String Theory: Example Sheet 3

Dr David Tong, February 2010

1. The "Polyakov-style" action for a massive relativistic point particle, involving the Minkowski space coordinate $X^{\mu}(\tau)$ and the einbein $e(\tau)$, is given by

$$
S=\frac{1}{2} \int d \tau\left(e^{-1} \dot{X}^{\mu} \dot{X}^{\nu} \eta_{\mu \nu}-e m^{2}\right)
$$

a. Show that this action has the reparameterization invariance $\tau \rightarrow \tilde{\tau}-\eta(\tau)$, to linear order in η, with

$$
\delta e=\frac{d}{d \tau}(\eta(\tau) e) \quad, \quad \delta X^{\mu}=\frac{d X^{\mu}}{d \tau} \eta(\tau)
$$

b. Consider a path starting at $X^{\mu}\left(\tau_{1}\right)=X_{1}^{\mu}$ and finishing at $X^{\mu}\left(\tau_{2}\right)=X_{2}^{\mu}$. Show that reparameterization invariance allows the choice of gauge

$$
e(\tau)=\frac{l}{\tau_{2}-\tau_{1}}
$$

where l is the invariant length of the worldline.
c. The Feynman propagator for a massive scalar particle defined by the path integral,

$$
G\left(X_{1}-X_{2}\right)=\mathcal{N} \int D e D X e^{i S[X, e]}
$$

with \mathcal{N} the usual normalization constant. By transforming to the gauge $e=l /\left(\tau_{2}-\tau_{1}\right)$, together with an appropriate redefinition of the parameter τ, show that

$$
G\left(X_{1}-X_{2}\right)=\mathcal{N}^{\prime} \int_{0}^{\infty} d l D X \exp \left(\frac{i}{2} \int_{0}^{l} d \tau\left(\dot{X}^{2}-m^{2}\right)\right)
$$

Why does the integral over the length of path l remain? (You may find the discussion in Polchinski chapter 5.1 useful to answer this).
d. Compute the functional integral over X to deduce that the propagator in momentum space is given by

$$
\tilde{G}(p)=\frac{1}{p^{2}+m^{2}}
$$

2. The scattering amplitude for m closed string tachyons is given by,

$$
\mathcal{A}^{(m)}\left(p_{1}, \ldots, p_{m}\right)=\frac{g_{s}^{m-2}}{\operatorname{Vol}(S L(2 ; \mathbf{C}))} \int \prod_{i=1}^{m} d^{2} z_{i}\left\langle\hat{V}\left(z_{1}, p_{1}\right) \ldots \hat{V}\left(z_{m}, p_{m}\right)\right\rangle
$$

where $\hat{V}(z, p)=e^{i p \cdot X(z, \bar{z})}$ and the correlation function is computed using the gauge fixed free Polyakov action

$$
S_{\text {Poly }}=\frac{1}{2 \pi \alpha^{\prime}} \int d^{2} z \partial X \cdot \bar{\partial} X
$$

a. By expressing the correlation function as a Gaussian integral, show that the amplitude is given by

$$
\mathcal{A}^{(m)} \sim \frac{g_{s}^{m-2}}{\operatorname{Vol}(S L(2 ; \mathbf{C}))} \delta^{26}\left(\sum_{i} p_{i}\right) \int \prod_{i=1}^{m} d^{2} z_{i} \prod_{j<l}\left|z_{j}-z_{l}\right|^{\alpha^{\prime} p_{j} \cdot p_{l}}
$$

b. Show that this integral is invariant under the $S L(2 ; \mathbf{C})$ transformation

$$
z_{i} \rightarrow \frac{a z_{i}+b}{c z_{i}+d}
$$

only when the momenta are on-shell, i.e. $p_{i}^{2}=4 / \alpha^{\prime}$.
c. Explain why this means that the 4 -point amplitude can be reduced to the integral

$$
\mathcal{A}^{(4)} \sim g_{s}^{2} \delta^{26}\left(\sum_{i} p_{i}\right) \int d^{2} z|z|^{\alpha^{\prime} p_{2} \cdot p_{3}}|1-z|^{\alpha^{\prime} p_{3} \cdot p_{4}}
$$

d. Evaluate this integral in terms of gamma functions. Show that, when written in Mandelstam variables, it is given by the Virasoro-Shapiro amplitude

$$
\mathcal{A}^{(4)} \sim g_{s}^{2} \frac{\Gamma\left(-1-\alpha^{\prime} s / 4\right) \Gamma\left(-1-\alpha^{\prime} t / 4\right) \Gamma\left(-1-\alpha^{\prime} u / 4\right)}{\Gamma\left(2+\alpha^{\prime} s / 4\right) \Gamma\left(2+\alpha^{\prime} t / 4\right) \Gamma\left(2+\alpha^{\prime} t / 4\right)}
$$

3. Explain why the limit $s \rightarrow \infty$, with t fixed corresponds to small angle scattering at high energy. Show that in this limit the Virasoro-Shapiro amplitude exhibits so-called Regge behaviour,

$$
\mathcal{A}^{(4)} \rightarrow g_{s}^{2} \delta^{26}\left(\sum_{i} p_{i}\right) \frac{\Gamma\left(-1-\alpha^{\prime} t / 4\right)}{\Gamma\left(2+\alpha^{\prime} t / 4\right)} s^{2+\alpha^{\prime} t / 2}
$$

4a. Write down the vertex operator for a massless closed string state with polarization $\zeta_{\mu \nu}$ and momentum p^{μ}. What are the restrictions on p^{μ} and $\zeta_{\mu \nu}$?
b. Consider the scattering of a massless closed string mode with momentum p_{1} and two tachyons with momentum p_{2} and p_{3}. Show that $p_{1} \cdot p_{2}=p_{1} \cdot p_{3}=0$ and $p_{2} \cdot p_{3}=-4 / \alpha^{\prime}$.
c. Show that the 3-point scattering amplitude for these particles is given by

$$
\mathcal{A}^{(3)} \sim \frac{g_{s}}{\operatorname{Vol}(S L(2 ; \mathbf{C}))} \delta^{26}\left(\sum_{i} p_{i}\right) \int \prod_{i=1}^{3} d^{2} z_{i} \frac{1}{\left|z_{23}\right|^{4}} \zeta_{\mu \nu}\left(\frac{p_{2}^{\mu}}{z_{12}}+\frac{p_{3}^{\mu}}{z_{13}}\right)\left(\frac{p_{2}^{\nu}}{\bar{z}_{12}}+\frac{p_{3}^{\nu}}{\bar{z}_{13}}\right)
$$

where $z_{i j}=z_{i}-z_{j}$.
d. Explain why the $S L(2 ; \mathbf{C})$ gauge symmetry allows us to simplify this to

$$
\mathcal{A}^{(3)} \sim g_{s} \delta^{(26)}\left(\sum_{i} p_{i}\right) \zeta_{\mu \nu}\left(p_{2}^{\mu}-p_{3}^{\mu}\right)\left(p_{2}^{\nu}-p_{3}^{\nu}\right)
$$

5a. After using $S L(2 ; \mathbf{C})$ to fix the positions of 3 vertex operators, the tree-level m-point amplitude for tachyon scattering reduces to an integral over the positions of the remaining $m-3$ vertex operator insertions,

$$
\mathcal{A}^{(4)} \sim g_{s}^{m-2} \delta^{26}\left(\sum_{i} p_{i}\right) \int \prod_{i=4}^{m} d^{2} z_{i} \prod_{j<l}\left|z_{j l}\right|^{\alpha^{\prime} p_{j} \cdot p_{l}}
$$

where $z_{j l}=z_{j}-z_{l}$. The variables describing the exchange of momentum are $s_{i j}=$ $-\left(p_{i}+p_{j}\right)^{2}$. The hard scattering limit is defined by $s_{i j} \rightarrow \infty$. Explain why the integral can be evaluated using a saddle-point approximation in this limit.
b. For the 4-point amplitude, use the saddle point approximation to show that

$$
\mathcal{A}^{(4)} \sim g_{s}^{2} \delta^{26}\left(\sum_{i} p_{i}\right) \exp \left(-\frac{\alpha^{\prime}}{2}(s \ln s+t \ln t+u \ln u)\right)
$$

