s much more phase space available for the first decay than for

the second and, correspondingly, we expect that the first decay will happen much

faster than the second. Indeed, this is what is observed: the neutral kaons with mass

mK ⇡ 498 MeV have two di↵erent lifetimes, ⌧short and ⌧long, given by

⌧short ⇡ 0.9⇥ 10�10 s and ⌧long ⇡ 0.5⇥ 10�7 s . (6.85)

Putting all this together, we have the following conclusion: if CP is preserved, then we

expect to identify the short-lived kaons with the CP = +1 eigenstates,

|Kshorti = |K1i =
1p
2
(|K0i � |K̄0i) . (6.86)

These will decay to two pions KS ! ⇡⇡ in time ⌧short. Meanwhile, the long-lived kaons

should correspond to the CP = �1 eigenstates,

|Klongi = |K2i =
1p
2
(|K0i+ |K̄0i) . (6.87)

These will decay to three pions Klong ! ⇡⇡⇡ in a time ⌧long.

So is this what’s seen? Well, almost but not quite.
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We can produce kaons through collisions ⇡�+ p ! ⇤+K0. These kaons are a linear

combination of CP even and odd eigenstates, |K0i = 1p
2
(|K1i + |K2i). If we produce

a beam of such kaons, then we should see them initially decay to two pions, and later

decay to three pions. Indeed, that’s what happens. Mostly.

Suppose that we wait for a time ⌧short ⌧ t ⌧ ⌧long, at which point we can be sure

that the beam contains only |Klongi. We then look closely at the decay products. This

is what Cronin and Fitch did in 1964. They observed 22700 kaon decays, of which

22655 decayed to three pions. But not all. There were 45 long-lived kaons that decayed

to two pions. This tiny e↵ect was the first evidence for CP violation. It arises because

the long-lived energy eigenstates are not CP eigenstates. Instead, we have

|Kshorti =
1p

1 + |✏|2
�
|K1i+ ✏|K2i

�

|Klongi =
1p

1 + |✏|2
�
|K2i+ ✏|K1i

�
. (6.88)

Experimentally, |✏| ⇡ 2 ⇥ 10�3. This is the signature of CP violation in the neutral

kaon system.

We can understand this from the box diagrams that we drew previously. We should

sum over all di↵erent quarks running in the loop but, for simplicity, we will focus on

the following diagram that mixes K0 ! K̄0,

d s

s̄ d̄

c t

This diagram is proportional to the product of the CKM matrix elements,

M(K ! K̄) ⇠ VcdV
?

cs
VtdV

?

ts
. (6.89)

Meanwhile, the diagram that mixes K̄0 ! K0 is

s d

d̄ s̄

c t

This diagram is proportional to

M(K̄ ! K) ⇠ V ?

cd
VcsV

?

td
Vts = M?(K ! K̄) . (6.90)
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CP violation is reflected in the fact that the CKM matrix elements are not real, and

hence M(K ! K̄) 6= M(K̄ ! K). The di↵erence in the amplitude is

M(K ! K̄)�M(K̄ ! K) ⇠ Im
�
VcdV

?

cs
VtdV

?

ts

�
. (6.91)

The value of ✏ in (6.88) is set by this imaginary part, together with further contributions

from other quarks running in the loop.

6.4.5 Wherefore CP Violation?

The CPT theorem tells us that CP violation is tantamount to a violation of time

reversal. And that sounds interesting!

It’s worth comparing the implications of parity violation and time reversal violation.

At first glance, they seem very similar: one is a flip of spatial coordinates, x ! �x,

the other a flip of time t ! �t. Yet, despite their similarities, the mathematical

consequences of these two broken symmetries could not be more di↵erent.

The breaking of parity is sewn into the heart of the Standard Model which is a

chiral gauge theory. As we’ve seen, the requirements of anomaly cancellation then put

stringent constraints on the allowed interactions which pretty much fixes the gauge

sector of the Standard Model.

This stands in sharp contrast to the theoretical consequences of time reversal vio-

lation, which shows up only as some complex phase in the CKM matrix. There are

seemingly no deep mathematical consequences for theories that violate time reversal,

no consistency requirements that we have to deal with. You just make a parameter

complex and you’re done. It’s striking how little impact this has, not just on our

daily lives, but on our deeper understanding of physics. It makes you wonder if there’s

something that we’re missing!

There is, however, thought to be one very important implication of CP violation,

albeit one that we don’t fully understand. This follows from the fortunate observation

that our universe contains lots of matter, but very little anti-matter. It is thought that

this imbalance occurred naturally in the early universe, but for this to happen there

have to be processes where matter and anti-matter behave di↵erently. This, it turns

out, requires CP violation.

It’s not clear if the formation of matter over anti-matter can happen solely using

the Standard Model (perhaps including some further CP violation that occurs in the

lepton sector) or if it requires some new physics that lies beyond the Standard Model.

This process, whatever causes it, goes by the name of baryogenesis.
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