Statistical Physics: Example Sheet 4
David Tong, March 2012

1li. By examining variations in F, F', H and G, derive the four different Maxwell
relations for the partial derivatives of S, p,T and V.

ii. Obtain the partial derivative identity
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2. Consider a gas with a fixed number of molecules. Two experimentally accessible
quantities are C'y, the heat capacity at fixed volume and C,, the heat capacity at fixed
pressure, defined as
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Using the results of the previous question, show that:
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3. Consider a classical ideal gas with equation of state pV = NkgT and constant heat
capacity Cy = Nkp « for some a.. Use the results above to show that C,, = Nkg(a+1),
and that the entropy is

S = Nkglog (%) + NkpalogT + const.

Deduce that, for an adiabatic process (with dS = 0), VT is constant and, equivalently,
pV7 is constant, where v = C,/Cy.

4. This question describes the Joule-Thomson process (also known as the Joule-Kelvin
process). The figure shows a thermally insulated pipe which has a porous barrier
separating two halves of the pipe. A gas of volume V7, initially on the left-hand side
of the pipe, is forced by a piston to go through the porous barrier using a constant
pressure p;. Assume the process can be treated quasistatically. As a result the gas flows
to the right-hand side, resisted by another piston which applies a constant pressure py

(p2 < p1). Eventually all of the gas occupies a volume V5 on the right-hand side.
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i. Show that enthalpy, H = E + pV/, is conserved.

ii. Find the Joule-Thomson coefficient pyr = (8—:£) u in terms of T', V', the heat capacity

B)
at constant pressure C,, and the volume coefficient of expansion o = L(4¥),. (Hint:

You will need to use a Maxwell relation).
iii. What is pyr for an ideal gas?

iv. If we wish to use the Joule-Thomson process to cool a real (non-ideal) gas, what
must the sign of pyr be?

v. Derive pujr for a gas obeying the van der Waals equation of state to leading order
in the density N/V. For what values of temperature 7" can the gas be cooled?
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5. A (non-ideal) gas has constant heat capacities Cy and C,. Using the results of
Question 2, show that its equation of state can be written as

(Cp = V)T = (p+a)(V+0)

where a and b are constants. Show also that E' is of the form F = CyT + f(V), find
f(V) and calculate the entropy as a function of V and T'.

6. The Dieterici equation of state for a gas is
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where v = V/N. Find the critical point and compute the ratio p.v./kgT.. Calculate

the critical exponents (3, § and ~.

7. The g-state Potts model is a generalisation of the Ising model. At each lattice site
lives a variable o; € {1,2,...,¢}. The Hamiltonian is given by the sum over nearest
neighbours
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How many ground states does the system have at T' = 07

Show that the 3-state Potts model is equivalent to the Hamiltonian
Heryas
(i)

where s; take values in the set

{0) () ()

By developing a mean field theory for H determine the self-consistency requirement
for the magnetisation m = (§;). Compute the mean field free energy and show that
theory undergoes a first order phase transition even in the absence of an external field.

[Hint: This calculation will be simpler if you argue that you can focus on magneti-
sation vectors of the form m = (m,0).]

8. Consider the free energy
F = a(T)m? + b(T)m* + ¢(T)m°
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where b(T') < 0 and, for stability, ¢(7") > 0 for all 7. Sketch the possible behaviours
of the free energy as a(7T) varies and, in each case, identify the ground state and
metastable states. Show that the system undergoes a first order phase transition at
some temperature T.. Determine the value a(7.) and the discontinuity in m at the
transition.



