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ABSTRACT

We present a pedagogical discussion of conformally invariant two-dimensional
nonlinear sigma models and their relation to string theory. Our main goal is show
how to calculate the Weyl anomaly coefficients in the bosonic, supersymmetric
and heterotic sigma models and to explain their interpretation as string theory

equations of motion for spacetime background fields.
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1. INTRODUCTION

The subject of this review is the connection between conformally invariant,
two-dimensional, non-linear sigma models and string theory. Two-dimensional
conformal field theories are of course of interest in their own right as models of
critical phenomena, but we will focus on those aspects of the subject which are of

use in understanding string theory.

We will cover the following topics: In Chapter 2 we ask the question why is two-
dimensional, conformal field theory relevant to string theory? In Chapter 3 we do
a simple, back of the envelope, one-loop calculation of the Weyl anomaly (roughly,
but not identically, equivalent to the renormalization group beta function) for the
bosonic non-linear sigma model. If one is interested in using beta functions to
discuss string theory, there are a number of issues (not arising in the statistical
mechanics application) which must be resolved. We use the one-loop calculation
as a guide to what we can expect in general. In Chapter 4 we turn to systematics
and the problem of higher loop calculations. There are some subtleties here and
we will give a guide to what is known about them. In Chapter 5 we will discuss the
new issues which arise when we consider the supersymmetric and heterotic sigma

models appropriate to the study of the physics of superstrings.

These notes represent a modest expansion of material presented in four lectures
at the 1988 TASI School and follow the format of those lectures quite closely. A
vast amount of work has been done in this field over the last few years and we do
not claim, or aim, to cover it all. We do hope to have explained the basic ideas and
shown, explicitly where possible, how to do some of the basic calculations in this
important area of string theory. Given the limitations on time and energy available
to the authors, much of importance has inevitably been left out. In particular, the
references are not meant to be comprehensive, but simply to provide the reader
with useful entry points into the literature. In various places we have made heavy
use of existing reviews or comprehensive articles on restricted aspects of this subject

(referred to at appropriate places in the text) and we heartily recommend them to



the attention of the serious student.

2. WHY TWO-DIMENSIONAL CONFORMAL FIELD THEORY?
2.1. THE NAMBU-GOTO AND POLYAKOV ACTIONS

When we discuss string theory it is natural to write down a two-dimensional
field theory. One starts with the Nambu-Goto action!), describing a string prop-
agating in some D dimensional spacetime. The simplest action one can write
down is the invariant area of the worldsheet that is swept out by that string as
it moves through spacetime. The string is moving in a spacetime that has some
D-dimensional metric which is not necessarily flat. (The original Nambu-Goto ac-
tion described strings in flat spacetime but some critical problems in string theory,
such as compactification of extra dimensions, can only be discussed in non-flat
spaces, so we might as well let our original classical string propagate in curved
spacetime.) To calculate the invariant area, put a coordinate system down on the
worldsheet and calculate the induced metric. The Nambu-Goto action density is
the square root of the determinant of that induced metric and can be shown to

have the explicit form
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It is easy to see that this is indeed the invariant area of the worldsheet swept

out by some embedding X#(o,7) of a string into a spacetime that has a metric

Guv(X). The spacetime coordinate functions, X #(,7), have units of length, so a
dimensional parameter is needed in front of the action. The o/ in (2.1) has units
of (length)?. The length scale it sets depends on the physics the string theory
is designed to describe. In its most convincing form, string theory is a quantum

theory of gravity and the natural length scale is the Planck length,

hG :
Lpianck = = = Mm

Whatever its value, o/ plays the role of a coupling constant in the two-dimensional
quantum field theory. People often adopt “natural” units in which o is something
simple like 2 or %, but we find it convenient to keep it visible in the notation to

keep track of loop orders in perturbation theory.

This is all very nice except that the equations of motion that follow from the
Nambu-Goto action are hideously non-linear. A more civilized, easier to quantize,

and classically equivalent choice is the Polyakov action®3)
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This action has a new element that was in a way implicitly present in Syg: the
worldsheet metric, 7,3, now appears as an independent object, whereas before we
identified it with the induced metric. The Polyakov action has a number of virtues
over the Nambu-Goto action. Taken as an abstract object it is something which is
quadratic in derivatives of the X’s. Eventually the X’s are going to be dynamical
variables. The string is wiggling along in spacetime and we want to quantize this
motion. Something which is quadratic in derivatives is relatively simple to quan-
tize. The Nambu-Goto action is, on the other hand, non-polynomial in derivatives
and does not yield to quantization easily. String physics should of course not
depend on the coordinates one chooses on the worldsheet, and both actions are
invariant to worldsheet reparametrizations (the Polyakov action is invariant only

if one transforms the metric along with the coordinates).



A crucial point is that, at the classical level, the physics of Sp reduces to that
of Syg. Define the worldsheet energy momentum tensor in the standard action

principle way as the variation of Sp with respect to the worldsheet metric, ¥
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If one imposes the constraint T = 0, that is to say, if one focuses on those solutions
of the equations of motion which correspond to vanishing 7}, then something nice
happens. Namely, (2.3) fixes 745 and if you insert it into the Polyakov action, that
action becomes identical to the Nambu-Goto action. Such an insertion is in order
because Sp does not depend on derivatives of the worldsheet metric, so setting
its variation with respect to 74 to zero is an appropriate constraint equation.
This eliminates the extra degrees of freedom, associated with the variables v,
which have no obvious physical interpretation anyway. All the physics should
be contained in the embedding of the string into spacetime, that is, in the X’s.
The Nambu-Goto action has only the variables one wants but it is not a good
starting point for a quantum theory. It is straightforward to quantize the Polyakov
action but on the other hand it has more degrees of freedom than one cares to
have. The constraint that the two-dimensional energy momentum tensor vanish
remedies that defect, at least at the classical level. It therefore seems reasonable

that the Polyakov action is the place to start learning about the physics of strings.

There is another way in which to arrive at Sp. Given that we want to study
two-dimensional field theory of scalar variables like the X’s, the available field is
considerably narrowed down if we insist on both two-dimensional reparametrization
invariance and renormalizability. A two-dimensional action is renormalizable if the
Lagrangian is of scaling dimension two or less. Scalars are of dimension zero and
each derivative adds one to the dimension. So if one wants an action which is just
exactly renormalizable, neither super-renormalizable nor non-renormalizable, one

can only write down something which is quadratic in derivatives of X, but it can

o

have an arbitrary function of X going along with it. The Polyakov action is not
the only action of this kind. There are several other possible terms, which we will
eventually write down, when we discuss the full sigma model approach to bosonic

string theory.

We first want to study the system described by the Polyakov action alone. We
will treat it as a two-dimensional quantum field theory. For our purposes here, we
take the two-dimensional v, to be some fixed metric and eventually we shall see
that the physics we are interested in is by and large quite independent of the choice
of this metric. So, we have some crumpled two-dimensional surface and on it live
scalar variables, X#. There are D of them and at the start we do not necessarily
know what D is. The Lagrangian for the X# fields has a kinetic term and there
are also potential terms. In fact, for particular choices of the function G, (X)
this class of actions is something one is familiar with in a variety of contexts. For
example when G, is the metric on the surface of a sphere, this becomes the SO(D)
non-linear sigma model, which is commonly studied in statistical mechanics. We
are not going to make any a priori specifications about the D-dimensional world
in which the X’s take values and we want to consider a perfectly general G, (X).
Of course, we shall see later on that one must make restrictions in order for this

two-dimensional field theory to correspond to a satisfactory string theory.
2.2. WEYL INVARIANCE VERSUS CONFORMAL INVARIANCE

Let us turn back to the constraint equations. We would like all components of
Tap to vanish. One would therefore expect three independent equations. However,
in two dimensions, the trace of the classical expression (2.3) is identically zero,
as is easily checked. This is an important point, which we will have more to
say about later, because while this identity holds in the classical theory it is not
necessarily true after we have quantized it. That is, in fact, where the question of
the precise form of the spacetime metric, G, (X), comes in. The classical vanishing
trace identity is anomalous and the requirement that the anomaly vanish leads to

equations for the spacetime metric. As we shall see later, making the trace of the



energy momentum tensor vanish is a symmetry condition which corresponds to
maintaining conformal invariance in the two-dimensional quantum theory. This
should be taken care of first, after which it is possible to impose the conditions
that the remaining two independent components of the energy momentum tensor
vanish also.

Now we turn to a general discussion of conformal invariance in two-dimensional
field theories to provide us with a framework for our subsequent discussion. Ref. [4]
gives an excellent detailed account of this subject. Consider some two-dimensional
theory with an action A(X,<), which is perhaps more general than Sp. From the
point of view of string theory, there are invariances which the action A(X,~) should
have. First of all there is reparametrization invariance in the two dimensional sense.

If you change the worldsheet coordinates by some function v?,

£ — £ +0(§) (2.4)
the variation of the metric is
67ab = VaVp + Vs (2.5)
and that of the scalar fields is
0X" =t XH, (2.6)

A reparametrization invariant action does not change under such a variation

A(X', ) = A(X, 7). (2.7)

That, as you know, leads to the conservation of the two-dimensional energy mo-

mentum tensor. In fact it is easy to see, using the equations of motion for the X’s

(i.e., invariance of A(X,~) under small changes of the X’s alone), that
VT, =0, (2.8)

where, as before, the energy momentum tensor is the response of the action to a
variation in the metric
4w 0A
Tap= : (2.9)
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We would be ill-advised to write down an action that does not have reparametri-

zation invariance and Sp, for example, certainly has that. Sp is also invariant to
another class of transformations, the Weyl transformations, and our more general
action may or may not have that invariance. A Weyl transformation only acts on

the two-dimensional metric while leaving the X’s unchanged,

8%ab = — 68(€) Yab,

2.10
0X* =0. (210)

This is an infinitesimal local rescaling of the metric. It changes the length scale on
the worldsheet in a position dependent way. Sp is invariant to the finite version

of this transformation

Yab — €# &g (2.11)

because, in two dimensions, the product of the square root of the determinant of
the covariant components of the metric and any contravariant component of the
metric is completely independent of such a rescaling. If our general action has this
invariance it immediately follows that the trace of the classical energy momentum
tensor vanishes,
oA
o0

Thus the trace of the energy momentum tensor obtained from Sp is identically

=0=To=0. (2.12)

zero because Sp has Weyl invariance. One can discover, in a number of ways,



that this invariance cannot in general be maintained in the quantum theory. To
characterize that failure (the anomaly) in a convenient way we want to introduce

some more notation.

First of all, it is very convenient to make a coordinate transformation to a
conformal gauge. Reparametrization invariance allows us to choose the two func-
tions in (2.4) in any way that suits us. Since the two-dimensional metric has three
independent components to begin with one can in general expect to be able to
choose worldsheet coordinates such that only one degree of freedom remains. A

convenient choice is the conformal gauge metric
Yab = €% 5, (2.13)

i.e., a Weyl transform on a flat metric. We can represent the flat metric with

complex coordinates and write the conformal gauge line element as
ds® = e$dzdz (2.14)

so that the components of the metric are

<

(4
Yez =7V72= 5 - (2'15)

Yz =%Yzz =V,

A nice feature of this choice of parametrization is that the Christoffel connection

turns out to have no mixed components. The only non-zero ones are
I, =0,¢ and T'Z;=054. (2.16)
The two-dimensional curvature is also particularly simple in this coordinate system:
VT OR = —20,05 ¢. (2.17)

Covariant derivatives are simple in conformal gauge because the connection only

has a few non-vanishing components:

z

Vzv =6;v”

(2.18)
v,v* =0,v° + 0,4 V.

These formulas will be of use to us later on.

Once we are in conformal gauge, a generic coordinate transformation will take
us out of it, but there is a special subset, called conformal reparametrizations, which
still leaves us in a conformal gauge. A conformal reparametrization is a coordinate
transformation characterized by a v*(z) which is a function of z alone (and likewise
v? (%) is a function of Z only), whereas in general v* can be a function of both z
and Z. A quick look at (2.5) should convince you that such a reparametrization
leaves v,, and 7z unchanged and that the metric remains in the form (2.13).
The variation 67,5 does not vanish and indeed this transformation just leads to a

change in the scale factor ¢:
8¢ = v, v* + V507, (2.19)

A conformal reparametrization is simply a coordinate change using a transfor-
mation function which is appropriately analytic. It causes a change both in the
two-dimensional metric and the fields. Let us also define a conformal transforma-
tion:

§XH =08, X" +v7 95 X",

(2.20)

676 =0,
where v*(z) (v*(Z)) is analytic (antianalytic). A conformal transformation is a
dynamical transformation which acts only on the fields (the X’s) with no compen-
sating action on the metric and it is a good idea to distinguish it from a conformal
reparametrization which changes both the fields and the metric. In point of fact
the variation of the metric under a conformal reparametrization is just a change in

the scale factor, ¢, and that is precisely what a Weyl transformation would cause.

10



Therefore if one has a conformal transformation, which acts only on the X’s, ac-
companied by an appropriate Weyl transform, which acts only on the scale factor
of the metric, the two taken together are a conformal reparametrization. Since we
insist on reparametrization invariance this means that the effect of a conformal
transformation on the fields in the action can be achieved by an astutely chosen
Weyl transformation of the two-dimensional metric. Therefore it is actually safe to
be careless and not distinguish between the two: invariance under one is equivalent

to invariance under the other.

2.3. QUANTUM THEORY AND THE ANOMALY

Now we finally turn to the quantum mechanical path integral and discuss the
effect of the above transformations on it. Our treatment of these matters follows
closely that of S. Jain ®). The result of doing a path integral over the X’s with our
classical action defines the partition function of the system and that can, as usual,

be written as the exponential of a connected generating functional

7D} = [ (DX}, e~

=e~Whi,

(2.21)

We only integrate over the X’s and take the worldsheet metric to be a fixed (but
arbitrary) background. Elsewhere in this volume, Giddings talks about further
integrations over the two-dimensional metric but we will anticipate that, at least
for the applications we discuss, such integrations will not be needed. On the other
hand the effective action, W, certainly depends on the worldsheet metric we choose.
The classical action is explicitly a functional of v, but the functional measure of
the X’s also implicitly depends on it. We need to introduce some inner product in
order to measure volume elements on the function space of the X’s. Doing that in
a reparametrization invariant way, from the worldsheet point of view, inevitably

brings in the two-dimensional metric¥). When we work with the Polyakov action

11

a natural choice of inner product is
6|12 = / 0% \/7(8) 6XH6 XV G (X) (2.22)

which in fact involves both 74 and G, (X), the spacetime metric.

Doing the path integral is of course no trivial matter and the only general
method we know is to calculate in some perturbative fashion. Eventually we will
do explicit perturbation theory calculations but for the moment let us pretend
someone has given us some non-perturbative results and proceed to discuss general
properties of the quantum effective action. Now W had better be invariant to
worldsheet reparametrizations (2.4). Since it depends only on the two-dimensional

metric, we must insist that
1274
— 2 a,b b, a
0_/d§m(vv+Vv). (2.23)

In a conformal gauge this reads

SW oW - - W -
= 2 3 by 3 2
0‘/“ E [V + VT - (e + V)] (2.24)
and by integrating the various terms by parts we can lift the covariant derivatives
from v* and v? to obtain
1 6W 1 W
= 2 T (—— -_ = T .
0 /df\/'_y-[(vl(ﬁ&#) v (\/'76722))1)

+(Vz(%{5—v:) - VE(%;Y—KY;)) "E]-

(2.25)

The functions v* and v¥ are arbitrary so we can read off two equations, i.e.

1 Oy i L O
V7 89 V7 67"

v.( (2.26)

and the corresponding one with z replaced by Z. This identity is the quantum

analog of the classical conservation equation (2.8), if we think of the variation of

12



the effective action, W, with respect to the two-dimensional metric as playing the
role of the energy momentum tensor. We can legitimately argue that the right
hand side of (2.26) is v* of the quantum expectation value of the zz component of
the energy momentum tensor. The reasoning goes as follows®): When we vary W

with respect to v** we get

1) 162

LN 1N (2.27)

672.2. 7 5722
The partition function depends on the two-dimensional metric both through the
classical action and the path integral measure. The variation of the classical action
brings down a factor of the classical energy momentum tensor inside the path
integral, which gives us an expectation value when we divide by Z. The question is
whether any unwanted terms arise from the variation of the path integral measure.
A reparametrization invariant measure is defined using the inner product (2.22),

which in turn only depends on the determinant of the worldsheet metric. In a

conformal gauge the form of the metric plus its variation is

07:z Y27 + 673
Y7z + 0732 0v3z

From this it is apparent that a first order variation of the determinant of the metric
with respect to *? vanishes, and therefore the path integral measure is invariant

to that variation. This means that we can write

ik
\/,76711

v ( )= (T)- (2.28)

It is tempting to similarly identify the left hand side of (2.26) with v, of the
expectation value of the trace of the energy momentum tensor. In a conformally
invariant theory the trace of the energy momentum tensor vanishes, and (2.26)
would be telling us that 95 (7%.) = 0, a powerful and useful statement. In reality
it does not quite work like that. Unfortunately the left hand side of (2.26) is not in

general zero because due to a quantum anomaly the variation of the path integral

13

measure with respect to ¢ does not vanish. However, we do know that the left hand
side of (2.26) is a z derivative of something. If we make the assumption that this
something is local on the worldsheet we can pretty much pin down its structure.
A more general assumption is conceivable but in explicit calculations in free field
theory (i.e. with a flat spacetime metric), or even interacting theories evaluated
perturbatively, it has always turned out to be a local object and we will assume
that is true in general. The right hand side of (2.26) is a tensor of type ¢, under
conformal reparametrization and is of scaling dimension one on the worldsheet. In
the absence of any extraneous dimensional parameters, the only local function of
Yab Which has those conformal transformation properties and scaling dimension is
a z derivative of the scalar curvature (J)R. The assumption of locality combined
with dimensional analysis therefore tells us what the form of the left hand side of
(2.26) is:

%% B 4;3\ﬂvz “R

va(

(2.29)

We cannot determine the constant of proportionality, A, by general arguments, as
it is characteristic of the theory in question. The 4@%_1 normalization is of historical
origin. The fact that we can have anything else than zero on the right in (2.29)
signals that conformal symmetry is in general anomalous in two-dimensional field
theory, but we have parametrized that potential anomaly in a particularly simple
way. From (2.29) we can get the form of the anomalous part of the effective action

itself. First we integrate both sides with respect to z to get

oW A
bald A £ (2) 2
5 3 V7 (PR + p?). (2.30)

Now recall that the conformal scale factor always refers the metric to some given

reference metric,
Yab = €* Yap. (2.31)
(In a conformal gauge % is chosen to be the flat metric.) Keeping this in mind it

14



is easily checked that (2.30) is satisfied by

B e gl
W=z | PV (5

+ conformally invariant terms.

2 ab 2,4

The assumption that the anomaly is local has enabled us to characterize the con-
formally non-invariant part of the quantum effective action by one dimensionless
parameter, A, and a dimensional parameter y (which turns out not to play any role
in our considerations). The terms in W that depend on the two-dimensional scale
factor, ¢, are called the Liouville action. It is awkward, from the point of view of
string theory, that W depends on our choice of worldsheet metric at all, and a lot
of work has been concerned with getting rid of this dependence in various ways.
As we shall see later on from an explicit computation, the coefficient A is not zero
even in free field theory, much less in interacting systems. The fact that the path
integral is not Weyl invariant is generic to conformal field theory in two dimensions

and is something one has to deal with.
2.4. OPERATOR PRODUCT EXPANSION AND THE VIRASORO ALGEBRA

One can make some further observations. Combining (2.26) and (2.29) one
sees that the vacuum expectation value of 7%, is not analytic because of the Weyl
(or conformal) anomaly:

27 z A o®
Y a; <Tzz) =V (T,”) = KV R. (233)
However it is possible to “improve’ the energy momentum tensor so as to make the
expectation value analytic. We can use the conformal gauge identities (2.15)-(2.18)

to show that

VR = v*(—20,0.4 + 0.4 0,9). (2.34)

This means that if we define the zz component of an improved energy momentum

tensor by
5 —(232 — (8:9)?), (2.35)
then its expectation value is indeed analytic,

7505 (1) =

Because of the special role of analytic reparametrizations, and the power of analytic

(7 )=, (2.36)

function theory, it is very useful to have operators with analytic expectation values.

In the remainder of this section we will outline how one obtains an operator
product expansion for this improved energy momentum tensor and indicate how it
can be converted into the Virasoro algebra. First note that the expectation value
in (2.36) refers to a specific worldsheet metric. The equation of course holds for
any choice of metric and we can, if we like, do a variation with respect to the
metric. The variation of the classical action inside the path integral brings down
a second factor of the energy momentum tensor in the expectation value. The
variation of course also acts on the covariant derivatives and the scalar curvature
and that generates other terms. Say the variation is with respect to v?* at a
point, w, different than at which the original T},(z) is evaluated. Then we get an
equation involving a differentiated correlation function of two 7”s. After performing
an integration and going through the steps of replacing the energy momentum
tensor with the improved one we arrive at (see the work of S. Jain® for a detailed
derivation)

70

<T§°)T(°)> Al <““">

2(z — w)? (z—w)2

B (T@)

The remaining terms are regular in the sense that they have no singularities as z

+ regular terms. (2.37)

approaches w. The coefficient of the leading singularity is precisely the A which
characterizes the failure of naive conformal invariance. Here that failure manifests
itself as an anomalous term in a short distance expansion of a product of analytic

energy momentum tensors.
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(2.37) has the same content as the energy momentum tensor operator product
expansion that comes up in discussions of conformal field theories. In fact it can

be used to generate the Virasoro algebra. Expand T,(E) in a Laurent series

[ee]
TP)= Y 2L (2.38)
n=-oo
The operator coefficients, L,, are the famous Virasoro generators. By integrating
along astutely chosen contours and making use of the singularity structure of the
various terms one can turn (2.37) into a statement about commutators of these

Ln’s 9. They turn out to satisfy the Virasoro algebra
A9
[Lm, Ln] = (m —n) Lypyn + ﬁn(n — 1) b, —n. (2.39)

All along there was the anti-analytic 7z ; component, which is an independent
object and defines for you another set of operators, L,’s. They also satisfy the

Virasoro algebra among themselves but commute with the L,’s.

At this point we can finally state how the classical constraint that the com-
ponents of the energy momentum tensor vanish is implemented in the quantum
theory. Because of Weyl anomalies we can in general expect complications as the
trace of the energy momentum tensor fails to be zero. In spite of that, if the
anomaly has a simple local form characterized by a single c-number, we still find
that expectation values of the other independent components of the energy mo-
mentum tensor behave like analytic objects. In order to enforce the remaining
constraint equations we would like to put 75, and T35 to zero, that is have the
L, and L, operators annihilate all states. However, that is not consistent with the
algebra these operators satisfy. The algebra does allow us to set half of them equal
to zero. One defines physical states to be those that are annihilated by all L,, and
L, with n > 0 and not by the negative n operators. This means that expectation
values of all the Virasoro generators, except maybe Ly and Lo, vanish for physical
states. In a healthy theory it is only the physical states that contribute to S-matrix

elements.
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The bottom line is the following. If you start with a two-dimensional theory
which is conformally invariant at the classical level you have to be aware that the
conformal symmetry will be anomalous. That means basically an anomaly in the
trace of the energy momentum tensor. In the next chapter we will compute it ex-
plicitly for a specific form of the action, A[X, 7], with non-trivial interactions built
into it. What we wanted to show in this section was that even when there is an
anomaly, most of the physics one wants to extract from the theory is maintained.
There is still an improved energy momentum tensor, whose components have nice
analytic or anti-analytic short distance expansions, from which you can get an al-
gebra for the Virasoro generators and that algebra allows you to define physical
states which give zero expectation values of the analytic and anti-analytic compo-
nents of the energy momentum tensor. So even if there are anomalies, they are
not catastrophic and in all the cases we will come across they leave the interesting

physics of two-dimensional conformal field theories intact.

3. GENERAL RENORMALIZABLE, WEYL INVARIANT,
TWO-DIMENSIONAL SCALAR FIELD THEORY

3.1. REPARAMETRIZATION INVARIANT, RENORMALIZABLE SIGMA MODELS

The Polyakov action (2.2) is both reparametrization invariant and power count-
ing renormalizable. Furthermore, it is Weyl invariant. We can only add one other
term with all these properties and that is one where the spacetime coupling func-

tion is antisymmetric in spacetime indices:
1
B m/dﬂg 2 9, XX By (3.1)

Here €% is the two-dimensional, antisymmetric Levi-Civita symbol. It is a tensor
density rather than a tensor, so we do not need a factor of \/y for a reparametri-

zation invariant two-dimensional measure.
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In general we can expect renormalization to bring in mixing with all possible
terms of the same (or lower) dimension as Sp and S4s. On a curved worldsheet

we can write down one more term of dimension two?),

S él; / 6 T PR ®(X). (3.2)

This is reparametrization invariant and the coupling, ®(X), is a scalar function
in spacetime. On the other hand this term is not Weyl invariant. Since we want
our classical theory to be Weyl invariant the plan is to view Sp as entering at
higher loop order than the other two terms, and cancel its tree level Weyl variation
against one-loop Weyl anomalies arising from the others, and so on. This view
of Sp is supported by dimensional analysis in spacetime. The coupling function,
®(X), carries no units so we do not need a factor of o’ in the normalization of
Sp as we do in front of Sp and Sy5. Since o' is the loop counting parameter this
means that Sp first contributes at one-loop rather than the classical level. It is
perhaps not obvious that this procedure is correct but at the end of the day we

will see that it leads to consistent results describing reasonable spacetime physics.

There are no other reparametrization invariant terms, of dimension two, we
can add to our action. The coupling functions G, (X), By, (X) and ®(X) corre-
spond to condensates of the massless states of the bosonic string theory: gravitons,
antisymmetric tensors and dilatons”®?) . This sigma model approach is therefore
often referred to as the study of strings in background fields and we will soon see
why this identification of coupling constant functions with spacetime fields makes

sense.

Renormalization will not only mix the terms of dimension two, but also brings
in mixing to any terms of lower dimension. There is one possible dimension zero

term that can be added to the action

Sp = 4% ] d* /A T(X). (3.3)

It describes a coupling to a background of tachyon field. It is reparametrization

invariant but not Weyl invariant. Counterterms of this form are actually needed to
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eat quadratic divergences in vacuum diagrams of the theory. They are not needed
in superstring theory and, it turns out, play no significant role in the following

discussion of purely bosonic theories.

We have not said anything yet about the topology of the string worldsheet.
First of all we have to decide whether the game is to be played with open strings
or not. An open string worldsheet has boundaries where boundary conditions for
the X’s need to be specified. In fact there can be a coupling on the boundary to a

condensate of open string massless states, i.e., a Wilson line coupling to a gauge
field,

u
Sa = i}{dsA,,(X)%, (3.4)

where X#(s) is the mapping of the boundary into spacetime. An open string can
only have gauge charges on its ends, so any interaction with a background gauge
field necessarily takes place there. Maintaining conformal invariance of the full
quantum theory, with interactions both in the interior of the worldsheet and on
the boundary, places restrictions on all the spacetime couplings '%11). However, one
can consistently study closed strings on their own, and in fact the most promising
string theories do not have any open strings. We will, for simplicity, work only
with closed string backgrounds and assume that the worldsheet has no boundaries.
In Chapter 5, when we talk about heterotic string theory, we will see how coupling

to gauge fields can arise even in the absence of open strings.

A closed string worldsheet can have any number of handles. The Polyakov
approach to quantum string theory in fact instructs us to sum over amplitudes on
surfaces of every genus. We will only be concerned with ’tree level’ string theory, in
that our calculations assume that the worldsheet is conformally equivalent to the
Riemann sphere, i.e., has no handles. On the other hand, we will be computing
an anomaly, which describes ultra-violet, or short distance, physics of the non-
linear sigma model. The result does not depend on the global properties of the
worldsheet. From the two-dimensional field theory point of view the structure

of a local anomaly is indifferent to handles far away on the worldsheet. Since the
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requirement that the Weyl anomaly vanish is what places restrictions on spacetime
fields, this would seem to say that the spacetime physics is completely determined
at string tree level without any corrections from string loop amplitudes (i.e., from
quantum string theory). That is an unlikely state of affairs and recent years have
seen an effort to generate such string loop corrections. A promising approach
involves canceling divergences in so called modular integrations, associated with
higher genus surfaces, against field theory divergences of the kind we are discussing
in this review. We refer the interested reader to the literature!2!'!) and turn back

to standard sigma model considerations.
3.2. BACKGROUND FIELD EXPANSION AND NORMAL COORDINATES

In the previous section we wrote down the three possible reparametrization
invariant action terms of scaling dimension two. Consider a two-dimensional field

theory with a classical action which includes these three terms,
A[X,9] = Sp+ Sas + Sp. (3.5)

It defines a general, bosonic non-linear sigma model and is usually taken as the
starting point of any systematic study of string theory in non-trivial background
fields. All three coupling functions G, (X), Buy(X) and ®(X) transform covari-
antly under spacetime general coordinate transformations and in addition Syg is

invariant to spacetime ’gauge transformations’ of the antisymmetric tensor
B;w == B;w A ayAu P avAu (36)

where A, (X)) is some vector function. It is desirable to arrange the perturbation
expansion so that these spacetime symmetries are manifest. That means we want
to calculate diagrams using covariant vertices and propagators and use a regu-
larization procedure for divergent loop integrals which is compatible with general
covariance in spacetime. Then any counterterms we come across will also be co-

variant and the conformal anomaly will be expressed in a spacetime coordinate
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invariant manner. The way to achieve this is through a trick, called the covariant
background field expansion'®). The basic idea is to separate the two-dimensional

fields into a ’background’ part and a ’quantum’ part
XH#(&) = Xg(€) +7(£) (3.7)

and then shift the path integration to be over the 7#’s only (which is why they are
termed quantum fields). The background fields here live in the two-dimensional
theory and should not be confused with the spacetime backgrounds described by
the coupling functions. Following ref. [13] we define the background field partition

function as
- oOTT|— ol— d2 s4 l"'
Q[Xo,1] =/[D7r]e {AXo+7]-AXo]- 4 s @y (3.8)

The next step is to expand the classical action in powers of the quantum field,
m#, and derive Feynman rules for diagrams. As usual the propagator is obtained
from the quadratic term. It depends on the background X{’s, which are con-
sidered as classical functions here. The cubic and higher terms in the expansion
give rise to background field dependent interaction vertices with ever more legs.
[Xo,7] can be viewed as a generating functional for loop diagrams with all ex-
ternal trees amputated. At one-loop order, cancelling the divergent part of the
quantity —log Q[Xg, 7] gives the counterterms needed for the effective action. At
two loops it is the usual story: we have to compute all one-particle-irreducible two-
loop diagrams and also one-loop diagrams involving insertions of the counterterms

obtained at one loop.

We actually have to do a little more work before we can proceed. While this
diagrammatic expansion leads to a well defined perturbation theory, and would
doubtless give us correct results, it is not manifestly covariant from the spacetime
point of view. The reason is that the quantum field, 7#(¢), is defined as a coor-

dinate difference in spacetime (between the value of the full field X#(¢) and the
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background field X['(¢)) and therefore does not transform as a vector under general
coordinate transformations. We need to replace it with an integration variable, in
the path integral, which is a spacetime vector. A natural choice is a tangent vector
to the spacetime geodesic which connects the points X§' and X{§ + 7#. We assume
that there exists a unique such geodesic, A\#(t), and we will choose the affine pa-
rameter ¢ so that A*(0) = X}(¢) and A(1) = X§(¢) + 7#(£). Now let 9# be the
tangent to A¥(t) at X§, that is define 9* = M4(0), where the dot stands for %
The geodesic equation for A#(?) is

M) + T4, AP (1)A%(t) = 0. (3.9)

Repeated use of this equation allows us to write the Taylor expansion of A#(t),

around ¢ = 0, in terms of 7* and spacetime Christoffel symbols:

1
N(t) = X§ + kit~ 2F“wa77 7= ST P P4 (310)
The higher order I' symbols stand for differentiated Christoffel symbols, I';, . =
v, ...V, T, 10, Where v/, means a formal covariant derivative acting only on
the lower indices. At {=1 (3.10) defines a coordinate transformation in the neigh-
borhood of X{ to a set of coordinates, n#, which are called Riemann normal co-

ordinates. The old quantum field, 7#, is expressed as a power series in the normal

coordinates

= qgh — -I—F“W,n"‘ % +. (3.11)

If we had started out in the normal coordinate system we could still have
gone through the arguments leading to (3.11) but this time of course only the first
term on the right hand side would be there. This allows us to deduce some nice
properties of the normal coordinate system. In it all components of the Christoffel

symbol vanish and furthermore all the higher order I';, . symbols also vanish
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when you symmetrize their lower indices,

o =0
I (3.12)
I‘(Uln-ﬂn) =0

The bars indicate that these relations only hold in the normal coordinate system.

The expression for the curvature tensor also simplifies in normal coordinates,
R = 0,5 ~ 8,5 (3.13)

and we can in fact combine (3.13) with (3.12), for n = 3, to express derivatives of

the Christoffel symbols in terms of the Riemann tensor,
iy 1 sy
&l = - (B R ) (3.14)

Using (3.12) for n > 3, one can derive normal coordinate formulas relating sym-
metrized higher derivatives of Christoffel symbols to covariant derivatives of the

curvature tensor, but we do not work them out here.

Once these normal coordinate relations have been established we can ’covari-
antize’ the Taylor expansion of an arbitrary tensor. In the normal coordinate

system itself, the Taylor expansion reads

(o]
- 1 ”
Tr.un(Xo+19) = ZE’ g O T gz KON s (3.15)
m=0

Replacing the derivatives in the Taylor coefficients by covariant derivatives gener-
ates terms involving (symmetrized) derivatives of the connection. We can then use
(3.14), and its higher order counterparts, to rewrite these in terms of the curva-

ture tensor and its covariant derivatives. For example in the case of a second rank
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tensor we get
Tor(Xo + 1) = Tpuw(Xo) + VT (Xo) n
1 = 11— = 13 o=
+ 5 {9290 Ty (X0) = 3R\ Tpr(Xo) = 3BAwo Trp(Xa)} 00
+...
(3.16)

This expansion only involves spacetime tensors and covariant derivatives so it holds
in any coordinate system (provided 7 is a vector) even though we used normal
coordinates to derive it. It is a general covariant expansion of T}, (Xo + 7) and we

can drop the bars from the notation.

Now let us find the covariant expansion of the various sigma model terms.
First consider the Polyakov action. The spacetime metric has a particularly simple
expansion because it is symmetric and its covariant derivative vanishes. In that

case (3.16) reduces to
1
Guv(Xo +7) = G (Xo) + 3 Rurow(Xo) 7+ ... (3.17)

In order to expand Ja(X{ + m#) we take a 0, derivative of both sides of (3.11) and
then apply (3.14) to get

Ba(XE +7%) = 0 X + Var® + %R“ (X0) BuX2 707 + ... (3.18)

Aov

where van# = 0u# + T'§, (X0)8aXg n°. Combining (3.17) and (3.18) gives

1
SplXo+7) = SplXol + 3 [ P61 G Xa)u XS vt
1

4ma!

+ / d2£ \/‘?706 {Guu(XO)VaTI”VbTIV + Rp,\ou(XO)aaX(,)labX(‘),n'\”a}

+ 3ra’

1
127a

+i

/d2£ \/:/—7“6 Ru/\au(xﬂ)aax(l)‘ ﬂ'\ﬂovbﬂu

+ /dz‘f ﬁ7ab Ru/\au(XO)nz\ﬂgvaﬂ"Vbny

(3.19)

The term linear in * is not of interest. We are free to choose any background X§

we like and if we arrange it to satisfy the classical equations of motion that follow
from the Polyakov action the linear term in fact vanishes. The first of the quadratic
terms in (3.19) involves two derivatives on the quantum fields, and is therefore the
kinetic term of the theory. On the other hand it involves the spacetime metric,
which is a function of the background field X{, so a propagator derived from it
would be non-trivial. The way around this obstacle is to introduce a vielbein,

e:‘(X 0),t =1,..., D, which refers the vectors 7* to a local Lorentz frame,
7 = b (Xo) 7. (3.20)

The vielbein satisfies

€,,(Xo0) € (X0) 8ij = G (Xo) (3.21)

where §;; is a flat, D-dimensional metric. The kinetic term is diagonal in the 7’

coordinate system,

Gu(Xo)van*vin” = (van)'(vsn)'. (3.22)

Here (Van)' = a1 + w0, X 77 and wif is the spin connection on spacetime.
General coordinate invariance in spacetime is an SO(D-1,1) internal symmetry
from the two-dimensional sigma model point of view and the field AY(Xy) =
wi;i(Xo)aaX(‘,‘ transforms like a Yang-Mills gauge potential under local Lorentz
transformations. We of course have to break the gauge invariance to define a
propagator for the 5*, but the point of the covariant background field expansion
is that we maintain gauge covariance in terms of the background X{' fields. It
simplifies our work considerably to know that diagrams involving insertions of the
gauge potential A,(Xo) have to combine to give gauge covariant objects (such as

the spacetime curvature tensor) in order to give a non-vanishing contribution.

These considerations along with the fact that we get a particularly simple
propagator from the 9,7'9%) piece of (3.22) are good reasons to change variables

in the path integral and integrate over the ' local Lorentz frame fields. The
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path integral measure is defined in a spacetime coordinate invariant manner so the

change of variables from 7# to 7* and then to 7' does not affect it.

Let us turn back to the covariant expansion of the action. (3.19) includes the
terms in the expansion up to first order in the spacetime curvature. For one-loop
diagrams we only use the second-order terms in 7' but we will need the quartic
term for a two-loop calculation later on. Using the method we outlined above
it is straightforward to generate further terms involving higher derivatives of the
spacetime metric but it quickly gets tedious. We will not have use for such higher-
order terms in the calculations we do here but if you embark on any computation
beyond leading order in the curvature they will of course be needed. Fortunately
there is an easier way to get them. In ref. [14] a simple recursive algorithm
is developed which allows you to derive each successive order in the covariant
background field expansion of Sp from the previous one, and it is used there to

display the terms to sixth order in p*.

The covariant expansion of the antisymmetric tensor action out to second order

in 7* reads:

Sas[Xo+ 7] = Sas[Xo]
+ oo [ RE {Bu(X0)0XE vt + 392 Bn(X0) 0.XF0LXE 1}

1
+ o [ & c"”{B,,,,(Xo) Vv’ + 292 B (X0)0u XL vy’

+ 3 [FA00Bu(X0) + Bu(Xo) RS, + Bpu(Xo) RS, J0.XE0XE ")
+.oe
(3.23)
Again we assume that the background field satisfies the classical equation of motion
and drop the linear terms. It is desirable to write the quadratic piece in terms of the
antisymmetric tensor field strength H,,\ = v,B,) + v, By, + VB, . Because of
the gauge invariance (3.6) the spacetime physics of the antisymmetric tensor field

only depends on its field strength, which is gauge invariant. After some integrating
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by parts and rearranging terms the quadratic part of (3.23) is seen to take the form

1 Ty " -
) / d% € { Hyij (Xo)0aX§ wun' + 59iH i (Xo)0aXEOLXE P ). (3.24)
The algorithm of ref. [14] can also be applied here to generate higher order terms
from this one. In particular the existence of such a recursive procedure ensures
that at every order in the covariant expansion only the gauge invariant combination
H,,, appears. The only higher term we will find use for in what follows is cubic

in 1;‘ and involves the field strength with no derivatives,

1

127a’

/ d%€ € Hiji(Xo)n' val vint. (3.25)

The dilaton coupling function is a scalar in spacetime so the expansion of Sp

is very simple,

Sp[Xo + 7] =Sp[Xo] + % / 4% /7 PR v;®(X) 9’

+ slw / ¢ /7 ORv;v,0(Xo) 7'y (9:48)
+ s

Armed with these covariant expansions of the terms in the classical action and
with a diagonal kinetic term for the quantum fields we can now read off simple
Feynman rules for diagrams and start doing perturbation theory. But first we
should ask ourselves whether perturbative calculations can make any sense in this
theory. A necessary requirement is that there be a small, dimensionless parameter
to expand in. All the interaction terms in our covariant expansions involve one
or more derivatives of the spacetime coupling functions. The theory is therefore
weakly coupled only if we make the assumption that the spacetime background

fields are slowly varying on the length scale defined by o'.

28



3.3. LOWEST ORDER CALCULATION OF THE WEYL ANOMALY

In this section we will do a simple calculation to obtain the one-loop Weyl
anomaly of the sigma model using the covariant background field expansion. We
will employ a trick to make things easy. What we are after is the variation of the
effective action, with respect to the scale factor of the worldsheet metric. Rather
than attempt a direct computation we will obtain it via the conservation equation
(2.26). Let us identify the energy momentum tensor in the quantum theory with

the variation of the effective action with respect to the two-dimensional metric:

4 W

(Tap) = \/—73-‘7?

(3.27)
The arguments leading up to (2.28) tell us that this is valid for the zz and zZ
components. General renormalization theory arguments (see Chapter 4) guarantee
that (3.27) is also a good definition of (Tz;) even when that quantity vanishes
classically. With this identification the conservation equation (2.26) takes a more

familiar form,

v (T5.) + v (Ti:) = 0. (3.28)

The trick is the observation that (T) is finite and therefore well-defined so that
(3.28) can be used to infer a value for (T'5,) '* . We will find that the one-loop
value of (T%;) is such that the one-loop value of (T;;) cannot be zero if we insist
on conservation of two-dimensional energy-momentum. It is a familiar story when
dealing with anomalies that one has to give up some symmetry in the quantum sys-
tem, but one generally has a choice. Here the choice is between Weyl invariance,
which would imply (T3.) = 0, on the one hand, and two-dimensional repara-
metrization invariance, which is associated with the conservation of the energy
momentum tensor, on the other. We have no hesitation to maintain conservation

of energy and momentum over Weyl invariance and the price is a non-zero (Tz.).
z

Now let us get down to the business of calculation. For simplicity we will
first obtain the anomaly using a flat worldsheet metric, and then later consider
the effect of worldsheet curvature. For the purpose of evaluating the Feynman
diagrams it is convenient to let the worldsheet have Minkowski signature and go

to two-dimensional momentum space. Then the conservation equation reads:
q+ (T_+) + q- (T++) =10, (329)

Let us first compute the contribution to (T44) that comes from Sp. To leading

order in the spacetime curvature only one diagram needs to be calculated.

Byn'dyn’ Ryii(X0)0a X§0° XY n'n?

FIGURE 3.1.

The 047'04n' comes from an insertion of T4 and the vertex involving the space-
time curvature comes from the expansion of Sp. The T insertion of course also
has pieces involving the SO(D-1,1) gauge potential (because we have covariant
derivatives, v47'vyn', in (3.19)) and a piece involving the spacetime curvature.
The diagrams with insertions of the gauge potential cannot combine to give a co-
variant result (because one also needs a derivative of the connection to form a
curvature tensor) so their contribution must vanish and we ignore them. The dia-
gram with two insertions of the curvature tensor (one from T4 and one from Sp)

can be neglected if are only working to first order in R, .

The contribution of the diagram above is

411 (14 +94)

o W{ Ry 0aX30° X¢ } (q). (3.30)

Here [ is the loop momentum and ¢ is the momentum with which we insert

0+n'd4+n'. Momentum conservation tells us that the momentum g is carried away
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by the background 9,X}’s on the right in the diagram. R, is the Ricci ten-
sor of the spacetime metric and since we are working in momentum space on the
worldsheet we have a Fourier transform of the product of functions in the curly

bracket.

The momentum integral in (3.30) is superficially logarithmically divergent, but
the ++ tensor character of the diagram indicates that the result must have what
amounts to two factors of ¢4, and the diagram is therefore in fact finite. This is
the whole point of defining 74 from T4 via conservation. The integral is easily
performed, for example by using standard dimensional regularization formulas'®)
and one obtains :

21141 1
_d_l +( ++ q+) - __q_+‘ (331)
2 12(1+q)? 4q-
Having obtained the one-loop contribution to (T'+4) we can now use the conserva-

tion equation (3.29) to get

(T4 (6)) = § R (X)W XEEOPXHE). (332

This is the conformal anomaly. The trace of the energy momentum tensor is
non-zero even if we start out with a conformally invariant classical action and we
have discovered that at the one-loop level the anomalous (T-4) depends on the
curvature of spacetime. If we restrict our spacetime coupling function, G, (Xo),
to be such that R,,(Xo) = 0 this anomaly goes away, and we will eventually do

something like that.

The anomaly (3.32) does not have any power of o’ in front of it. The energy
momentum tensor insertion and the interaction term in the Lagrangian each have
a L and each propagator an o' so the factors of a’ cancel in the diagram. This is
as expected if o is the parameter that counts loops, since at tree level the energy

momentum tensor has a # in front.

We do not have the full anomaly yet. Two diagrams derived from Syg also

contribute. One has two vertices involving the field strength i, :
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(""ll,‘.,O.X‘;‘ yn'n?
Byn'oyn’
c"“H,‘.,B.X‘;‘ asn'n’
FIGURE 3.2.

By power counting the superficial degree of divergence is the same as in the diagram
derived from Sp, but again the ++ character of the diagram tells us that it is finite.
A calculation quite analogous to the one we did already, shows that this diagram

produces an anomaly also,
1
(T—+) = =35 Huno(Xo) H,X* (X0)0a X§ (€)0° X5 (£)- (3:33)

This has the same form as (3.32) with the Ricci tensor replaced by the square of
the antisymmetric field strength.

The other diagram derived from S4g that contributes at this order is

84n'dyn’ L€V iH 0, (X0)0a X3 0 X8 n'n)

FIGURE 3.3.

This time the loop momentum integral is identical to (3.31) and we immediately

find that the anomaly receives a contribution,
1
(T-4) = = VA H ) (X0)0a XEOXY €. (3.34)

It involves an antisymmetric, rather than symmetric, combination of worldsheet

derivatives on the background fields, X{'.
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We will see later that these terms we have just computed, which form the Weyl
anomaly, can be arrived at in a quite different way, which reveals their physics
content from another point of view. It turns out that they are the same as the
renormalization group beta functions for Sp and Sys. The symmetric function
G ,v(X) and the antisymmetric function By, (X) play the role of coupling constants
in the non-linear sigma model and one can do a renormalization group calculation
to obtain the associated beta functions. What one finds is that ﬂf,, is obtained
from the sum of (3.32) and (3.33) while 35, is given by (3.34). A very nice picture is
emerging. The Weyl anomaly can be expressed in terms of spacetime tensors built
out of the curvature and antisymmetric tensor field strength, and can be identified
with the beta functions of the couplings in the theory. But a key element is séill
missing. There was a third coupling, arising from the dilaton. It appeared in the
classical action as a non-standard term involving the worldsheet curvature, and
its influence is not easy to see from the standpoint of the renormalization group.
However the calculations which gave us the one-loop Weyl anomaly in the simple
setting of this section can easily be generalized to include the effect of the dilaton
term. We will find that its presence adds further pieces to the terms in the anomaly

which correspond to ¢

L and 5, plus a new kind of anomaly, which can be viewed

as a generalization of the central charge of the Virasoro algebra, and can also be

interpreted as the beta function of the dilaton coupling itself.

If we are only considering field theory on flat two-dimensional space, ﬂf,, and
ﬂf,, are the complete one-loop anomaly. In general they are two independent tensor
structures and if one wants the anomaly to vanish the two have to be set equal to
zero separately. There are exceptions to this. If the target manifold (spacetime)
happens to be the manifold of some group the Ricci tensor does not vanish but
the Weyl anomaly from Sp can be cancelled by an astute choice of antisymmetric
tensor field in S4g. In the sigma model literature an antisymmetric tensor coupling
on a group manifold is referred to as a Wess-Zumino term. We will not discuss
further the special case of group manifolds here since we want to study string

theory in a generic spacetime.
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3.4. INCLUDING THE DILATON COUPLING

In the previous section we established the contributions from Sp and Sy to
the one-loop Weyl anomaly. We computed the expectation value of the trace of
the two-dimensional energy momentum tensor, in the presence of spacetime back-
ground fields, on a flat worldsheet. We would now like to obtain the contribution
of the dilaton term (3.2) in the classical action to the Weyl anomaly. In Sp the
spacetime dilaton is coupled to the two-dimensional curvature but we can still com-
pute the anomaly without having to do all our calculations on a curved worldsheet.
Although the dilaton coupling itself vanishes in the limit of a flat worldsheet its
variation with respect to the worldsheet metric does not. In other words having
included such a term in the original action on a curved worldsheet we have changed
the two-dimensional energy momentum tensor even on a flat worldsheet. The en-
ergy momentum tensor is always the response of the action to an infinitesimal
variation of the metric and the dilaton coupling affects this response even when
the term itself in the Lagrangian vanishes. With a little algebra we find that this

addition to the energy momentum tensor is
Tt = (a0 — 6s0) B(X). (3.35)

It clearly had to be of this form. It must be linear in ®, have vanishing divergence
(i.e., be conserved), and be of dimension two. Notice that this part of the energy

momentum tensor has a non-vanishing trace,
T4 =0 ®(X(€)). (3.36)

The £ subscript is to remind you that this is the D’Alembertian on the worldsheet,
and not in spacetime, which acts on ®. This non-zero trace was to be expected
because Sp is not Weyl invariant, even at the classical level. As we discussed earlier
theidea is to cancel this tree level contribution to the trace of the energy momentum

tensor against the one-loop anomalies coming from the terms in the action that

34



were Weyl invariant classically. The powers of the loop counting parameter o' in
front of the various terms in the action are so arranged that the tree level trace
of the energy momentum tensor coming from Sp enters at the same order as the
one-loop pieces we computed in the previous section (that is order(a’)?). What we
need to calculate is simply the classical trace in (3.36) in the background field X§'.

There are two terms,
0e®(Xo) =0X{ 0,9(Xo) + 0. X§0° X 0,0, P(Xo). (3.37)

These terms are not covariant from the spacetime point of view and we have
been careful to write partial derivatives rather than attempting to covariantize
the expression at this point. Now we use the classical equation of motion for X}’ to
rewrite this. Since we are still working on a flat worldsheet the relevant equation
of motion is the one derived from Sp and Sy together, not including Sp:

3

OX§ =T}, 0 Xg0°X§ — 5

HY, 0, X305 XGe™. (3.38)
If we insert this into (3.37) things combine in such a way as to give a spacetime

covariant result,
e® = vV, ®(X0)0 X X{ — %v"@(Xo) Hyu(Xo0)0aXEOpXEe®™.  (3.39)

These terms have the same structure as the one-loop anomaly coming from Sp and
Sas, which we calculated before, and we can conclude that the trace of the full
energy momentum tensor on a flat world sheet is obtained by adding these two

terms to what we have called 8, and BE.

1 1
(7‘_+) = 4— {R“y i ZIIZV -+ 2V#V”¢}aaxé‘abxg\/‘—_",yab (3 40)
+ % {VI\HAVV e 2V)‘¢ HAuy}aaX(‘;angCab_

The objects in the curly brackets are ﬂf,, and 3B with the effect of the dilaton

I

35

coupling taken into account,

1
8% =Ry — KH‘Z‘” +2v,v,9,

) (3.41)
Be =5 VA H) . — VA0 Hy .

These are not quite the renormalization group beta functions of the sigma model
but rather Weyl anomaly coefficients. The formal connection between the two
will be explained in the next chapter when we discuss the renormalization group

approach to the sigma model.

This is still not the whole story. We have included the contribution of the
dilaton coupling to 8, and 5, but the trace of the energy momentum tensor in
(3.40) is nevertheless evaluated on a flat worldsheet. If the general non-linear sigma
model is to be Weyl invariant at the quantum level we must impose that the trace
of the energy momentum tensor vanish on any worldsheet. However we would like
to avoid having to deal with the complications that accompany calculations on an
arbitrary curved two-dimensional space. It turns out that we can get at the piece
of the anomaly on a curved worldsheet, which we are still missing, by calculating
two point functions of the energy momentum tensor on a flat worldsheet. First
we recall that locally on the worldsheet we can always write a curved metric as a
conformal scale factor times a flat metric, v44 = €? 645. Weyl invariance means that
the trace of the energy momentum tensor, evaluated using the metric 7,4, vanishes
regardless of what the scale factor ¢ happens to be. A minimum requirement is
that its first variation with respect to ¢ be equal to zero. If we evaluate that
variation on a flat worldsheet we formally have a two point function of the trace
of the energy momentum tensor.

T Os| = e (Tt (€Tt O}, - (3.42)
66(¢) it PR *
Consider for the moment the part of the theory which is classically Weyl invariant

and then we will include the dilaton coupling later on. In that case the two point
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function in (3.42) is something which vanishes at the classical level and is only
non-zero because the theory is anomalous. We will use conservation of the energy
momentum tensor to define its value in much the same way as we defined the
expectation value of the trace of the energy momentum tensor in Section 3.3. At the
classical level the only non-vanishing two-point functions of the energy momentum
tensor are (T44+7T44) and the one with all minus indices. It is straightforward to
calculate (T4 4+T4+). To lowest order in o' there is only one diagram that needs to

be evaluated.

84n'd4n’ Byn? 04

FIGURE 3.4.

It is the same story as before. The diagram is superficially divergent but the
answer must have ++++ tensor character and that means that it is actually finite.
It is convenient to do a Fourier transform and calculate the diagram in momentum
space. Conservation of momentum tells us that the two 947047 insertions must
have opposite momentum. The loop momentum integral is relatively simple:

2 2 3
(Tur(@)Trat-a) =20 [ ZpEEI) _ T8 gy

The factor of D is there because there is an independent loop contribution from

each component field 7. As in the other one-loop graphs the factors of o cancel

between the 041)'04n' insertions and the propagators.

Now we obtain one-loop values for those two-point functions that vanish in the

classical theory by implementing conservation of the energy momentum tensor!'®),
9+ T-4+ +q-T+4+ = 0. (3.44)
Applying the conservation equation once to (3.43) gives

(T-+ @T+s(-0)) = "2 3. (3.45)
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This is a polynomial in ¢, a contact term with no singularity. It can be viewed as
coming from a finite part of a renormalization subtraction. A two-point function of
the energy momentum tensor with the tensor character of (3.45) is logarithmically
divergent by power counting and we can add any finite number times ¢% to it.
One usually invokes symmetry principles to fix finite parts of counterterms. Weyl
invariance would have that this two-point function be equal to zero but we are
finding out that conservation of the energy momentum tensor (which we take to
be more fundamental than Weyl invariance) does not allow that. The point is that
(T4+T4+) is finite so we have no freedom to add anything to it and the conservation
equation then fixes a unique value for (7T ,). Proceeding on, we use (3.44)
again to obtain the two-point function of the trace of the energy momentum tensor
with itself,

_1rD

(T-+(9)T-+(=9)) = o 1+0- (3.46)

It is clearly non-zero so there is an anomaly. The product ¢4+q_ is a Lorentz
scalar on the worldsheet. It simply turns into the D’Alembertian upon returning
to coordinate space and since the right hand side of (3.46) is otherwise a constant,

it will act on a é-function of location,

(T (OT-+(0)) = "2 08®(e). (3.47)

This two point function is the response of 74 to a variation of the metric scale
factor, evaluated on a flat worldsheet. Using (3.47) we can integrate (3.42) to get

the trace of the energy momentum tensor

(T=4(8))ess,, = —;f%udz. (3.48)

The D’Alembertian of the scale factor is the two-dimensional curvature of the

worldsheet and if we use (2.17) we can rewrite the above equation as

(T-+(€)) ees,, = % 7®R. (3.49)

Once again we have found an anomaly but this contribution to the trace of the en-
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ergy momentum tensor is of a different form than the pieces we obtained in the pre-
vious section. Like the dilaton coupling, it is proportional to the two-dimensional
curvature and we call the coefficient of proportionality #%. This anomaly only
depends on D, the dimension of spacetime, but does not seem to involve the space-
time fields in any way. Of course we have only obtained it to zeroth order in o’ so
far. In order to see a dependence on the sigma model coupling functions we have
to go to order o’ and calculate two-loop diagrams. At this stage we are considering
the contribution to the anomaly of the classically Weyl invariant part of the theory,
so the interaction vertices in the two-loop diagrams are those derived from Sp and
Sas. There are a number of two-loop diagrams we can write down but only three

of them are relevant to the calculation of 5%.

Rijun’n*0°n' dan’

€ Hijx ' 8an’ Oyn*
O4n'04n’ 8+'7‘3+'li
€* Hijx 0 8an’ Oyn*

€ Hijen' 0an’ Opn* € H,jxn' dan’ dyn*

O4n'04n' 8+"‘8+’li

FIGURE 3.5.

The vertices in these diagrams come from the interaction terms, in the background
field expansion, which we displayed in (3.19) and (3.25). All other two-loop dia-
grams either contribute only to ﬂg", and ﬂfy or can be shown to be unimportant
by symmetry arguments. The actual calculation we are proposing is quite in-
volved. These are two-loop diagrams, which contribute to (T44+7%4). They can
have subdivergences which need to be properly renormalized, so there are coun-
terterm diagrams that need to be considered and so on. We will not go into the
details here but if one is careful, and subtracts divergences in a way which respects
energy-momentum conservation on the worldsheet, each diagram in the end gives a
unique finite answer. Conservation of the energy momentum tensor is the guiding
principle which allows us to define the diagrams unambiguously. The momentum
structure of all three diagrams turns out to be identical to what we had in the one-
loop case, %—, but now there are coefficients in front that depend on the spacetime
backgrounds. The vertex indices in the graphs are contracted in such a way as to
give spacetime scalars. Doing the actual loop calculations therefore has to give a
term involving the Ricci scalar and another involving the scalar square of H,, ).
The conservation argument which we used to obtain (T-4T_) from (T44+T44)
only depends on the momentum structure of a given diagram, but not the coeffi-
cient that goes with it. If we follow the argument through we find a new set of
terms, involving R and H?, to be added to #%. It is easy to check by counting
vertices and propagators that the two-loop diagrams enter at order o’ and it is a

matter of detail to get the precise numbers in front.

Now we have the order o' contribution to 3% coming from the spacetime metric
and antisymmetric tensor field but we are still missing the piece coming from the
dilaton coupling itself. That is of course because we only calculated two point
functions of the classically Weyl invariant part of the energy momentum tensor.
There is also an explicit dilaton contribution (3.36) to the trace of the energy
momentum tensor which we have called Tf;’, Recall that it has an extra power
of @' compared with the classical energy momentum tensor derived from the Weyl

invariant terms in the action, so there are two ways it can give a contribution at
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the two-loop level. One is a tree-level two-point function of 7% with itself and the
other comes from a one-loop diagram with one insertion of Tf{,’_ and one insertion

of 6+ ﬂi 6+ Y)i 5

The only tree diagram, which is relevant to the calculation of 4%, connects
two v, &0 X} vertices with a propagator. (In a tree diagram we consider X' as a

quantum field.)

V. e0X{ @——_) V.E0Xy

FIGURE 3.6.

The propagator cancels one of the D’Alembertians and contributes a factor of o/

to give:

(Tﬂ(e):rﬂ(())) = ma! (v®)? 06?(¢). (3.50)

The only one-loop diagram that gives a dilaton contribution to A% has a
04+7'047' insertion and a vertex v;v;®d4n'd4n’, which comes from the back-

ground field expansion of T'{/.

B4n'Oyn’ ViV;®04n'd4n’

FIGURE 3.7.

Then we use the by now familiar conservation procedure to define (T_+T‘_"l) from

(T++Tf4‘,>, and we get

(T-+(O)TH(0)) = ~ma'v @ 06)(¢). (3.51)

We see that A% receives two terms from the dilaton coupling, one involving

(v®)? and the other proportional to v2®. Gathering together the various pieces
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of #%® that we have found gives:

At = §+%{—R+—lg+4(v¢)2 —4v2¢}. (3.52)
There can be no further contributions to the Weyl anomaly at this order in the
perturbation expansion. The trace of the energy momentum tensor is of scaling
dimension two and the only things that can give you an anomaly are operators of
dimension two. In Section 3.1 we argued that there are only three independent
structures of dimension two in the two-dimensional sigma model and the coefficients
ﬂf,, ﬂfy and % multiply precisely those objects. We have obtained 8% to order
o' but A4S, and BB, only to order (o’)°. Nevertheless all the coefficients have been
calculated to the same physical order as they all involve two derivatives of the

spacetime coupling functions.

3.5. CONSISTENCY OF THE WEYL ANOMALY CONDITIONS

In string theory we want the non-linear sigma model to be Weyl invariant

so we must impose the condition that all the Weyl anomaly coefficients vanish:
ﬁ, = ﬂ‘ﬁ = A% = 0. The leading order part of 3% does not depend on the
spacetime backgrounds at all and is present even in flat, empty spacetime. It had
better be gotten rid of somehow because we know string theory can be defined
in (26 dimensional) flat space. It is in fact cancelled by a contribution from the
conformal ghost fields which are needed for fixing the two-dimensional metric in
the original string path integral. We have not discussed the ghosts here because
they form a free system, completely decoupled from the degrees of freedom we
have been looking at. From our point of view their only significance is that they
contribute a constant piece to % which is —% in our units. The order (a’)? part
of B® therefore goes away if we choose the number of scalar fields jn the sigma

model, that is the dimension of spacetime, to be 26.

Choosing D = 26 is all we have to do in order to get rid of the Weyl anomaly

in a free two-dimensional theory but in the general non-linear sigma model there
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are further terms. The question is whether there exists a configuration of the
spacetime metric, antisymmetric tensor field and dilaton field such that all three
Weyl anomaly coefficients vanish. It should be kept in mind that we have only
found these coefficients to leading order in a power series in o'. It is really the full
power series, or rather the function it approximates, that is to be set equal to zero.
We will show explicitly how this question is answered in the context of these first
order calculations. A similar procedure can be carried through for higher order

corrections but we will not go into that in any detail in this section.

First we want to settle a potentially troubling issue. In the general non-linear
sigma model #%® plays the role of the central charge of the Virasoro algebra. It is
essentially the parameter A we discussed in Chapter 2. We found that in a geneﬁc
two-dimensional conformal field theory the effective action depends on the choice
of two-dimensional metric. Its variation with respect to the conformal factor of
the metric is of the form: a number, ), times the two-dimensional curvature, and
that coefficient of (2)R is precisely what we have called % in the sigma model.
The cause for concern is that while A is simply a number which characterizes the
theory, A% in (3.52) looks like an operator that depends on position in spacetime!
The spacetime metric, antisymmetric tensor field and dilaton field are in general
complicated functions in spacetime so how are we guaranteed that 4% is only a

c-number?

The theory defeats this problem in an interesting way. If we want the non-linear
sigma model to be a conformal quantum field theory we certainly must impose that

ﬂﬁ",, and B

&y be equal to zero. Otherwise there is a conformal anomaly even on a

flat worldsheet. The remarkable fact is that this condition actually implies that
B® is a constant. If ﬂf,,(X 0) is identically zero then its spacetime divergence also
vanishes. On the other hand if fu is equal to zero one can use that to show that

the divergence of ﬂff,, is actually equal to the gradient of pe;
= v43,(Xo) = v.B*(Xo). (3.53)
We feed in the vanishing of ﬂf,, and ,8“?,, and get out that B® is constant®17),
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Showing that (3.53) holds is a recommended exercise in using the Bianchi identities
that the tensors R,),, and H,) satisfy. Some work is required and at the end
one might be inclined to think that the argument only goes through because of the
specific form of the various leading order f-coefficients, and that it might break
down when we add higher loop corrections. However general arguments have been
given'®) that vanishing 3%, and 85, together imply a constant 4® at all orders in

perturbation theory. We will come back to that in the next chapter.

It still remains to demonstrate that all three Weyl anomaly coefficients can be
consistently set equal to zero. If we write down an arbitrary set of equations for the
spacetime coupling functions we cannot expect them to be simultaneously satisfied,
in particular since R,),, and H ) are constrained objects derived from potentials.
Nevertheless the Weyl anomaly conditions are mutually consistent. One way to see
that is to observe that they can all be derived from a single spacetime action. In
the process of showing that we will see more explicitly how conformal invariance
on the worldsheet leads to Einstein gravity in spacetime. First we rearrange the

Weyl anomaly equations into a more suggestive form:

Ry — %G,,., R= %[HZ,, - %G,‘., H?] = 2v,9,9 + 2G, V7?9,
VA H),, = 2920 H),,, (3.54)
v — 2(va)’ = —%H"’.
We have used the trace of the top equation to eliminate R from the bottom or
B® = 0 equation. The three equations in (3.54) are completely equivalent to
imposing ﬂfu = ﬂf,, = A% = 0 but now the left hand side of the top equation is
the spacetime Einstein tensor and the bottom two can be viewed as equations of
motion for the spacetime antisymmetric tensor and dilaton fields. We can define the

spacetime energy momentum tensor to be the right hand side of the top equation
in (3.54);

1 1
O = 7[Hyy = GG H?] = 29,9,0 + 26, v*0. (3.55)

It is a symmetric tensor and it had better be conserved, because the Einstein tensor
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is always conserved as a result of a Bianchi identity for R,),,. For general H
and @ (3.55) has no reason to be a conserved tensor but it is easy to see that
when the spacetime fields satisfy their equations of motion (3.54) it follows that
v#O,, = 0. In other words the vanishing of the conformal anomaly is equivalent
to the Einstein equations in spacetime with a covariantly conserved source term.
The system of equations is therefore certainly consistent and must in fact follow
from an action principle. The D dimensional covariant action whose variational

equations reproduce (3.54) is:

5y = /dDX VGe{R+4(ve)’ - %H”}. (356)

This can be recast into a more standard form by performing a Weyl rescaling of

the spacetime metric,

Gy = G, eT2. (3.57)

If we redefine in this way what we mean by the spacetime metric tensor the space-

time action (3.56) becomes:

B /dDX \/5{1'2 = D4_ 5(v8)" - L iﬂ}. (3.58)
The twiddles on the (V<I>)2 and H? terms are to remind you that these scalars
involve contractions of spacetime indices which are carried out with the new metric.
Now the spacetime action looks more familiar. It is simply the Einstein action
along with a kinetic term for the dilaton field and a Maxwell type kinetic term for
the antisymmetric tensor field. There is a complication in that the analog of the

coupling constant strength for the antisymmetric tensor field now depends upon
the dilaton field.

The bottom line is that when we study the general non-linear sigma model we
find lurking behind the scenes a spacetime action functional from which one can

derive the Weyl anomaly conditions. This is a reflection of the deep connection

between the sigma model and string theory for something like this is certainly not
true for renormalizable quantum field theories in general. Again it can be asked
whether this is true to all orders in perturbation theory or is just a special feature
of the leading order approximation. The complete answer to that question is not
known, but it has been checked up to three loops that the connection between the
vanishing of the Weyl anomaly and a spacetime action survives the calculation of
higher order corrections'®?%). Based on that it is generally believed that the full
expansion, in a power series in o', of the Weyl anomaly coefficients can be derived
from a master spacetime action, which is itself given by a power series in o’. The
higher terms in o’ involve more spacetime derivatives of the coupling functions and
give rise to short distance (i.e., Planck scale) corrections to the Einstein equations

and the equations of motion for the matter fields.

There is a direct link of all this to string theory. If we take the spacetime
action (3.58) as an effective action for the spacetime gravitational, antisymmetric
tensor and dilaton fields then it precisely generates the string theory S-matrix (at
string tree level). By that we mean the following. If you take the spacetime action,
expand it in powers of the linearized graviton, antisymmetric tensor and dilaton
fields to generate spacetime propagators and interaction vertices, and compute all
the resulting tree level diagrams (one normally only computes tree diagrams from
an effective action as the effective interactions are usually non-renormalizable),
then the resulting S-matrix elements are exactly those one obtains, for the massless
states of the bosonic string, from the standard string theory operator formalism.
This connection should convince you that the graviton described by the spacetime
metric tensor of the sigma model is indeed the same as the graviton of string theory.
It has been checked to high enough order in sigma model perturbation theory for
one to have faith in it (and may even have been proven?! to all orders) that the

spacetime effective action is the generating functional of the string S-matrix.

We have seen how the two-dimensional non-linear sigma model has encoded in
it all of the spacetime physics of the massless modes of string theory at string tree

level but the picture is incomplete in a number of ways. As we mentioned at the
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end of Chapter 2 it is not clear at present how string loop corrections affect these
considerations. Also one would like to be able to generate the full string S-matrix
in a sigma model approach, not just those elements which involve massless external
states. The trouble is that the sigma model interaction terms, which correspond
to backgrounds of the massive modes of string theory, are non-renormalizable in

two dimensions and the perturbation theory is not well defined.

4. HIGHER-LOOP METHODS: RELATION
TO RENORMALIZATION GROUP

In the previous chapter we presented a quick and dirty calculation of the one-
loop Weyl anomaly of a bosonic nonlinear sigma model. The one-loop results had
some surprising features (all anomalies derivable from a spacetime action function,
for instance) and it is clearly important to see whether these features remain true
at higher loop orders. The method used previously is not very systematic and does
not generalize very easily to higher orders. In this chapter we therefore outline a
systematic method for calculating higher-loop Weyl anomalies and present selected
concrete results. This whole subject is very complicated and limitations of space
prevent us from doing much more than giving the reader some notion of what the

essential issues are.

The most systematic way to proceed is to exploit the fact that the Weyl
anomaly is almost, but not quite, identical to the renormalization group beta
functions which can in turn be computed by standard methods to any loop order.
Analyses of this connection have been given by several authors?22324), The work of
Metsaev and Tseytlin?®) is the most systematic, but we will find it convenient follow
a subsequent treatment'8) which is particularly concise and transparent and lends
itsell to useful generalizations. The starting point is the dimensionally-regulated

sigma model defined in 2 + ¢ dimensions by the action

S =

!
— / dv[y™GE,0. X 0, X" + %R(%B], (4.1)
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where dv stands for the dimensionally continued reparametrization invariant mea-
sure ¢ /7. We have dropped the antisymmetric tensor field for the time being.
Amplitudes generated from this action are singular as ¢ — 0 but they are rendered
finite by using minimal subtraction to express bare couplings as power series in 1/¢

with coefficients built out of renormalized couplings G, and @ :

Gy =1 (G + Tyw)
®F = (7 - + )
oo L 1 )
Tuw(G) =Y ()* - =T (G)
L=1 1

o0 L
1 3
Z- =9 NES D pths)
+Lz=:l(a)§f' (G)®

V= Z F\1;(')(67)
=1

In these expressions, T,(,,[,”i) and Z(L9) are generally covariant functions of the renor-
malized metric G, and g is an arbitrary mass scale. Calculations up to two-loop

order yield the results?®)

T;(A}/'l) = _R;Au
1

1
T‘(‘,?,'l) e _ZRuAapRy/\ap

ZD = _y? ALRDEY

0o

A major novelty here is that along with a multiplicative renormalization by
Z, ® also suffers an additive renormalization W. This occurs because on a curved
worldsheet the dimension-two interaction based on G, requires new counterterms
of the form of a dimension zero operator (scalar field) times worldsheet curvature
scalar. This is in accord with general lore about renormalization in curved space?®)
and a major nuisance insofar as determining W requires explicit curved worldsheet
computations. A major point of ref. [18] is that such calculations can be avoided

by astute use of consistency conditions on flat worldsheet results.
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At this stage one defines the renormalization group beta functions as the vari-
ation of the renormalized couplings under a variation of the arbitrary finite scale
p which leaves the bare couplings (and therefore meaningful physical quantities)
fixed. It is a basic requirement of renormalizability that a finite renormalization
group flow can be found. By expanding the equations p-a— G, =0and /‘337 ®5 =0

in powers of ¢! one obtains from the nonsingular parts the flow equations

aa G;.w == quv + ﬂpv
P (4.3)
3_ ®=—ed+(P)+ 0(G)
where
= (@)L T?,
L
7(®) =-) ()L 2D . o (4.4)

L
8(G) = (Gi -1)e®
The terms in the equation that are singular as inverse powers of ¢ yield a series of

consistency conditions
) 9 .
S ELTE Y 4 pom S ()T =0,
L L

5 P P (4.5)
_ Y ygi+1) Yo ' Lz(L,i) i 1 \I’(l) =0.
U~ G Ll +ZL:(a) (Gpg—1
In deriving the above results essential use is made of a simple scaling law which
follows from dimensional analysis on the perturbation expansion:

9 7d - _ (1 -1)TED
G pv ) By (4 6)
d ; ’
— 7)) — _ [, 7(L3)
G(’)G
Physical quantities, like the partition function Z, can be expressed solely in

terms of bare quantities. When they are reexpressed in terms of y and the renor-

malized couplings, they must satisfy the renormalization group equation DZ = 0
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where

0 d 3}
D= l‘@ +(—€Guy + ﬂuu)m + (—e@ +7(®) + 9(6))6—® (4.7)
This is because D generates a joint variation of p and the renormalized couplings
which keeps the bare couplings fixed. Apart from the special features arising from

the curved worldsheet, this is all standard dimensional regularization lore!3).

To discuss the Weyl anomaly (trace of the energy-momentum tensor) we need
to be able to construct renormalized composite operators of dimension two or
less. The simplest way to define the insertion of a dimension-two operator of type
F0X*0X" is to parametrically differentiate with respect to the renormalized
metric. Because the theory is renormalized the result is finite. Because the metric
appears only in the action, the result is equivalent to the insertion of the following

parametric derivative of the action (4.1):

P
aS
P ! —
= 4ra' Fy, 3G,
— [ aou (B + F Lo y0x50%” — ROy 22 o
= /dvﬂ [(F}‘V + 7 6GTI“’)0X aX 2 R ( Lt aG @ " F“u apr )] .
(4.8)

(We denote the renormalized version of an operator O, or its normal product, by
N[O].) The quantities T, Z and ¥ are the same power series in ¢! as appear
in the relation between bare and renormalized coupling constants. They specify
the counterterms needed to renormalize the original dimension two operator (note
that, as promised, a subtraction operator proportional to worldsheet curvature is
needed). Note that because the action S is an integral over the worldsheet, this pro-
cedure only gives a renormalized version of integrated operators: the subtractions
specified above may not be enough to renormalize the local, unintegrated operator

Fu,0X#9X". We also need to be able to define the insertion of a dimension zero
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operator of type H(X). It is relatively easy to see that
N[H(X)] = Z H(X) (4.9)

where Z is defined in (4.2).

The main operator of interest to us is the trace of the energy-momentum tensor.

It is defined by a parametric derivative with respect to the worldsheet metric

a _ 4 ab 6S
a=™ 7=V T aF
Voot

and, by the sort of argument given above, is guaranteed finite. When the paramet-
ric differentiation is carried out on the bare action one gets, after using standard
expressions for dimensionally continued versions of ¥ and R(?),

o &5 2

s = 5 (€GP, 0X#0X" + %a'R@)@B - o/0o?) (4.10)

Using the results of the previous paragraph, the integral of 7% over the world-
sheet can be expressed directly in terms of renormalized quantities. By performing
straightforward algebra on the definition (4.8) of the integrated normal product
operator, the definition (4.4) of the beta functions and the various consistency

conditions (4.5) on higher pole counterterms, we can derive the important result

20’ / T = / dv { N[, 0X"0X"] - eN[G, OX*0X"]
) ) (4.11)
- %R(”N[»,@) +6(G)] + %—GR("’)N[Q]} .

In other words, the vanishing of the beta functions and anomalous dimensions in
the renormalization group flow equation implies the vanishing of the integrated
trace of the energy-momentum tensor. This is sufficient to impose rigid scale
invariance, but not full conformal invariance, which requires the vanishing of the

local energy-momentum tensor trace.

To discuss conformal invariance, we need a normal product definition which
applies to local operators. The essential point is that singular pieces in the form of a
total derivative may have to be added to (4.11) to render the unintegrated operator
finite?”). By the usual rules of renormalizable field theory, since the operator
F,,0X*0X" is of dimension two, it only needs renormalization subtractions of

dimension two or less. The only possible such object which is a total derivative is
8a(0°XHA(F)) , Au(F) =AY (G)F, (4.12)

(with 4, = 3", ()E Eé’l e"AE,L'i) as usual). A remarkable and useful feature of
the version of dimensional regulation we are using is that it is legitimate to relate
operators by using the classical equations of motion inside the normal product
(for this and other general features of the dimensional regulation normal product

formalism, see ref. [28]). This allows us to write
0a(0° X Au(F)) = v, A, (F)OX 0X" 4+ o/ RDvFDA,(F)
and to express the unintegrated normal product in the form

N[Fu0X*0X"] = {(Fu + FZ’)% Ty + VA, (F))OX*0X"Y
o 0z o
Bl - CAT i ol IR
5 (FaG S+ Fam+v P AUF))}.

(4.13)

The A, are not known a priori but reasonably simple calculations suffice to de-
termine them to low loop order. Representative results for the ¢! pole terms

are2"29)

AE}’I) =V'\F,\” _ %V“F’\A ;
4.14
A(2-1) _ lR Xop g R ( )

b =g Vel

It will be important to know the behavior of insertions of renormalized opera-

tors under renormalization group flows of the couplings. Since the general operator
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is not expressed in terms of the bare couplings only, there is no reason for it to be
annihilated by D. Indeed, general renormalization lore tells us that DN[O] will be
a linear combination of other renormalized operators N[O] of the same dimension.
For the dimension two operator we have been considering, the expected relation is

of the form
DN [F,,0X"0X"] + N[1F,0x*0x"] - %’R@)N[y”] =0. (4.15)
For the general dimension zero operator it is
DN([H(X)] + N[y¥] =0.

It is a straightforward exercise to read off the v operators (anomalous dimensions)
from our explicit expressions for D and N[O]. As usual, the essential information
is contained in €~! pole terms while the higher poles express consistency conditions

whose satisfaction is, in principle, automatic. Specifically,

[é]
T =F 550 = D () L(,A8D(F) + 9, 47D (F))

L
AP =P (5(8) +0(6)) ~ Y (o)L ALV (F) e (4.16)
L
,YH - Z(OI)LL ALON 8
L

Once again, the standard dimension two operator (based on F),,) mixes with op-
erators of the same type (through 75‘,) and operators of dimension zero times

worldsheet curvature (through v¥®).

We can now discuss the renormalization of the unintegrated trace of the energy-

momentum tensor. Applying the results expressed in (4.13) to (4.10) we obtain

2T, =p‘({N[ﬂ;,,6X"6X"] — ¢ N[G,,0X"0X"]}
" e (4.17)
- SRON[B] + —2—6R(2)N[<I>]) :

where
By =Buy — &'V, @+ v,S, + 9,5, ,

(4.18)
By = — 29(®) — 20(®) + (v, PV+® — 2v?D) |

To simplify subsequent equations, we have elected to write the quantity A, ap-

pearing in (4.12) as S, — %:V,,Q.

Both S, and 6(G) have somehow to be evaluated in terms of the ‘coupling con-
stants’ g,, and ®. There are various tricks which have been employed to accomplish
essentially this goal but the most elegant is to make use of a renormalization group
consistency condition'®). The crucial point is that since T, is expressible directly
in terms of bare quantities, it is a physical object and must satisfy DT'%, = 0 (the
anomalous dimension of the energy-momentum tensor must vanish). The explicit
action of D on the various normal product terms in (4.17) is known from (4.15)
and the net result is a set of differential equations which, as it turns out, can be
solved to determine S, and . We will omit the details of this demonstration and
simply record the results. The first useful result is that, while S, # 0, it begins to
receive contributions only at three-loop order: S, = O((’)?). 0 likewise begins at

three-loop order and its leading term can easily be evaluated:

- _(a/)2 uov N3
0 = '—8 R R}J/\OV + 0((“ ) ) (4'19)
Putting all of this together, we get the following explicit results for the #* functions
which determine 7% :
(o')?

o =o' Ry + B #MPRW\OD +2a'v,v,9 + 0((0')3)) )

, (4.20)
By =o' (—v?® + (v®)?) + (021—)212"*”"12,,),., +0(()?) .

(Note that there is a factor of o’ difference in the normalization of the Weyl anomaly
coefficients (3.41) and the renormalization group beta function f,,.) The condition

for conformal invariance is that both of these functions vanish. If the dilaton could
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be set equal to a constant, the conformal invariance condition would reduce to the
vanishing of the standard renormalization group beta function for the metric, but
it is obvious from the % equation that this is not possible (except in the rather
trivial case that the Riemann tensor vanishes). The important point is that, while
the Weyl invariance conditions are not simply that the renormalization group beta
functions vanish, there is a systematic procedure for generating the Weyl anomaly

coefficients from the beta functions.

Finally, we should say something about the consistency of these equations.
In the previous lecture, we argued that, at the one-loop level, Bianchi identities
imply that if 8}, vanishes, then B3 is a constant, consistent with zero. It is not
obvious how this argument generalizes to higher loop order, to say the least. A
remarkable feature of the arguments of ref. [18] is that they allow one to reach the
same conclusion to all orders in o/ by a systematic use of the dimensional regulation
pole consistency conditions. We have no space to explain this argument, but it is of
the utmost importance for the sigma model approach to string theory (it is roughly
equivalent to the statement that the various conformal invariance conditions are
variational derivatives of a single master spacetime action, even though we do not

have a direct construction of that action).

5. SUPERSYMMETRIC NON-LINEAR SIGMA MODELS
5.1. SUPERSTRINGS AND WORLDSHEET SUPERSYMMETRY

In previous chapters we discussed two-dimensional non-linear sigma models
whose couplings correspond to backgrounds of massless states of the bosonic string
theory. We have seen some interesting spacetime physics, involving gravitation
and the antisymmetric tensor and dilaton fields, arise in this framework. Such
a description nevertheless has serious limitations that ultimately trace back to
shortcomings of the bosonic string theory itself. Bosonic strings have tachyon

modes and their presence means that the theory is not consistent. The tachyon
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states may simply reflect that we have not identified the true vacuum of the theory
but people have yet to find a stable vacuum without tachyons. In our calculations
we managed to sidestep the problems that tachyons cause but that does not mean
they can be ignored. Another issue is that so far we have only come across bosons,

but any theory which attempts to describe nature had better include fermions.

A more realistic and successful approach is to study superstring theory, where
the string is not only described by its embedding into spacetime but also has in-
ternal degrees of freedom, which can be anticommuting. There are many ways
in which one might envisage generalizing the bosonic string theory to include
fermionic modes but consistency conditions on the quantum theory place severe
restrictions on the possible choices. We will not go into those matters here but the
list of viable superstring theories is actually quite short. The generalizations of the
bosonic string theory can all be described by two-dimensional field theories with
fermion fields living on the worldsheet in addition to the bosonic coordinate fields.
For reasons, which will become clear in a moment, the two-dimensional theories
are all supersymmetric but the extent of the supersymmetry algebra in each case
depends on the superstring theory in question. In this chapter we write down the
various supersymmetric non-linear sigma models that correspond to superstrings
in non-trivial backgrounds and give an outline of the analysis of anomalies and the
resulting spacetime equations. The actual computations are analogous to what
we have already seen for the bosonic theory so we will not delve into the details
but rather try to give an overview of the general structure and review the salient

results. We recommend ref. [30] to the reader interested in supersymmetric sigma
models.

Consider a two-dimensional field theory with D scalar fields, which describe
the embedding of a string worldsheet into D-dimensional spacetime, but also with
two-dimensional fermion fields living on the worldsheet, which enable us to build
fermionic states in the string spectrum. When we only had the bosonic coordi-
nates we found that the non-linear sigma model actually describes string theory

only if the coupling functions are chosen so that the two-dimensional theory is
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conformally invariant. One way to see this is to observe that there are spurious
states in the spectrum of the bosonic string and the theory must have an infinite
dimensional symmetry to effect the decoupling of those spurious states from phys-
ical processes. Conformal invariance is precisely that symmetry; it is expressed in
terms of the Virasoro algebra and, as we mentioned in Chapter 2, the Virasoro
generators are used to determine the physical states of the theory. Now that we
also have fermions on the worldsheet there will be further spurious states associ-
ated with them and an enlarged symmetry algebra is needed to decouple them also.
This can be accomplished by requiring supersymmetry on top of conformal invari-
ance. In a supersymmetric theory every bosonic object will have a fermion partner
so corresponding to each Virasoro generator there will be a fermionic genera.t.ér.
The Virasoro generators are moments of the worldsheet energy momentum ten-
sor and their fermionic counterparts are moments of the worldsheet supercurrent
(the conserved current associated with the worldsheet supersymmetry). These new
generators along with the L,’s satisfy a supersymmetric extension of the Virasoro
algebra and can be used to define physical state conditions for the full superstring
spectrum. All this is explained in detail in standard string theory texts (for ex-
ample ref. [31]) but the point we wish to emphasize here is that supersymmetry
leads to a natural extension of the Virasoro algebra and it is necessary to impose
it in addition to conformal invariance in order for a non-linear sigma model with
fermions to describe superstring theory. Our strategy will therefore be to write
down supersymmetric, renormalizable, non-linear sigma model actions and then
proceed to calculate Weyl anomalies to derive conditions on the spacetime physics,

in much the same way as in the purely bosonic case.

In Chapter 3 we set out assembling all possible terms in a general, reparamet-
rization invariant, renormalizable scalar field theory on a curved two-dimensional
space. The resulting action described a scalar field with non-linear interactions
along with gravity in two dimensions. There is no Einstein term to describe the
dynamics of the metric in two dimensions because the Einstein action, i.e., the in-

tegral of the curvature scalar, is a topological invariant (proportional to the Euler

character of the worldsheet). The two-dimensional metric is therefore not dynam-
ical. Reparametrization invariance and classical Weyl invariance along with some
tricks enabled us to eliminate it to the extent that we could do all our computations

on a flat worldsheet.

A corresponding approach to the study of supersymmetric non-linear sigma
models would be to write down the most general two-dimensional supergravity
action with scalars and spinors. We would then be doing physics on a curved
worldsheet with both a metric and a gravitino field, which is a vector-spinor (spin
% field). The question then is whether we can eliminate not only the metric degrees
of freedom but also the gravitino. That turns out to be possible if the action
has a supersymmetry and is conformally invariant (the combination of the two
is called superconformal invariance). There is a horde of possible renormalizable
and superconformal terms in two-dimensional supergravity. However, we will not
write down the most general classical action of that form because at the end of the
day, when the superconformal invariance has been used to fix the metric and to
gauge away the gravitino field, things simplify considerably. In fact the physics we
are interested in is all contained in an action with simply a rigid supersymmetry
plus ordinary reparametrization invariance and conformal invariance at the classical
level. We will arrange things so that the quantum theory is supersymmetric and at
the conformal fixed point the supersymmetry will be promoted to superconformal
invariance. So rather than deal with supergravity, which is complicated and not
really necessary in order to get the results we are after, we can keep things simple
and calculate ordinary Weyl anomalies in a globally supersymmetric theory. We
will actually take the worldsheet to be flat and compute renormalization group
beta functions for the various supersymmetric sigma models. This is simpler than
obtaining the Weyl anomaly coefficients. The difference between the two has to do

with a dilaton field that varies in spacetime and can be sorted out at the end.
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5.2. THE N=1 SUPERSYMMETRIC NON-LINEAR SIGMA MODEL

There are different ways to introduce fermions into the two-dimensional non-
linear sigma model and a number of supersymmetric extensions of the bosonic
theory exist. Only a few choices however, lead to interesting theories and we restrict
our attention to those that correspond to consistent superstring theories. The
N=1 or (1,1) supersymmetric sigma model is a good starting point. The bosonic
coordinates are the same as before: a set of D scalar fields X#(¢),u = 1,--+, D,
on the worldsheet. The fermions are taken to be Majorana spinors ¥#(¢). In
a supersymmetric theory they have to be equal in number to the bosons so the
index g runs from 1 to D. The worldsheet fermions transform as a vector under
spacetime coordinate changes, which are internal symmetry transformations from
the two-dimensional point of view. The number of fields is chosen to eliminate the
leading order Weyl anomaly (the part that is present even in flat spacetime) and
one finds that D = 10 is the critical dimension in the supersymmetric theory. In
two dimensions a Majorana spinor has two components. We can choose a basis
for the two-dimensional Dirac matrices in which the two components are a pair of

Weyl spinors, each with a definite chirality:

s
H(E) = ; 5.1
vo- (%) "

A good way to express supersymmetry and construct supersymmetric La-
grangians is to use superspace techniques and superfields (which are described in
a more general setting by Dine3?) elsewhere in this volume). Our two dimensional
superspace will consist of the commuting worldsheet coordinates {4 and £ (we are
using Minkowski light-cone coordinates) and a pair of anticommuting (Grassmann)
variables #. and f_. The notation is very simple because we need not worry about
conventions for raising and lowering spinor indices in the basis we have chosen. A
superfield is a function on superspace. It always has a finite expansion in powers

of the nilpotent Grassmann coordinates. The coefficients of the different powers

of f4 and 6_ are ordinary fields (called the components of the superfield) which
transform into each other under supersymmetry transformations. Our basic sigma

model fields can be assembled into a set of superfields:
OH(E, 0+,0-) = XH(E) — 1094 (§) + 04 9L (€) + 046-FH(¢). (5.2)

We need the F#(£) to complete the superfield expansion but they turn out to be
auxiliary fields which have no dynamics in the theory. Supersymmetry is realized on
superspace through the action of differential operators. The N=1 supersymmetry
has two generators, one associated with each chirality of spinor components (hence

the term (1, 1) supersymmetry):

Q= i% — 030+ . (5.3)

It is easy to check that these (Q’s satisfy the usual supersymmetry algebra and
give the correct transformation rules for the component fields. There are also

supercovariant derivatives on superspace,

.0
Di = IE + 0:;: a;t ) (54)

which anticommute with the supersymmetry generators. Finally we adopt the

usual Berezin definitions for integrals over Grassman variables:

/d0+ =/d0_ == 0, /d0+0+ = /dg_ 0_ =14 (55)

It is easy to see using these formal rules for integration that the Berezin integral

of a total derivative vanishes, i.e., for any superfield ¥ we have

ov av

This superspace formalism is very useful because it gives a compact way to

write supersymmetric Lagrangians. In fact the integral of any function of a super-
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field and its supercovariant derivatives is invariant under supersymmetry transfor-

mations.

I= / d*¢d0,do_V(®, D, ...). (5.7)

A superfield transforms as a scalar under a supersymmetry transformation and
since supercovariant derivatives anticommute with the supersymmetry generators
the function V in (5.7) also transforms as a scalar, 6+V = Q4 V. The variation of

the integral is therefore

d
6: = [ d*¢d0,d0_ (i=— — 05 01) V(®, D1®,D_9, ...
o1 = [ dedvydo- (izg——0504) V(@ D, b
= 0.

It vanishes because we can integrate by parts either in the Berezin or in the con-

ventional integral.

We want the theory to be renormalizable so terms in the action must be of
the right dimension. If the superfields in a given term are expanded in component
fields and the Berezin integrals over 04 and 0_ performed any term in the resulting
expression involving only the bosonic fields X#(¢) should be of scaling dimension
two. This tells us that the original superfield term has to have precisely two
supercovariant derivatives. The supersymmetric extension of the Polyakov action
is an example:

SV [9) = / d2%d0,do_ G, (®) Dy d*D_d" . (5.9)
It has a pair of supercovariant derivatives of opposite chirality acting on the su-
perfield and the spacetime indices are contracted on an arbitrary symmetric tensor
function G, (®), which will be interpreted as the metric tensor of spacetime. It is
instructive to obtain this action in component form. After inserting (5.2) for the

superfield in (5.9) and performing the Berezin integrals we have a number of terms

involving the X*#, ¢4 and F* fields. An important thing to note is that the F# are
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auxiliary fields. They have no derivatives acting on them and can be eliminated
by their equations of motion. After that has been taken care of the resulting terms

can be gathered into the following spacetime coordinate invariant expression:

SEDX, ] = /d"’{{ wr(X) (03 XPO_XY + iph v ¥ + v vy

1
+ § RyU/\U(X) ¢i¢i¢:\-¢z }7
(5.10)
The purely bosonic term in (5.10) is precisely Sp. In addition we have quadratic
kinetic terms for fermions of both chiralities and a four fermion interaction with a

Riemann tensor coupling.

S'(ll ) is not the most general (1,1) supersymmetric renormalizable action on
a flat worldsheet. There is another term we can write down and it involves an

antisymmetric coupling:
1
(9] = e / d*¢df,df_ B,,(®) D4 *D_d" . (5.11)
This is of course the supersymmetric extension of S45. In component form it reads

SOVIX, ¥] = ) 8; XPO_ X" — —H,,.,,\( )Yl X>

a¢ { Bu(X
5 %HM( ) WEYL0: XA + 2o (XY ¥4
— THL (O Hpo X)W 92 v}ve ).

(5.12)
The action of the (1, 1) supersymmetric non-linear sigma model on a flat worldsheet
is the sum of 5'(11’1) and .S'(2l ). In a two-dimensional supergravity theory it is also
possible to write down a supersymmetric extension of the dilaton term, Sp, of
the bosonic sigma model, but we do not need that here. We want to calculate
renormalization group beta functions on a flat worldsheet with the gravitino field
gauged to zero in which case the dilaton term is absent. The effects of the dilaton
can be obtained from the beta functions by the methods described in the previous

chapter.
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The spacetime coupling functions we have written down for the N=1 super-
symmetric sigma model are of the same type as the ones we had in the bosonic
theory. They correspond to background condensates of massless bosonic states of
the closed superstring in spacetime. One of the motivations to study superstrings
in the first place was to get spacetime fermions into the game, so why not add terms
to the sigma model action which describe fermion backgrounds? This would be
an interesting thing to do but there are technical obstacles which have to be over-
come first. Spacetime fields appear as coupling functions in the two-dimensional
theory and a fermion in spacetime is therefore described by a sigma model with

anticommuting couplings. Such models can be written down using techniques from

two-dimensional superconformal field theory®®). One problem which makes those -

theories unwieldy is that the worldsheet fields are non-trivially coupled to the su-
perconformal ghost system in the fermion coupling function, which gives rise to
notorious technical problems. This subject has not been fully developed and we

will not go into it.

When we extend the two-dimensional non-linear sigma model to an N=1 super-
symmetric theory we go from describing bosonic string theory in 26-dimensional
spacetime to ten-dimensional superstring theory which contains much more in-
teresting physics. It is natural to ask what happens if we start with a larger
supersymmetry algebra on the worldsheet. There is a conformally invariant N=2
supersymmetric sigma model which has two supersymmetry generators of each chi-
rality. It turns out that the bosonic fields are complex and the critical dimension is
only two so this theory does not describe realistic spacetime physics. It is possible
to extend the worldsheet supersymmetry even further to N=4 but that leads to a
negative critical dimension. It thus appears one should start with no more than
N=1 supersymmetry on the worldsheet in order to describe the sort of physics
we are interested in. We will see later on that it can be advantageous to restrict
the N=1 supersymmetry to a smaller algebra. That will lead us to the study of

heterotic sigma models.

Extended worldsheet supersymmetry nevertheless does play an important role
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in string theory. When the coupling functions of the N=1 sigma model satisfy
certain conditions a new pair of supersymmetry generators appears and the (1,1)
supersymmetry is enhanced to (2,2). The resulting N=2 theory is of course different
from the one we mentioned above since restricting the form of the sigma model
couplings does not change the critical dimension. We do not show it here but the
simplest way to realize this enhanced supersymmetry is to set the antisymmetric
tensor field By, equal to zero and choose a G, which is Kahler, which means one
can define complex coordinates on spacetime in a consistent way (a Kihler manifold
by definition has a covariantly constant complex structure). The point is that
the enhanced worldsheet supersymmetry is needed to get a theory with spacetime
supersymmetry and therefore plays a central role when one studies compactification

of extra dimensions and string phenomenology from the worldsheet point of view.

5.3. BETA FUNCTIONS OF THE N=1 SUPERSYMMETRIC SIGMA MODEL

The calculation of the renormalization group beta functions of the supersym-
metric non-linear sigma model is very similar to that of the bosonic theory. The
spacetime tensor structure of the couplings is identical in the two models (a sym-
metric metric and an antisymmetric tensor). In the bosonic theory the beta func-
tions got a contribution from every object of dimension two that could be built
using those couplings. This continues to be true in the supersymmetric theory
so the beta functions will have the same sorts of terms but there are now more
Feynman graphs to calculate and the coefficients of the terms are different. In a
supersymmetric theory we expect cancellations between boson and fermion loops

which can lead to interesting effects.

In order to compute the beta functions we need to derive Feynman rules and
identify relevant diagrams. There are two ways to go in setting up the perturbation
theory. One is to use superspace techniques to generate a manifestly supersym-
metric diagrammatic expansion. In that case one derives a superfield propagator
and works out a background field expansion for superfields. The notation is very

compact and leads to a powerful formalism which is especially useful for higher
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loop calculations. It has been used to obtain B, to four loops in the N=1 su-
persymmetric sigma model with only a metric coupling®®) and to five loops for
a model with extended N=2 supersymmetry3®). We will not develop superfield
perturbation theory here but rather take the other approach which is to use the
component form of the action and calculate conventional diagrams with both boson
and fermion legs. One has more graphs to consider than in superfield calculations
but for low loop orders we find this formalism more transparent to the physics and

the comparison to the bosonic theory more straightforward.

For simplicity we will drop the antisymmetric tensor from the discussion for
the moment and consider an action with only a symmetric spacetime coupling
function. The normal coordinate expansion of (5.10) is straightforward. We want
to compute ﬁf,, which is a commuting object. We therefore only introduce back-
ground X #’s and consider the fermion ¥*’s as quantum fields from the start. We
already have the expansion of the bosonic part of the action in (3.19). The follow-
ing are those terms coming from the fermion pieces of the action which are needed

for calculations to two-loop order:

1

Ara

Pe{ivh v_vh, + iV Vst — = Ryuu(Xo)O_ XL i gk
P
- %Rm,’k(xo)fhxé' nyl gk + -;—R.','u(xo) Vi vk gl (5.13)

+ §R.'uj()‘o)7l"r)' Y-yl + sRiklj(XO) n*n! 1/1'_V+¢"_}-
The spacetime indices of the quantum fields are referred to a local Lorentz frame

as before.

We can immediately see without any calculation that the fermions do not
contribute to ﬂg',, at the one-loop level. In the background field approach we are
instructed to compute vacuum diagrams so at one-loop order it is only vertices with
two quantum fields that contribute. Thus the only one-loop graph with fermion

legs which could contribute to ﬂf"; 18
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FIGURE 5.1.

where the insertions of the spacetime spin connection come from the covariant

derivatives in the fermion kinetic terms in (5.13). However, as we argued in Chap-

G

v because it is not covariant in

ter 3, this diagram cannot give a contribution to
spacetime. So there simply is no diagram with only a single fermion loop that con-
tributes to ﬂﬂ, and the one-loop result of the bosonic theory, ﬂf‘;‘, = R,,, remains

unchanged in the supersymmetric theory.

At the two-loop level there was an order a’ correction to 8, of the form
R,,,\,,,,R,,’\”" in the bosonic sigma model. In the (1,1) supersymmetric theory it
vanishes. There is only one new divergent diagram with fermions that contributes
to ﬂf,, at this order:
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X /
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FIGURE 5.2.

The value of this diagram is precisely equal to the contribution of the purely
bosonic graphs and because of the minus sign associated with a fermion loop there
is exact cancellation. This cancellation generated some excitement when it was
discovered'®), which only grew when further calculations showed that the three-
loop contribution to ﬂffy also vanishes in the N=1 supersymmetric sigma model®®).
This was naturally taken as evidence that ﬁfu vanished to all higher orders and
effort was put into trying to prove it. The idea that a Ricci flat spacetime manifold
was the solution to the beta function equations to all orders in perturbation theory
was especially appealing for sigma models with enhanced supersymmetry because
Ricci flat Kahler manifolds have been extensively studied by mathematicians and

have many nice properties. An explicit four-loop computation®®) however, estab-

66



lished a non-vanishing contribution to ﬂff,, at order (a')3. This caused a certain
amount of consternation. On closer examination it turned out that the higher
order corrections to ﬂfu could be accounted for by certain field redefinitions3?).
Therefore the essential physical results which were derived thinking the one-loop
result was the final answer remain valid. Having a superfield formalism proved
crucial for carrying out the four-loop calculation. It would hardly be feasible using
component fields because of the number of diagrams. The result is a complicated

expression involving terms with eight derivatives of the spacetime metric.

The perturbation theory is more complicated if the sigma model includes an
antisymmetric tensor coupling function. There are more diagrams to calculate and
subtleties involved in defining the €*® symbol in higher loop dimensional regulariza-
tion caused some confusion for a while. The controversy has been resolved by now
and the beta functions computed to two-loop order®®). In the (1,1) supersymmetric

theory the two-loop correction to both ﬂfu and ﬁf, vanishes.

5.4. SPACETIME GAUGE FIELDS AND HETEROTIC SIGMA MODELS

So far we have written down a supersymmetric non-linear sigma model with
coupling functions that correspond to a background metric tensor and an antisym-
metric tensor field in spacetime. The action of the theory is invariant under general
coordinate transformations and does indeed describe gravity in spacetime. In a the-
ory of nature it is also crucial to have non-abelian gauge symmetry to account for
the other interactions of matter. Two very different ways of introducing spacetime
gauge fields into the theory are known. One is to allow open strings with gauge
charges (which are called Chan-Paton factors in string theory) on their ends. The
worldsheet can then have edges and the corresponding sigma model will include
one more renormalizable term which lives only on the worldsheet boundary. It is
a supersymmetric generalization of the Wilson line coupling to a spacetime gauge
field that we mentioned in Chapter 3. The renormalization group analysis can of
course be carried out for the theory with interactions both on the boundary and

in the interior of the worldsheet. The beta functions of all the couplings, including
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the Wilson line, can be identified and there is a spacetime action from which the
vanishing beta function conditions can be derived. There is a lot of interesting

physics in the study of open strings but we will not pursue it here.

The other method of incorporating gauge symmetry into string theory involves
only closed strings and uses the fact that the right moving and left moving modes
on the worldsheet are decoupled. It is possible to build a consistent theory of
closed strings in which the right moving modes are those of the superstring but
some of the left movers carry gauge degrees of freedom. Such a construction,
with a mismatch between the left and right moving modes on the same string
worldsheet, is called a heterotic theory3?). There is a corresponding non-linear
sigma model which describes the physics of the heterotic string in background
fields. We have as before D scalar fields X#(¢), which describe the embedding
of the string worldsheet into spacetime, and the same number of right moving
fermions % (¢). Worldsheet supersymmetry is the basis for all the nice features of
the N=1 superstring theory and we want to retain it in the right moving sector of
the heterotic theory. Therefore, we look for an action with a supersymmetry which
relates the right moving bosons and fermions. It is convenient to use superspace
techniques to construct such an action. Since the supersymmetry is only among
right movers the appropriate superspace only has one anticommuting coordinate,

0. There is one supersymmetry generator

.0
Q+ — l'éz —06- 6+ ’ (514)

and one supercovariant derivative which anticommutes with it

.0
D+ = 15&? -+ 0— 6+ . (515)

Because there is only the one right moving supersymmetry generator the heterotic
sigma model is also called the (1,0) supersymmetric sigma model. (The (1,0)

supersymmetry is also sometimes referred to as N=;i,- supersymmetry.) The bosonic
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fields and right moving fermions combine into a set of superfields:
OH(E,0-) = XH(E) — i0_ A (€). (5.16)

There is only one Grassman variable so the component expansion is simple. The
general, renormalizable action that can be built out of the superfield ®# and its

derivatives has two terms:
S10(¢) = ﬁ / d2¢d0_ G, (®) D4 B*O_B¥ (5.17)

and

170) s ] v
S00(g) = pro / d2£d0_ B, (®) D4 d0_d", (5.18)

where as usual G, (®) is a symmetric coupling function and B, (®) is antisymmet-
ric. There is no left moving supersymmetry generator or supercovariant derivative

so we simply use the partial derivative J_.

The heterotic string also has left moving fermions, which we will call A4, and
in the sigma model they appear in a natural way as components of a set of left

moving, anticommuting superfields:
AL(E,0-) = A2 +0-f*(§). (5.19)

The f4(¢) are scalar fields needed to complete the superfield expansion but they
turn out to be auxiliary fields like the F#’s in the (1,1) model. Of course ®* and
A4 are totally unrelated superfields at this stage so the 4 index has nothing to do
with the spacetime index p. We can construct another renormalizable interaction

term using the anticommuting superfield. Its general form is:
4V, A] = - / @20 gun(®) A (Dy + A4 (®))° A, (5.20)

The notation is chosen to suggest an interpretation for g,5(®) and Af.. We can

view the A% as taking value in some fiber bundle over spacetime and then g,5(®)
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is a metric on fibres while Af. = (A,(®))” D4®* is a connection. In order to
implement the usual spacetime non-abelian gauge symmetry in the sigma model
we take g,5(®) = 0,5 and identify A, with a gauge connection for some Lie
algebra. From the two-dimensional point of view the gauge coupling A 2. (®(¢))
is a function on the worldsheet like the spacetime metric or antisymmetric tensor

field. The gauge charge is thus distributed along the closed string.

The action of the heterotic non-linear sigma model is the sum of .5'(11 0) 5 S'(.z1 0)
ana S(; ) 1t is easier to see its physical content in component form which is
obtained by expanding the superfields, integrating over #_ and then eliminating
the auxiliary fields f# by their equations of motion. We get a number of terms
which combine neatly into the following spacetime coordinate invariant and gauge

invariant form:

ACO[X oy A ] = ﬁ / d%{Gw(X)a,LX“a-X" + By (X) 04 X40-X"
+iG (X)) YoV + ig46(X) A294A2
Tz
+5(Fw) p(X) WwgA22 .
(5.21)
The spacetime covariant derivative, which acts on right moving fermions, involves

both the Christoffel connection and a torsion piece,

1
-9k = 09k +T4,0-X ¢} — HL,0-X" ¢} (5.22)

The gauge covariant derivative that acts on the left moving fermions is:
VeAA =04 M4 + A 0. X4 N2, (5.23)

where A;B =Af+ ligwa,,g,gc. A gauge transformation acts in the usual way on
the fields with gauge degrees of freedom:

M = U(X)*B A
5.24
Al —ULAS U —p,UAUTS. e

The action (5.21) has all the ingredients to describe the physics of heterotic strings
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in background fields. The worldsheet fields are coupled to a spacetime metric, an
antisymmetric tensor field and a non-abelian gauge potential which are precisely
the massless bosons of the heterotic string theory (there is also a dilaton field but
the techniques of the previous chapter can presumably be used to calculate its effect
without having to introduce an explicit dilaton term in the action). This theory
has less supersymmetry but a much richer structure than the model we presented
in the previous section. The restricted supersymmetry in the right moving sector
is enough to keep tachyons out of the theory while leaving the left moving fermions

free to carry gauge degrees of freedom.

The heterotic theory is in a sense more general than the N=1 supersymmetric
sigma model because for a special choice of heterotic coupling functions it repro-
duces the N=1 theory. If we take the antisymmetric tensor field strength to be
equal to zero and choose the gauge group to be the same as the holonomy group
of spacetime then the spin connection and the gauge connection can be identified.
The index A on the left moving fermions then runs over the same values as the
spacetime index p on the right movers, the non-abelian field strength (F,,).s be-
comes the curvature tensor R,,),, and it is not hard to see that A0 ip (5.21)
is then precisely the same as the action (5.10) of the N=1 supersymmetric sigma
model. Of course this is a very strong condition on the gauge group (and the
gauge fields) but the point we wish to illustrate is that for a certain choice of the
spacetime coupling functions the heterotic sigma model reduces to the N=1 su-
persymmetric model and the (1,0) supersymmetry is promoted to the larger (1,1)

supersymmetry.

The (1,0) worldsheet supersymmetry of the heterotic theory can be enhanced to
(2,0) by restricting the spacetime metric to be Kahler and setting the antisymmetric
tensor field equal to zero. Enhanced worldsheet supersymmetry is necessary to have

spacetime supersymmetry in the heterotic theory 40:32),
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5.5. GAUGE COVARIANT BACKGROUND FIELD EXPANSION AND HETEROTIC

BETA FUNCTIONS

The heterotic string is the most promising string theory from the point of view
of model building and phenomenology. It is therefore of fundamental importance
to obtain the beta functions of the corresponding sigma model since they carry
information about the low energy spacetime physics of the theory. The action
of the heterotic sigma model looks a bit odd with the mismatch between right
moving and left moving fermions but it is straightforward to derive its Feynman
rules and the diagrams are not hard to evaluate. The chiral nature of the theory
does complicate things in that there are chiral as well as the usual Weyl anomalies
at the quantum level. The chiral anomalies of the sigma model in general break
both gauge invariance and local Lorentz invariance in spacetime. It turns out that
these symmetries can be recovered by modifying the spacetime physics in a way

that is familiar from the study of supergravity theories.

We will not attempt to compute the beta functions in the most general heterotic
sigma model. Such a calculation is quite complicated due to the many diagrams
and interaction terms. Instead we will focus on those features which are special to
the heterotic theory and particularly relevant to spacetime considerations. First of
all there is a new coupling function A,(X) in the sigma model and a corresponding
beta function. Let us for simplicity concentrate on the gauge field and assume a
flat spacetime metric and vanishing antisymmetric tensor field for the moment.
We do a background field expansion as usual. In flat spacetime we do not have to
worry about choosing normal coordinates but it is very convenient to arrange the
expansion of the action so that the interaction vertices are gauge covariant with
respect to the background field (i.e., covariant under the gauge transformation
(5.24) with U4 a function of the background X§"s only). This is accomplished by

imposing a ‘radial gauge’ condition on the gauge connection®!) :

T A (Xo +7) =0. (5.25)
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It may sound strange that a gauge covariant perturbation expansion is generated
by fixing a gauge for the quantum field but that is how background field expansions
work. The situation here can be compared to that of Section 3.2. There we obtained
a spacetime generally covariant expansion by choosing a special coordinate system

(the normal coordinates) for the quantum field.

The spacetime gauge field coupling in the heterotic sigma model action is the

connection piece of the kinetic term of the left moving fermions:
1
7o) / X2 Au(X)pe0a XPXC; (5.26)
The gauge covariant background field expansion of this term reads:

LS (OLLEY

B

[ 6] Au(Xo)ocs XY NN + (Fu(Xo))

4ma’
1
(Fur(X0)) po 047 XX + 2 (DaFi(X0)) 1404 X AZXE }.
(5.27)

The D) denotes a gauge covariant spacetime derivative. Only the last term in this

B |

expansion gives rise to a diagram which has the right background field content to

contribute to ﬂ;‘ at one-loop order.

(DxFyuv)pc 84 X§ ABAC A --",
7/
/

FIGURE 5.3.

This diagram is logarithmically divergent and the resulting one-loop beta function
18

1

Bt (Xo) = 5 DXFyu(Xo). (5.28)

[3&]]

We do not have to worry about the chiral anomaly at this stage. It is associated

with fermion loops and the diagram above has a boson propagating in the loop.
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This result supports our interpretation of A, as a spacetime gauge potential.
The condition that its beta function be equal to zero is the Yang-Mills field equa-
tion. Higher loop calculations give short distance corrections to the Yang-Mills
equation. In ref. [41], ﬂf is computed to three-loop order. It can be derived from
a spacetime action which is found to agree with that derived from the tree-level

S-matrix of the heterotic string?!:42).

Life gets more interesting and calculations get quite tedious when the heterotic
s{tring 1s in a non-trivial background metric and antisymmetric tensor field. There
are more diagrams that contribute to the one-loop value of ﬁ‘f and the end result is
that the gauge covariant derivative on the field strength in (5.28) gets completed to
a spacetime covariant (including torsion piece) and gauge covariant derivative?3),
One can argue without doing calculations that the one-loop results for ﬂf‘, and
ﬂf‘, receive no contribution from the spacetime gauge coupling. There are no
logarithmically divergent one-loop diagrams involving gauge field vertices which
have the appropriate background field content. The right moving fermions do
not contribute either, so at one loop ﬂf‘;,, and ﬂfy of the heterotic sigma model
are given by their values in the bosonic theory. The same was true in the N=1

supersymmetric model.

5.6. CHIRAL ANOMALIES AND HIGHER-LOOP RESULTS

At higher loop order, sigma model chiral anomalies**) play a crucial role in
the computation of heterotic beta functions. The nature of the problem can eas-
ily be understood by looking for possible contributions to A which depend on
spacetime gauge fields (in particular one should be able to find a term of order
F? representing the gauge field contribution to the energy-momentum tensor of
matter). The vertices out of which the relevant diagrams must be constructed are
displayed in (5.27). Since they involve only 94X there would appear to be no
way to construct an amplitude proportional to d4 Xod- Xy, the background field
structure which accompanies 4%, and therefore no F-dependent correction to 3!

The origin of this problem is that, since the spacetime gauge fields couple to purely
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left-moving worldsheet fermions A4, Lorentz-invariance considerations dictate that
only d4 X can appear in interaction vertices. Fortunately, this argument is wrong
because anomalies cause loop diagrams in a theory with only left-moving dynam-
ical fermions to behave in a certain sense ‘as if’ fermions of the other handedness
were present as well. The issues involved here are the same as those arising in
the study of gauge anomalies in two-dimensional chiral gauge theories. A simple
example will suffice to show how standard anomaly arguments resolve the sigma

model beta function paradox described above.

At this stage it is convenient to note that the bilinear AAAP is the left-moving
component JAB of a worldsheet vector current JAZ (whose right-moving com-
ponent J#P vanishes, at least formally). We can then rewrite (5.26) in the less

manifestly chiral form
1 . c
m/d’f Ag(X) a0 XP JY°. (5.29)

and rewrite its background field expansion (5.27) in a parallel fashion. A general
diagram will have some number of closed A_ loops each one of which, by virtue of
the above interaction structure, is equivalent to some vacuum n-point function of
the chiral current J,. It is in evaluating these current n-point functions that the

anomaly comes in.

Consider first the two-point functions (Ja(g)J3(—¢)) (we suppress gauge indices
for the moment). The quantity (J_J_) is easy to find. The diagram is

’—s\

7 \
I % x /-
\\‘— / /
FIGURE 5.4.

where the dashed lines stand for the A_ propagators. This graph is superficially

logarithmically divergent, but the —— tensor structure guarantees that it is actually

-1
o

finite and unambiguous. A straightforward calculation gives the result
(J-(g)J-(~g)) = 1= (5.30)
9+

By similar reasoning, the (/4 J4) amplitude is unambiguously zero. The two point
function (J4J_), on the other hand, is a worldsheet scalar and therefore truly
logarithmically divergent. By the usual rules of renormalization theory, it is defined
only up to an arbitrary momentum space constant contact term. Since there is no

diagram for this amplitude, the contact term is the entire story and we have

(J+(9)J-(—q)) =c. (5.31)

Note that the ambiguity discussed here does not exist for three- and higher-point

functions since they are all power-counting convergent.

The simplest way to fix a value for ¢ is to consider the Ward identity obtained
by taking the divergence of one of the currents in (J,J3). Using (5.30) and (5.31)
we find, after a little algebra, that

9* (Ja(9)Jb(—9)) = (c+ 5) @+ F &4 4" (5-32)

Although the current J,; is formally conserved, it is apparent that no choice of ¢
can make the right-hand side of (5.32) vanish. In fact, it is the sum of a parity-
conserving and a parity-violating piece (the term proportional to €,) and the
only apparent distinguished choice is ¢ = —% which makes the right-hand side of
(5.32) pure parity-violating. General discrete spacetime symmetry arguments in
fact require that the anomalous nonconservation of chiral gauge currents be pure
parity violating'®), and it is the choice we will make. This is precisely the strategy

one adopts in trying to define chiral gauge theories in two dimensions.

The upshot of all this is that a non-zero (J4J_) is forced upon us at the
one-loop level. This means for example that 8 receives a contribution from the

iy

following diagram:
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(Fuyv)aB0° XY xv JAB WQM (Fuv)aB0° Xt x JAB
/

\

~ -

—— —
FIGURE 5.5.

The contribution to ﬂf, comes from the part of the diagram which is proportional
to 0+ X{'0-X{§ so it is entirely due to the anomaly. Using (5.31) it is not hard to
do the calculation and find the following addition to A%

o A
—5 e (FaF). (5.33)

The trace is over the gauge group. Recall that the vanishing of ﬂE, is the string
theory generalization of Einstein’s equation (ignoring dilaton effects). This F 2
term in ﬂﬂ, supplies a gauge field piece to the spacetime energy momentum tensor
on the right hand side of the Einstein equation. The chiral nature of the heterotic
sigma model was what enabled us to introduce a gauge field into the theory in the
first place and we have now seen the first example of how the subsequent chiral

anomaly provides essential ingredients of the spacetime physics.

There is also a chiral anomaly involving the right moving fermions % . Exactly
the same arguments as we used in the left moving sector tell us that there is a
non-vanishing one-loop contribution to <.i+ f_> where ]ﬁ" = Yh¢4. A diagram
like the one in Figure 5.3 contributes an R? term to ﬂfu but the coefficient in
front is different from the one in the N=1 sigma model and it does not cancel the
bosonic diagrams. The (1,0) worldsheet supersymmetry of the heterotic theory is
not enough to remove the two-loop contribution to the beta function. Up to terms

coming from the antisymmetric tensor the two-loop beta function of the metric is
3 o
o= Ry -2-(11,,*”13” so =S (E,AFy)) - (5.34)

The chiral anomalies of the heterotic sigma model couple to the antisymmetric
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tensor field in an interesting way. Focusing on the left moving sector we can draw

the following diagram:

Fpuyx*0%x" Jo
,-\
f“”pw\aaxg ah’”" A,B‘X: Ja
~_/

FIGURE 5.6

It contributes to ﬂfu because of the chiral anomaly. We can use (5.31) to evaluate

the graph and find that it adds to ﬂfy the term

O”

Tor o tr (F A A, (5.35)

The A denotes the usual wedge product of the spacetime forms F,, and A, and the
trace is over the gauge group. The expression in (5.35) is certainly not invariant
under spacetime gauge transformations which should cause some concern since the
vanishing of the beta function is an equation of motion and has direct physical
meaning in spacetime. Furthermore there is a corresponding diagram involving
the right moving fermions which also gives a contribution to ﬂfu. This time the

term is

!
—1‘6’—” Hyotr (RAW), . (5.36)

Here R,,;; is the curvature tensor with mixed spacetime and local Lorentz indices
and w)] is the spin connection. The wedge product is in spacetime while the trace
is over the local Lorentz indices. The expression in (5.36) is not invariant under

local Lorentz transformations which indicates a spacetime gravitational anomaly.

This failure of spacetime symmetries looks disastrous but there is a way out.

We define a new antisymmetric field strength
7=l o o
H= +8—7rtr(F/\A)—-8;tr(R/\w). (5.37)

The additional terms (5.35) and (5.36) in ﬂf", which come from the anomalous
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two-loop diagrams, can then be absorbed into the one-loop result:

i 5 ’
8% =Ry, — 85+ %—(R”"""R,,,\,,p —tr(F, F,)) - (5.38)

This expression contains non-gauge-invariant terms of order (o/)? which arise from
anomalous three-loop graphs we have not discussed. Following this line of argument
to arbitrary orders*"), one finds that all the gauge and Lorentz non-invariance can
be absorbed by a slight generalization of (5.37):

- o o
H=H+ = w3(A) — e wa(w), (5.39)

where w3 are the Chern-Simons forms defined by w3(A) = tr (AAdA+ 2AANAN A)
in the gauge case and with the replacement of A"}B by the spin connection wi,j n

the Lorentz case.

This method of collecting the gauge non-invariant terms finally suggests how
the spacetime gauge symmetries can be restored'®®. Under gauge transformations,
with parameter A, the variation of a Chern-Simons three-form is the curl of a

specific two-form:
5A(.J3(A) =dA wé (A, A) (540)

Since H is itself the curl of a two-form potential, H = d A B, one can make H,
and therefore beta functions such as (5.38), gauge invariant by assigning to B the

simple gauge variation
al
6AB = —E@(A, A) (5.41)

(and a similar assignment for local Lorentz transformations). This is not something
one would normally do since By, is gauge neutral and a tangent space scalar, but it
is known that precisely such a gauge variation of By, is needed in a consistent ten-
dimensional supergravity theory?®). The chiral anomalies of the two-dimensional
theory thus play a key role in reproducing a consistent ten dimensional supergravity

theory.

The entire two-loop correction to ﬂ;} comes from the chiral anomalies and it
can be accounted for by replacing the torsion piece of the connection in the curved

space Yang-Mills equation with its Chern-Simons completion (5.39) 43:41),

Finally we point out a non-trivial check of these higher-loop results in the het-
erotic sigma model. If the gauge connection and the spin connection are identified
the beta functions should reduce to those of the N=1 supersymmetric theory. In
particular chiral anomalies should then be absent since the interactions of the right
and left moving fermions are exactly the same and the two-loop contribution to
ﬂfu should vanish. This is easily checked keeping in mind that the curvature tensor
and gauge field strength are now the same. The order o’ piece in (5.34) goes away
and the gauge and Lorentz Chern-Simons forms in (5.39) cancel so that A reduces
to H.

6. Conclusion

Finally, it is time to take stock of what we have done. Almost without ex-
ception, our considerations have been exercises in the renormalized perturbation
expansion of two-dimensional field theories on curved worldsheets. The principles
involved are, to say the least, not new and have been part of the arsenal of field
theory and statistical mechanics since the mid-seventies. String theory has simply
raised a number of new questions (such as the role of the dilaton coupling, heterotic
theories and the role of conformal as opposed to scale invariance) which would not
have arisen, or would not have been considered particularly interesting, in older
contexts. The exploration of these matters has given useful employment to old
physicists and old ideas but hasn’t really added to our intellectual capital! It is
probably fair to say that a clear and comprehensive answer to all the questions we
have touched on in these lectures either exists or could be obtained with a finite
amount of effort. A definitive review of perturbative conformal field theory (i.e.
perturbative classical string field theory) could, and should, be written in the near

future.
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String theory does nevertheless raise genuinely new questions which connect
organically to the subjects we have discussed, and which should at least be men-
tioned, if only to let the reader know where the skeletons are buried. The first
concerns nonperturbative treatments of conformal field theory. QCD taught us
that essential qualitative aspects of field theory physics are not visible in pertur-
bation expansions, and the same is true for the sigma models of interest to us. It
is possible to get a glimpse of this physics by studying worldsheet instantons and
this is an activity that has received a certain amount of attention. It is in direct
competition with, and probably less powerful than, the method of direct solution
of extended Virasoro algebras, which encompasses the bulk of string theory ac-
tivity these days. The other issue that we have neglected is that of string loops.
There is a growing literature on the problem of computing string loop corrections
to the Weyl anomaly coefficients so as to capture quantum corrections to spacetime
physics. This is a matter of learning how to sum two-dimensional field theories
over worldsheets of different topologies and to renormalize new divergences which
arise in that sum. The problems which arise in carrying out this program parallel
those of the old quantum field theory perturbative renormalization program, but
are not yet understood in any systematic way. The problem of perturbative versus
nonperturbative physics arises here also, and virtually nothing is known about it.
This all reflects the unsatisfactory state of our understanding of string field theory.

Here are worthy topics for a future TASI session.

We would like to thank the organizers of the 1988 TASI School for putting
together a well-run and informative session, and for giving us the opportunity to
lecture. We thank the students for their active interest and intelligent questions.
We would also like to thank D. Hadden and J. McCown for reading various versions

of these lectures and helping us to find embarrassing errors.
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