Statistical Physics: Example Sheet 4

David Tong, March 2012

1i. By examining variations in E, F, H and G, derive the four different Maxwell relations for the partial derivatives of S, p, T and V.

ii. Obtain the partial derivative identity

$$\frac{\partial S}{\partial T}\Big|_{p} = \frac{\partial S}{\partial T}\Big|_{V} + \frac{\partial S}{\partial V}\Big|_{T}\frac{\partial V}{\partial T}\Big|_{p}$$

iii. Obtain the partial derivative identity

$$\left. \frac{\partial p}{\partial T} \right|_V \left. \frac{\partial T}{\partial V} \right|_p \left. \frac{\partial V}{\partial p} \right|_T = -1$$

2. Consider a gas with a fixed number of molecules. Two experimentally accessible quantities are C_V , the heat capacity at fixed volume and C_p , the heat capacity at fixed pressure, defined as

$$C_V = T \left. \frac{\partial S}{\partial T} \right|_V \quad , \quad C_p = T \left. \frac{\partial S}{\partial T} \right|_p$$

Using the results of the previous question, show that:

i.
$$C_p - C_V = T \left. \frac{\partial V}{\partial T} \right|_p \left. \frac{\partial p}{\partial T} \right|_V = -T \left. \frac{\partial V}{\partial T} \right|_p^2 \left. \frac{\partial p}{\partial V} \right|_T$$

ii. $\left. \frac{\partial E}{\partial V} \right|_T = T \left. \frac{\partial p}{\partial T} \right|_V - p$

ii.

iii.

v.

$$\frac{\partial E}{\partial p}\Big|_{T} = -T \frac{\partial V}{\partial T}\Big|_{p} - p \frac{\partial V}{\partial p}\Big|_{T}$$
$$\frac{\partial C_{V}}{\partial T}\Big|_{p} = -T \frac{\partial^{2} n}{\partial T}\Big|_{p}$$

$$\frac{\partial C_V}{\partial V}\Big|_T = T \frac{\partial^2 p}{\partial T^2}\Big|_V$$
$$\frac{\partial C_p}{\partial C_p}\Big|_T \frac{\partial^2 V}{\partial C_p}\Big|_T$$

 $\left. \frac{p}{\partial p} \right|_T = -T \left. \frac{1}{\partial T^2} \right|_p$

3. Consider a classical ideal gas with equation of state $pV = Nk_BT$ and constant heat capacity $C_V = Nk_B \alpha$ for some α . Use the results above to show that $C_p = Nk_B(\alpha+1)$, and that the entropy is

$$S = Nk_B \log\left(\frac{V}{N}\right) + Nk_B \alpha \log T + \text{const}$$

Deduce that, for an adiabatic process (with dS = 0), VT^{α} is constant and, equivalently, pV^{γ} is constant, where $\gamma = C_p/C_V$.

4. This question describes the Joule-Thomson process (also known as the Joule-Kelvin process). The figure shows a thermally insulated pipe which has a porous barrier separating two halves of the pipe. A gas of volume V_1 , initially on the left-hand side of the pipe, is forced by a piston to go through the porous barrier using a constant pressure p_1 . Assume the process can be treated quasistatically. As a result the gas flows to the right-hand side, resisted by another piston which applies a constant pressure p_2 ($p_2 < p_1$). Eventually all of the gas occupies a volume V_2 on the right-hand side.

i. Show that enthalpy, H = E + pV, is conserved.

ii. Find the Joule-Thomson coefficient $\mu_{JT} \equiv (\frac{\partial T}{\partial p})_H$ in terms of T, V, the heat capacity at constant pressure C_p , and the volume coefficient of expansion $\alpha \equiv \frac{1}{V}(\frac{\partial V}{\partial T})_p$. (Hint: You will need to use a Maxwell relation).

iii. What is $\mu_{\rm JT}$ for an ideal gas?

iv. If we wish to use the Joule-Thomson process to cool a real (non-ideal) gas, what must the sign of $\mu_{\rm JT}$ be?

v. Derive $\mu_{\rm JT}$ for a gas obeying the van der Waals equation of state to leading order in the density N/V. For what values of temperature T can the gas be cooled? 5. A (non-ideal) gas has constant heat capacities C_V and C_p . Using the results of Question 2, show that its equation of state can be written as

$$(C_p - C_V)T = (p+a)(V+b)$$

where a and b are constants. Show also that E is of the form $E = C_V T + f(V)$, find f(V) and calculate the entropy as a function of V and T.

6. The Dieterici equation of state for a gas is

$$p = \frac{k_B T}{v - b} \exp\left(-\frac{a}{k_B T v}\right)$$

where v = V/N. Find the critical point and compute the ratio $p_c v_c/k_B T_c$. Calculate the critical exponents β , δ and γ .

7. The q-state Potts model is a generalisation of the Ising model. At each lattice site lives a variable $\sigma_i \in \{1, 2, ..., q\}$. The Hamiltonian is given by the sum over nearest neighbours

$$H_{\rm Potts} = -\frac{3J}{2} \sum_{\langle ij \rangle} \delta_{\sigma_i \, \sigma_j}$$

How many ground states does the system have at T = 0?

Show that the 3-state Potts model is equivalent to the Hamiltonian

$$H = -J \sum_{\langle ij \rangle} \vec{s_i} \cdot \vec{s_j}$$

where \vec{s}_i take values in the set

$$\vec{s}_i \in \left\{ \left(\begin{array}{c} 1\\ 0 \end{array} \right) , \left(\begin{array}{c} -1/2\\ \sqrt{3}/2 \end{array} \right) , \left(\begin{array}{c} -1/2\\ -\sqrt{3}/2 \end{array} \right) \right\}$$

By developing a mean field theory for H determine the self-consistency requirement for the magnetisation $\vec{m} = \langle \vec{s_i} \rangle$. Compute the mean field free energy and show that theory undergoes a first order phase transition even in the absence of an external field.

[Hint: This calculation will be simpler if you argue that you can focus on magnetisation vectors of the form $\vec{m} = (m, 0)$.]

8. Consider the free energy

$$F = a(T)m^2 + b(T)m^4 + c(T)m^6$$

where b(T) < 0 and, for stability, c(T) > 0 for all T. Sketch the possible behaviours of the free energy as a(T) varies and, in each case, identify the ground state and metastable states. Show that the system undergoes a first order phase transition at some temperature T_c . Determine the value $a(T_c)$ and the discontinuity in m at the transition.