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1. A particle moving in one dimension has Hamiltonian

H =
p2

2m
+ λq4

Show that the heat capacity for a gas of N such particles is CV = 3NkB/4. Explain

why the heat capacity is the same regardless of whether the particles are distinguishable

or indistinguishable.

2. Derive the Sackur-Tetrode formula for the entropy of an ideal monatomic gas with

Z = ZN
1

/N !. Show that the entropy is not extensive if we fail to include the N ! factor.

3. Consider an ultra-relativistic gas of N spinless particles obeying the energy-momentum

relation E = pc, where c is the speed of light. (Here ultra-relativistic means that

pc ≫ mc2 where m is the mass of the particle). Show that the canonical partition

function is given by

Z(V, T ) =
1

N !

[

V

π2

(

kBT

~c

)3
]N

Hence show that an ultra-relativistic gas also obeys the familiar ideal gas law pV =

NkBT .

4*. Consider a perfect classical gas of diatomic molecules for which each molecule has

a magnetic moment m aligned along its axis. Let there be a magnetic field B, so that

each molecule has a potential energy −mB cos θ (θ being the angle between the axis

of the molecule and the magnetic field). Show that the rotational part of the partition

function is Zrot = (zrot)
N where

zrot =
[ 2I

~2mBβ2

]

sinh(mβB) (1)

Evaluate the total magnetisation, M = −∂F/∂B and sketch its dependence upon

mβB. Show that, for large mβB, the average value of the potential energy is NkT −

NmB(1 + 2e−2mβB + . . .).

5. A classical gas in three dimensions is constrained by a wall to move in the x ≥ 0

region of space. A potential

V (x) =
1

2
αx2 x ≥ 0
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attracts the atoms to the wall. The atoms are free to move in an area A in the y and z

directions. If the gas is at uniform temperature T , show that the number of particles

varies as

N(x) = 2N

√

αβ

2π
e−αβx2/2

By considering a slab of gas between x and x+∆x, show that locally the gas continues

to obey the ideal gas law. Hence determine the pressure that the gas exerts on the

wall.

6. Consider the neutral gas of electrons, protons and Hydrogen discussed in Question

10 of Examples Sheet 1. You know from Quantum Mechanics that the Hydrogen atom

has binding energy E = −∆ (where ∆ = 13.6 eV ). Let the number of Hydrogen atoms

be NH = (1 − x)N and the number of electrons and protons be Ne = Np = xN with

x ∈ [0, 1]. By treating the system as three ideal gases in the grand canonical ensemble,

use the equilibrium condition µH = µe + µp to show that

x2

1 − x
=

V

N

(

memp

2π~2mH

)3/2

(kbT )3/2 e−∆/kBT

7. Compute the equation of state, including the second virial coefficient, for a gas of

non-interacting hard discs of radius r0/2 in two dimensions.

8. Determine the density of states for non-relativistic particles in d = 2 and d = 1

dimensions. (You should find that the density is constant for particles on a plane and

decreases with energy for particles on a line)

9. In many experiments, particles are not trapped in a box, but instead in a quadratic

potential. In d-dimensions, the potential energy felt by a single particle is

V (~x) =
1

2

d
∑

i=1

ω2

i x
2

i

Compute the density of states g(E) in d = 3 and d = 2 dimensions assuming that E is

large enough that the spectrum may be treated as a continuum (i.e. E ≫ ~ωi).

(Hint: First determine G(E), the number of states with energy less than E)

10. Consider blackbody radiation at temperature T . Show that the average number

of photons grows as T 3. What is the mean photon energy? What is the most likely

energy of a photon?
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11. Recall from the lectures that a black body at temperature T absorbs all the

radiation that falls on it and emits radiation at the rate E = σT 4 per unit area, where

σ is Stefan’s constant. A black, perfectly conducting sphere orbits a star of radius

7 × 105 km at a distance of 1.5 × 108 km. The star radiates like a black body at

temperature 6000 K. Can you make a gin and tonic on this sphere?

12. The purpose of this question is to explain why the microwave background radiation

still has a black body spectrum, even though it has not been in thermal equilibrium

with matter since very early in the universe’s history.

Consider a region of volume V in the cosmos containing black body radiation of

temperature T . Suppose the cosmos expands (slowly) by a scale factor α, so that

the wavevector ~k and angular frequency ω of each electromagnetic radiation mode are

rescaled by 1/α. Explain why you should expect the mean number of photons in each

mode not to change. Show that the Planck distribution is valid after the expansion

provided the temperature is also rescaled by 1/α.

Verify, from the formula for the entropy of black body radiation, that the entropy in

the expanded volume is the same as the original entropy, thus confirming the adiabatic

character of the expansion.

13. Suppose that you don’t know the value of Boltzmann’s constant. What experi-

ments could you do on a box of gas to determine how many atoms it contained?
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