
4. Introducing Conformal Field Theory

The purpose of this section is to get comfortable with the basic language of two dimen-

sional conformal field theory4. This is a topic which has many applications outside of

string theory, most notably in statistical physics where it o↵ers a description of critical

phenomena. Moreover, it turns out that conformal field theories in two dimensions

provide rare examples of interacting, yet exactly solvable, quantum field theories. In

recent years, attention has focussed on conformal field theories in higher dimensions

due to their role in the AdS/CFT correspondence.

A conformal transformation is a change of coordinates �↵ ! �̃↵(�) such that the

metric changes by

g↵�(�) ! ⌦2(�)g↵�(�) (4.1)

A conformal field theory (CFT) is a field theory which is invariant under these transfor-

mations. This means that the physics of the theory looks the same at all length scales.

Conformal field theories care about angles, but not about distances.

A transformation of the form (4.1) has a di↵erent interpretation depending on whether

we are considering a fixed background metric g↵�, or a dynamical background metric.

When the metric is dynamical, the transformation is a di↵eomorphism; this is a gauge

symmetry. When the background is fixed, the transformation should be thought of as

an honest, physical symmetry, taking the point �↵ to point �̃↵. This is now a global

symmetry with the corresponding conserved currents.

In the context of string theory in the Polyakov formalism, the metric is dynamical and

the transformations (4.1) are residual gauge transformations: di↵eomorphisms which

can be undone by a Weyl transformation.

In contrast, in this section we will be primarily interested in theories defined on

fixed backgrounds. Apart from a few noticeable exceptions, we will usually take this

background to be flat. This is the situation that we are used to when studying quantum

field theory.

4
Much of the material covered in this section was first described in the ground breaking paper by

Belavin, Polyakov and Zamalodchikov, “Infinite Conformal Symmetry in Two-Dimensional Quantum

Field Theory”, Nucl. Phys. B241 (1984). The application to string theory was explained by Friedan,

Martinec and Shenker in “Conformal Invariance, Supersymmetry and String Theory”, Nucl. Phys.

B271 (1986). The canonical reference for learning conformal field theory is the excellent review by

Ginsparg. A link can be found on the course webpage.
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Of course, we can alternate between thinking of theories as defined on fixed or fluc-

tuating backgrounds. Any theory of 2d gravity which enjoys both di↵eomorphism and

Weyl invariance will reduce to a conformally invariant theory when the background

metric is fixed. Similarly, any conformally invariant theory can be coupled to 2d grav-

ity where it will give rise to a classical theory which enjoys both di↵eomorphism and

Weyl invariance. Notice the caveat “classical”! In some sense, the whole point of this

course is to understand when this last statement also holds at the quantum level.

Even though conformal field theories are a subset of quantum field theories, the

language used to describe them is a little di↵erent. This is partly out of necessity.

Invariance under the transformation (4.1) can only hold if the theory has no preferred

length scale. But this means that there can be nothing in the theory like a mass or a

Compton wavelength. In other words, conformal field theories only support massless

excitations. The questions that we ask are not those of particles and S-matrices. Instead

we will be concerned with correlation functions and the behaviour of di↵erent operators

under conformal transformations.

4.0.1 Euclidean Space

Although we’re ultimately interested in Minkowski signature worldsheets, it will be

much simpler and elegant if we work instead with Euclidean worldsheets. There’s no

funny business here — everything we do could also be formulated in Minkowski space.

The Euclidean worldsheet coordinates are (�1, �2) = (�1, i�0) and it will prove useful

to form the complex coordinates,

z = �1 + i�2 and z̄ = �1 � i�2

which are the Euclidean analogue of the lightcone coordinates. Motivated by this

analogy, it is common to refer to holomorphic functions as “left-moving” and anti-

holomorphic functions as “right-moving”.

The holomorphic derivatives are

@z ⌘ @ =
1

2
(@1 � i@2) and @z̄ ⌘ @̄ =

1

2
(@1 + i@2)

These obey @z = @̄z̄ = 1 and @z̄ = @̄z = 0. We will usually work in flat Euclidean

space, with metric

ds2 = (d�1)2 + (d�2)2 = dz dz̄ (4.2)
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In components, this flat metric reads

gzz = gz̄z̄ = 0 and gzz̄ =
1

2

With this convention, the measure factor is dzdz̄ = 2d�1d�2. We define the delta-

function such that
R
d2z �(z, z̄) = 1. Notice that because we also have

R
d2� �(�) = 1,

this means that there is a factor of 2 di↵erence between the two delta functions. Vectors

naturally have their indices up: vz = (v1 + iv2) and vz̄ = (v1 � iv2). When indices are

down, the vectors are vz =
1
2(v

1 � iv2) and vz̄ =
1
2(v

1 + iv2).

4.0.2 The Holomorphy of Conformal Transformations

In the complex Euclidean coordinates z and z̄, conformal transformations of flat space

are simple: they are any holomorphic change of coordinates,

z ! z0 = f(z) and z̄ ! z̄0 = f̄(z̄)

Under this transformation, ds2 = dzdz̄ ! |df/dz|2 dzdz̄, which indeed takes the

form (4.1). Note that we have an infinite number of conformal transformations — in

fact, a whole functions worth f(z). This is special to conformal field theories in two

dimensions. In higher dimensions, the space of conformal transformations is a finite

dimensional group. For theories defined on Rp,q, the conformal group is SO(p+1, q+1)

when p+ q > 2.

A couple of particularly simple and important examples of 2d conformal transforma-

tions are

• z ! z + a: This is a translation.

• z ! ⇣z: This is a rotation for |⇣| = 1 and a scale transformation (also known as

a dilatation) for real ⇣ 6= 1.

For many purposes, it’s simplest to treat z and z̄ as independent variables. In doing

this, we’re really extending the worldsheet from R2 to C2. This will allow us to make

use of various theorems from complex methods. However, at the end of the day we

should remember that we’re really sitting on the real slice R2 ⇢ C2 defined by z̄ = z?.

4.1 Classical Aspects

We start by deriving some properties of classical theories which are invariant under

conformal transformations (4.1).
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4.1.1 The Stress-Energy Tensor

One of the most important objects in any field theory is the stress-energy tensor (also

known as the energy-momentum tensor). This is defined in the usual way as the matrix

of conserved currents which arise from translational invariance,

��↵ = ✏↵ .

In flat spacetime, a translation is a special case of a conformal transformation.

There’s a cute way to derive the stress-energy tensor in any theory. Suppose for the

moment that we are in flat space g↵� = ⌘↵�. Recall that we can usually derive conserved

currents by promoting the constant parameter ✏ that appears in the symmetry to a

function of the spacetime coordinates. The change in the action must then be of the

form,

�S =

Z
d2� J↵ @↵✏ (4.3)

for some function of the fields, J↵. This ensures that the variation of the action vanishes

when ✏ is constant, which is of course the definition of a symmetry. But when the

equations of motion are satisfied, we must have �S = 0 for all variations ✏(�), not just

constant ✏. This means that when the equations of motion are obeyed, J↵ must satisfy

@↵J
↵ = 0

The function J↵ is our conserved current.

Let’s see how this works for translational invariance. If we promote ✏ to a function

of the worldsheet variables, the change of the action must be of the form (4.3). But

what is J↵? At this point we do the cute thing. Consider the same theory, but now

coupled to a dynamical background metric g↵�(�). In other words, coupled to gravity.

Then we could view the transformation

��↵ = ✏↵(�)

as a di↵eomorphism and we know that the theory is invariant as long as we make the

corresponding change to the metric

�g↵� = @↵✏� + @�✏↵ .

This means that if we just make the transformation of the coordinates in our original

theory, then the change in the action must be the opposite of what we get if we just
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transform the metric. (Because doing both together leaves the action invariant). So

we have

�S = �
Z

d2�
@S

@g↵�
�g↵� = �2

Z
d2�

@S

@g↵�
@↵✏�

Note that @S/@g↵� in this expression is really a functional derivatives but we won’t be

careful about using notation to indicate this. We now have the conserved current arising

from translational invariance. We will add a normalization constant which is standard

in string theory (although not necessarily in other areas) and define the stress-energy

tensor to be

T↵� = � 4⇡
p
g

@S

@g↵�
(4.4)

If we have a flat worldsheet, we evaluate T↵� on g↵� = �↵� and the resulting expression

obeys @↵T↵� = 0. If we’re working on a curved worldsheet, then the energy-momentum

tensor is covariantly conserved, r↵T↵� = 0.

The Stress-Energy Tensor is Traceless

In conformal theories, T↵� has a very important property: its trace vanishes. To see

this, let’s vary the action with respect to a scale transformation which is a special case

of a conformal transformation,

�g↵� = ✏g↵� (4.5)

Then we have

�S =

Z
d2�

@S

@g↵�
�g↵� = � 1

4⇡

Z
d2�

p
g ✏T ↵

↵

But this must vanish in a conformal theory because scaling transformations are a

symmetry. So

T ↵

↵
= 0

This is the key feature of a conformal field theory in any dimension. Many theories

have this feature at the classical level, including Maxwell theory and Yang-Mills theory

in four-dimensions. However, it is much harder to preserve at the quantum level. (The

weight of the world rests on the fact that Yang-Mills theory fails to be conformal at the

quantum level). Technically the di�culty arises due to the need to introduce a scale

when regulating the theories. Here we will be interested in two-dimensional theories
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which succeed in preserving the conformal symmetry at the quantum level.

Looking Ahead: Even when the conformal invariance survives in a 2d quantum

theory, the vanishing trace T ↵

↵
= 0 will only turn out to hold in flat space. We will

derive this result in section 4.4.2.

The Stress-Tensor in Complex Coordinates

In complex coordinates, z = �1 + i�2, the vanishing of the trace T ↵

↵
= 0 becomes

Tzz̄ = 0

Meanwhile, the conservation equation @↵T ↵� = 0 becomes @T zz = @̄T z̄z̄ = 0. Or,

lowering the indices on T ,

@̄ Tzz = 0 and @ Tz̄z̄ = 0

In other words, Tzz = Tzz(z) is a holomorphic function while Tz̄z̄ = Tz̄z̄(z̄) is an anti-

holomorphic function. We will often use the simplified notation

Tzz(z) ⌘ T (z) and Tz̄z̄(z̄) ⌘ T̄ (z̄)

4.1.2 Noether Currents

The stress-energy tensor T↵� provides the Noether currents for translations. What are

the currents associated to the other conformal transformations? Consider the infinites-

imal change,

z0 = z + ✏(z) , z̄0 = z̄ + ✏̄(z̄)

where, making contact with the two examples above, constant ✏ corresponds to a trans-

lation while ✏(z) ⇠ z corresponds to a rotation and dilatation. To compute the current,

we’ll use the same trick that we saw before: we promote the parameter ✏ to depend

on the worldsheet coordinates. But it’s already a function of half of the worldsheet

coordinates, so this now means ✏(z) ! ✏(z, z̄). Then we can compute the change in the

action, again using the fact that we can make a compensating change in the metric,

�S = �
Z

d2�
@S

@g↵�
�g↵�

=
1

2⇡

Z
d2� T↵� (@

↵���)

=
1

2⇡

Z
d2z

1

2
[Tzz (@

z�z) + Tz̄z̄ (@
z̄�z̄)]

=
1

2⇡

Z
d2z [Tzz @z̄✏+ Tz̄z̄ @z ✏̄] (4.6)
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Firstly note that if ✏ is holomorphic and ✏̄ is anti-holomorphic, then we immediately

have �S = 0. This, of course, is the statement that we have a symmetry on our hands.

(You may wonder where in the above derivation we used the fact that the theory was

conformal. It lies in the transition to the third line where we needed Tzz̄ = 0).

At this stage, let’s use the trick of treating z and z̄ as independent variables. We

look at separate currents that come from shifts in z and shifts z̄. Let’s first look at the

symmetry

�z = ✏(z) , �z̄ = 0

We can read o↵ the conserved current from (4.6) by using the standard trick of letting

the small parameter depend on position. Since ✏(z) already depends on position, this

means promoting ✏ ! ✏(z)f(z̄) for some function f and then looking at the @̄f terms

in (4.6). This gives us the current

Jz = 0 and J z̄ = Tzz(z) ✏(z) ⌘ T (z) ✏(z) (4.7)

Importantly, we find that the current itself is also holomorphic. We can check that this

is indeed a conserved current: it should satisfy @↵J↵ = @zJz + @z̄J z̄ = 0. But in fact it

does so with room to spare: it satisfies the much stronger condition @z̄J z̄ = 0.

Similarly, we can look at transformations �z̄ = ✏̄(z̄) with �z = 0. We get the anti-

holomorphic current J̄ ,

J̄z = T̄ (z̄) ✏̄(z̄) and J̄ z̄ = 0 (4.8)

4.1.3 An Example: The Free Scalar Field

Let’s illustrate some of these ideas about classical conformal theories with the free

scalar field,

S =
1

4⇡↵0

Z
d2� @↵X @↵X

Notice that there’s no overall minus sign, in contrast to our earlier action (1.30). That’s

because we’re now working with a Euclidean worldsheet metric. The theory of a free

scalar field is, of course, dead easy. We can compute anything we like in this theory.

Nonetheless, it will still exhibit enough structure to provide an example of all the

abstract concepts that we will come across in CFT. For this reason, the free scalar field

will prove a good companion throughout this part of the lectures.
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Firstly, let’s just check that this free scalar field is actually conformal. In particular,

we can look at rescaling �↵ ! ��↵. If we view this in the sense of an active transfor-

mation, the coordinates remain fixed but the value of the field at point � gets moved

to point ��. This means,

X(�) ! X(��1�) and
@X(�)

@�↵
! @X(��1�)

@�↵
=

1

�

@X(�̃)

@�̃

where we’ve defined �̃ = ��1�. The factor of ��2 coming from the two derivatives

in the Lagrangian then cancels the Jacobian factor from the measure d2� = �2 d2�̃,

leaving the action invariant. Note that any polynomial interaction term for X would

break conformal invariance.

The stress-energy tensor for this theory is defined using (4.4),

T↵� = � 1

↵0

✓
@↵X@�X � 1

2
�↵�(@X)2

◆
, (4.9)

which indeed satisfies T ↵

↵
= 0 as it should. The stress-energy tensor looks much simpler

in complex coordinates. It is simple to check that Tzz̄ = 0 while

T = � 1

↵0 @X@X and T̄ = � 1

↵0 @̄X @̄X

The equation of motion for X is @@̄X = 0. The general classical solution decomposes

as,

X(z, z̄) = X(z) + X̄(z̄)

When evaluated on this solution, T and T̄ become holomorphic and anti-holomorphic

functions respectively.

4.2 Quantum Aspects

So far our discussion has been entirely classical. We now turn to the quantum theory.

The first concept that we want to discuss is actually a feature of any quantum field

theory. But it really comes into its own in the context of CFT: it is the operator product

expansion.

4.2.1 Operator Product Expansion

Let’s first describe what we mean by a local operator in a CFT. We will also refer to

these objects as fields. There is a slight di↵erence in terminology between CFTs and

more general quantum field theories. Usually in quantum field theory, one reserves the
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term “field” for the objects � which sit in the action and are integrated over in the

path integral. In contrast, in CFT the term “field” refers to any local expression that

we can write down. This includes �, but also includes derivatives @n� or composite

operators such as ei�. All of these are thought of as di↵erent fields in a CFT. It should

be clear from this that the set of all “fields” in a CFT is always infinite even though,

if you were used to working with quantum field theory, you would talk about only a

finite number of fundamental objects �. Obviously, this is nothing to be scared about.

It’s just a change of language: it doesn’t mean that our theory got harder.

We now define the operator product expansion (OPE). It is a statement about what

happens as local operators approach each other. The idea is that two local operators

inserted at nearby points can be closely approximated by a string of operators at one

of these points. Let’s denote all the local operators of the CFT by Oi, where i runs

over the set of all operators. Then the OPE is

Oi(z, z̄)Oj(w, w̄) =
X

k

Ck

ij
(z � w, z̄ � w̄)Ok(w, w̄) (4.10)

Here Ck

ij
(z � w, z̄ � w̄) are a set of functions which, on

(z)O2

O1(w) x

x

x
x

x x

Figure 19:

grounds of translational invariance, depend only on the

separation between the two operators. We will write a lot

of operator equations of the form (4.10) and it’s impor-

tant to clarify exactly what they mean: they are always

to be understood as statements which hold as operator

insertions inside time-ordered correlation functions,

hOi(z, z̄)Oj(w, w̄) . . . i =
X

k

Ck

ij
(z � w, z̄ � w̄) hOk(w, w̄) . . . i

where the . . . can be any other operator insertions that we choose. Obviously it would

be tedious to continually write h. . .i. So we don’t. But it’s always implicitly there.

There are further caveats about the OPE that are worth stressing

• The correlation functions are always assumed to be time-ordered. (Or something

similar that we will discuss in Section 4.5.1). This means that as far as the OPE

is concerned, everything commutes since the ordering of operators is determined

inside the correlation function anyway. So we must have Oi(z, z̄)Oj(w, w̄) =

Oj(w, w̄)Oi(z, z̄). (There is a caveat here: if the operators are Grassmann objects,

then they pick up an extra minus sign when commuted, even inside time-ordered

products).
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• The other operator insertions in the correlation function (denoted . . . above) are

arbitrary. Except they should be at a distance large compared to |z�w|. It turns
out — rather remarkably — that in a CFT the OPEs are exact statements and

have a radius of convergence equal to the distance to the nearest other insertion.

We will return to this in Section 4.6. The radius of convergence is denoted in the

figure by the dotted line.

• The OPEs have singular behaviour as z ! w. In fact, this singular behaviour

will really be the only thing we care about! It will turn out to contain the

same information as commutation relations, as well as telling us how operators

transform under symmetries. Indeed, in many equations we will simply write the

singular terms in the OPE and denote the non-singular terms as + . . ..

4.2.2 Ward Identities

The spirit of Noether’s theorem in quantum field theories is captured by operator

equations known as Ward Identities. Here we derive the Ward identities associated to

conformal invariance. We start by considering a general theory with a symmetry. Later

we will restrict to conformal symmetries.

Games with Path Integrals

We’ll take this opportunity to get comfortable with some basic techniques using path

integrals. Schematically, the path integral takes the form

Z =

Z
D� e�S[�]

where � collectively denote all the fields (in the path integral sense...not the CFT

sense!). A symmetry of the quantum theory is such that an infinitesimal transformation

�0 = �+ ✏��

leaves both the action and the measure invariant,

S[�0] = S[�] and D�0 = D�

(In fact, we only really need the combination D� e�S[�] to be invariant but this subtlety

won’t matter in this course). We use the same trick that we employed earlier in the

classical theory and promote ✏ ! ✏(�). Then, typically, neither the action nor the

measure are invariant but, to leading order in ✏, the change has to be proportional to
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@✏. We have

Z �!
Z

D�0 exp (�S[�0])

=

Z
D� exp

✓
�S[�]� 1

2⇡

Z
J↵ @↵✏

◆

=

Z
D� e�S[�]

✓
1� 1

2⇡

Z
J↵ @↵✏

◆

where the factor of 1/2⇡ is merely a convention and
R
is shorthand for

R
d2�

p
g. Notice

that the current J↵ may now also have contributions from the measure transformation

as well as the action.

Now comes the clever step. Although the integrand has changed, the actual value of

the partition function can’t have changed at all. After all, we just redefined a dummy

integration variable �. So the expression above must be equal to the original Z. Or, in

other words,
Z

D� e�S[�]

✓Z
J↵ @↵✏

◆
= 0

Moreover, this must hold for all ✏. This gives us the quantum version of Noether’s

theorem: the vacuum expectation value of the divergence of the current vanishes:

h@↵J↵i = 0 .

We can repeat these tricks of this sort to derive some stronger statements. Let’s see

what happens when we have other insertions in the path integral. The time-ordered

correlation function is given by

hO1(�1) . . .On(�n)i =
1

Z

Z
D� e�S[�] O1(�1) . . .On(�n)

We can think of these as operators inserted at particular points on the plane as shown

in the figure. As we described above, the operators Oi are any general expressions

that we can form from the � fields. Under the symmetry of interest, the operator will

change in some way, say

Oi ! Oi + ✏ �Oi

We once again promote ✏ ! ✏(�). As our first pass, let’s pick a choice of ✏(�) which

only has support away from the operator insertions as shown in the Figure 20. Then,

�Oi(�i) = 0
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and the above derivation goes through in exactly the same
ε=0

(   )O1

(   )O2

(   )O4

(   )O3

σ 1

σ 2

σ 4

σ 3

x

x

x

x

Figure 20:

way to give

h@↵J↵(�)O1(�1) . . .On(�n)i = 0 for � 6= �i

Because this holds for any operator insertions away from

�, from the discussion in Section 4.2.1 we are entitled to

write the operator equation

@↵J
↵ = 0

But what if there are operator insertions that lie at
ε=0

(   )O2

(   )O4

(   )O3

σ 2

σ 4

σ 3

(   )O1 σ 1

x
x

x
x

Figure 21:

the same point as J↵? In other words, what happens as

� approaches one of the insertion points? The resulting

formulae are called Ward identities. To derive these, let’s

take ✏(�) to have support in some region that includes the

point �1, but not the other points as shown in Figure 21.

The simplest choice is just to take ✏(�) to be constant inside

the shaded region and zero outside. Now using the same

procedure as before, we find that the original correlation

function is equal to,

1

Z

Z
D� e�S[�]

✓
1� 1

2⇡

Z
J↵ @↵✏

◆
(O1 + ✏ �O1)O2 . . .On

Working to leading order in ✏, this gives

� 1

2⇡

Z

✏

@↵hJ↵(�)O1(�1) . . .i = h�O1(�1) . . .i (4.11)

where the integral on the left-hand-side is only over the region of non-zero ✏. This is

the Ward Identity.

Ward Identities for Conformal Transformations

Ward identities (4.11) hold for any symmetries. Let’s now see what they give when

applied to conformal transformations. There are two further steps needed in the deriva-

tion. The first simply comes from the fact that we’re working in two dimensions and

we can use Stokes’ theorem to convert the integral on the left-hand-side of (4.11) to a

line integral around the boundary. Let n̂↵ be the unit vector normal to the boundary.

For any vector J↵, we have
Z

✏

@↵J
↵ =

I

@✏

J↵n̂
↵ =

I

@✏

(J1 d�
2 � J2 d�

1) = �i

I

@✏

(Jz dz � Jz̄ dz̄)
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where we have written the expression both in Cartesian coordinates �↵ and complex

coordinates on the plane. As described in Section 4.0.1, the complex components of

the vector with indices down are defined as Jz =
1
2(J1 � iJ2) and Jz̄ =

1
2(J1 + iJ2). So,

applying this to the Ward identity (4.11), we find for two dimensional theories

i

2⇡

I

@✏

dz hJz(z, z̄)O1(�1) . . .i �
i

2⇡

I

@✏

dz̄ hJz̄(z, z̄)O1(�1) . . .i = h�O1(�1) . . .i

So far our derivation holds for any conserved current J in two dimensions. At this stage

we specialize to the currents that arise from conformal transformations (4.7) and (4.8).

Here something nice happens because Jz is holomorphic while Jz̄ is anti-holomorphic.

This means that the contour integral simply picks up the residue,

i

2⇡

I

@✏

dz Jz(z)O1(�1) = �Res [JzO1]

where this means the residue in the OPE between the two operators,

Jz(z)O1(w, w̄) = . . .+
Res [JzO1(w, w̄)]

z � w
+ . . .

So we find a rather nice way of writing the Ward identities for conformal transforma-

tions. If we again view z and z̄ as independent variables, the Ward identities split into

two pieces. From the change �z = ✏(z), we get

�O1(�1) = �Res [Jz(z)O1(�1)] = �Res [✏(z)T (z)O1(�1)] (4.12)

where, in the second equality, we have used the expression for the conformal current

(4.7). Meanwhile, from the change �z̄ = ✏̄(z̄), we have

�O1(�1) = �Res [J̄z̄(z̄)O1(�1)] = �Res [✏̄(z̄)T̄ (z̄)O1(�1)]

where the minus sign comes from the fact that the
H
dz̄ boundary integral is taken in

the opposite direction.

This result means that if we know the OPE between an operator and the stress-

tensors T (z) and T̄ (z̄), then we immediately know how the operator transforms under

conformal symmetry. Or, standing this on its head, if we know how an operator trans-

forms then we know at least some part of its OPE with T and T̄ .

4.2.3 Primary Operators

The Ward identity allows us to start piecing together some OPEs by looking at how

operators transform under conformal symmetries. Although we don’t yet know the
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action of general conformal symmetries, we can start to make progress by looking at

the two simplest examples.

Translations: If �z = ✏, a constant, then all operators transform as

O(z � ✏) = O(z)� ✏ @O(z) + . . .

The Noether current for translations is the stress-energy tensor T . The Ward identity

in the form (4.12) tells us that the OPE of T with any operator O must be of the form,

T (z)O(w, w̄) = . . .+
@O(w, w̄)

z � w
+ . . . (4.13)

Similarly, the OPE with T̄ is

T̄ (z̄)O(w, w̄) = . . .+
@̄O(w, w̄)

z̄ � w̄
+ . . . (4.14)

Rotations and Scaling: The transformation

z ! z + ✏z and z̄ ! z̄ + ✏̄z̄ (4.15)

describes rotation for ✏ purely imaginary and scaling (dilatation) for ✏ real. Not all

operators have good transformation properties under these actions. This is entirely

analogous to the statement in quantum mechanics that not all states transform nicely

under the Hamiltonian H and angular momentum operator L. However, in quantum

mechanics we know that the eigenstates of H and L can be chosen as a basis of the

Hilbert space provided, of course, that [H,L] = 0.

The same statement holds for operators in a CFT: we can choose a basis of local

operators that have good transformation properties under rotations and dilatations. In

fact, we will see in Section 4.6 that the statement about local operators actually follows

from the statement about states.

Definition: An operator O is said to have weight (h, h̃) if, under �z = ✏z and �z̄ = ✏̄z̄,

O transforms as

�O = �✏(hO + z @O)� ✏̄(h̃O + z̄ @̄O) (4.16)

The terms @O in this expression would be there for any operator. They simply come

from expanding O(z�✏z, z̄� ✏̄z̄). The terms hO and h̃O are special to operators which

are eigenstates of dilatations and rotations. Some comments:
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• Both h and h̃ are real numbers. In a unitary CFT, all operators have h, h̃ � 0.

We will prove this is Section 4.5.4.

• The weights are not as unfamiliar as they appear. They simply tell us how

operators transform under rotations and scalings. But we already have names

for these concepts from undergraduate days. The eigenvalue under rotation is

usually called the spin, s, and is given in terms of the weights as

s = h� h̃

Meanwhile, the scaling dimension � of an operator is

� = h+ h̃

• To motivate these definitions, it’s worth recalling how rotations and scale trans-

formations act on the underlying coordinates. Rotations are implemented by the

operator

L = �i(�1@2 � �2@1) = z@ � z̄@̄

while the dilation operator D which gives rise to scalings is

D = �↵@↵ = z@ + z̄@̄

• The scaling dimension is nothing more than the familiar “dimension” that we

usually associate to fields and operators by dimensional analysis. For exam-

ple, worldsheet derivatives always increase the dimension of an operator by one:

�[@] = +1. The tricky part is that the naive dimension that fields have in the

classical theory is not necessarily the same as the dimension in the quantum

theory.

Let’s compare the transformation law (4.16) with the Ward identity (4.12). The

Noether current arising from rotations and scaling �z = ✏z was given in (4.7): it is

J(z) = zT (z). This means that the residue of the JO OPE will determine the 1/z2

term in the TO OPE. Similar arguments hold, of course, for �z̄ = ✏̄z̄ and T̄ . So, the

upshot of this is that, for an operator O with weight (h, h̃), the OPE with T and T̄

takes the form

T (z)O(w, w̄) = . . .+ h
O(w, w̄)

(z � w)2
+
@O(w, w̄)

z � w
+ . . .

T̄ (z̄)O(w, w̄) = . . .+ h̃
O(w, w̄)

(z̄ � w̄)2
+
@̄O(w, w̄)

z̄ � w̄
+ . . .
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Primary Operators

A primary operator is one whose OPE with T and T̄ truncates at order (z � w)�2 or

order (z̄ � w̄)�2 respectively. There are no higher singularities:

T (z)O(w, w̄) = h
O(w, w̄)

(z � w)2
+
@O(w, w̄)

z � w
+ non-singular

T̄ (z̄)O(w, w̄) = h̃
O(w, w̄)

(z̄ � w̄)2
+
@̄O(w, w̄)

z̄ � w̄
+ non-singular

Since we now know all singularities in the TO OPE, we can reconstruct the transfor-

mation under all conformal transformations. The importance of primary operators is

that they have particularly simple transformation properties. Focussing on �z = ✏(z),

we have

�O(w, w̄) = �Res [✏(z)T (z)O(w, w̄)]

= �Res


✏(z)

✓
h
O(w, w̄)

(z � w)2
+
@O(w, w̄)

z � w
+ . . .

◆�

We want to look at smooth conformal transformations and so require that ✏(z) itself

has no singularities at z = w. We can then Taylor expand

✏(z) = ✏(w) + ✏0(w) (z � w) + . . .

We learn that the infinitesimal change of a primary operator under a general conformal

transformation �z = ✏(z) is

�O(w, w̄) = �h✏0(w)O(w, w̄)� ✏(w) @O(w, w̄) (4.17)

There is a similar expression for the anti-holomorphic transformations �z̄ = ✏̄(z̄).

Equation (4.17) holds for infinitesimal conformal transformations. It is a simple

matter to integrate up to find how primary operators change under a finite conformal

transformation,

z ! z̃(z) and z̄ ! ¯̃z(z̄)

The general transformation of a primary operator is given by

O(z, z̄) ! Õ(z̃, ¯̃z) =

✓
@z̃

@z

◆�h ✓
@¯̃z

@z̄

◆�h̃

O(z, z̄) (4.18)

It will turn out that one of the main objects of interest in a CFT is the spectrum of

weights (h, h̃) of primary fields. This will be equivalent to computing the particle mass

spectrum in a quantum field theory. In the context of statistical mechanics, the weights

of primary operators are the critical exponents.
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4.3 An Example: The Free Scalar Field

Let’s look at how all of this works for the free scalar field. We’ll start by familiarizing

ourselves with some techniques using the path integral. The action is,

S =
1

4⇡↵0

Z
d2� @↵X @↵X (4.19)

The classical equation of motion is @2X = 0. Let’s start by seeing how to derive the

analogous statement in the quantum theory using the path integral. The key fact that

we’ll need is that the integral of a total derivative vanishes in the path integral just as

it does in an ordinary integral. From this we have,

0 =

Z
DX

�

�X(�)
e�S =

Z
DX e�S


1

2⇡↵0 @
2X(�)

�

But this is nothing more than the Ehrenfest theorem which states that expectation

values of operators obey the classical equations of motion,

h@2X(�)i = 0

4.3.1 The Propagator

The next thing that we want to do is compute the propagator for X. We could do this

using canonical quantization, but it will be useful to again see how it works using the

path integral. This time we look at,

0 =

Z
DX

�

�X(�)

⇥
e�S X(�0)

⇤
=

R
DX e�S

⇥
1

2⇡↵0 @2X(�)X(�0) + �(� � �0)
⇤

So this time we learn that

h@2X(�)X(�0)i = �2⇡↵0 �(� � �0) (4.20)

Note that if we’d computed this in the canonical approach, we would have found the

same answer: the �-function arises in this calculation because all correlation functions

are time-ordered.

We can now treat (4.20) as a di↵erential equation for the propagator hX(�)X(�0)i.
To solve this equation, we need the following standard result

@2 ln(� � �0)2 = 4⇡�(� � �0) (4.21)
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Since this is important, let’s just quickly check that it’s true. It’s a simple application

of Stokes’ theorem. Set �0 = 0 and integrate over
R
d2�. We obviously get 4⇡ from the

right-hand-side. The left-hand-side gives
Z

d2� @2 ln(�2
1 + �2

2) =

Z
d2� @↵

✓
2�↵

�2
1 + �2

2

◆
= 2

I
(�1 d�2 � �2d�1)

�2
1 + �2

2

Switching to polar coordinates �1 + i�2 = rei✓, we can rewrite this expression as

2

Z
r2d✓

r2
= 4⇡

confirming (4.21). Applying this result to our equation (4.20), we get the propagator

of a free scalar in two-dimensions,

hX(�)X(�0)i = �↵
0

2
ln(� � �0)2

The propagator has a singularity as � ! �0. This is an ultra-violet divergence and is

common to all field theories. It also has a singularity as |� � �0| ! 1. This is telling

us something important that we will mention in Section 4.3.2.

Finally, we could repeat our trick of looking at total derivatives in the path integral,

now with other operator insertions O1(�1), . . .On(�n) in the path integral. As long

as �, �0 6= �i, then the whole analysis goes through as before. But this is exactly our

criterion to write the operator product equation,

X(�)X(�0) = �↵
0

2
ln(� � �0)2 + . . . (4.22)

We can also write this in complex coordinates. The classical equation of motion @@̄X =

0 allows us to split the operator X into left-moving and right-moving pieces,

X(z, z̄) = X(z) + X̄(z̄)

We’ll focus just on the left-moving piece. This has the operator product expansion,

X(z)X(w) = �↵
0

2
ln(z � w) + . . .

The logarithm means that X(z) doesn’t have any nice properties under the conformal

transformations. For this reason, the “fundamental field” X is not really the object of

interest in this theory! However, we can look at the derivative of X. This has a rather

nice looking OPE,

@X(z) @X(w) = �↵
0

2

1

(z � w)2
+ non-singular (4.23)
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4.3.2 An Aside: No Goldstone Bosons in Two Dimensions

The infra-red divergence in the propagator has an important physical implication. Let’s

start by pointing out one of the big di↵erences between quantum mechanics and quan-

tum field theory in d = 3 + 1 dimensions. Since the language used to describe these

two theories is rather di↵erent, you may not even be aware that this di↵erence exists.

Consider the quantum mechanics of a particle on a line. This is a d = 0 + 1 di-

mensional theory of a free scalar field X. Let’s prepare the particle in some localized

state – say a Gaussian wavefunction  (X) ⇠ exp(�X2/L2). What then happens?

The wavefunction starts to spread out. And the spreading doesn’t stop. In fact, the

would-be ground state of the system is a uniform wavefunction of infinite width, which

isn’t a state in the Hilbert space because it is non-normalizable.

Let’s now compare this to the situation of a free scalar field X in a d = 3 + 1

dimensional field theory. Now we think of this as a scalar without potential. The physics

is very di↵erent: the theory has an infinite number of ground states, determined by the

expectation value hXi. Small fluctuations around this vacuum are massless: they are

Goldstone bosons for broken translational invariance X ! X + c.

We see that the physics is very di↵erent in field theories in d = 0 + 1 and d = 3 + 1

dimensions. The wavefunction spreads along flat directions in quantum mechanics, but

not in higher dimensional field theories. But what happens in d = 1+ 1 and d = 2+ 1

dimensions? It turns out that field theories in d = 1 + 1 dimensions are more like

quantum mechanics: the wavefunction spreads. Theories in d = 2 + 1 dimensions and

higher exhibit the opposite behaviour: they have Goldstone bosons. The place to see

this is the propagator. In d spacetime dimensions, it takes the form

hX(r)X(0)i ⇠
(
1/rd�2 d 6= 2

ln r d = 2

which diverges at large r only for d = 1 and d = 2. If we perturb the vacuum slightly

by inserting the operator X(0), this correlation function tells us how this perturbation

falls o↵ with distance. The infra-red divergence in low dimensions is telling us that the

wavefunction wants to spread.

The spreading of the wavefunction in low dimensions means that there is no spon-

taneous symmetry breaking and no Goldstone bosons. It is usually referred to as the

Coleman-Mermin-Wagner theorem. Note, however, that it certainly doesn’t prohibit

massless excitations in two dimensions: it only prohibits Goldstone-like massless exci-

tations.
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4.3.3 The Stress-Energy Tensor and Primary Operators

We want to compute the OPE of T with other operators. Firstly, what is T? We

computed it in the classical theory in (4.9). It is,

T = � 1

↵0 @X@X (4.24)

But we need to be careful about what this means in the quantum theory. It involves

the product of two operators defined at the same point and this is bound to mean

divergences if we just treat it naively. In canonical quantization, we would be tempted

to normal order by putting all annihilation operators to the right. This guarantees that

the vacuum has zero energy. Here we do something that is basically equivalent, but

without reference to creation and annihilation operators. We write

T = � 1

↵0 : @X@X : ⌘ � 1

↵0 limit
z!w

(@X(z)@X(w)� h@X(z)@X(w)i) (4.25)

which, by construction, has hT i = 0.

With this definition of T , let’s start to compute the OPEs to determine the primary

fields in the theory.

Claim 1: @X is a primary field with weight h = 1 and h̃ = 0.

Proof: We need to figure out how to take products of normal ordered operators

T (z) @X(w) = � 1

↵0 : @X(z)@X(z) : @X(w)

The operators on the left-hand side are time-ordered (because all operator expressions

of this type are taken to live inside time-ordered correlation functions). In contrast,

the right-hand side is a product of normal-ordered operators. But we know how to

change normal ordered products into time ordered products: this is the content of

Wick’s theorem. Although we have defined normal ordering in (4.25) without reference

to creation and annihilation operators, Wick’s theorem still holds. We must sum over

all possible contractions of pairs of operators, where the term “contraction” means that

we replace the pair by the propagator,

z }| {
@X(z) @X(w) = �↵

0

2

1

(z � w)2

Using this, we have

T (z)@X(w) = � 2

↵0 @X(z)

✓
�↵

0

2

1

(z � w)2
+ non-singular

◆
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Here the “non-singular” piece includes the totally normal ordered term : T (z)@X(w) :.

It is only the singular part that interests us. Continuing, we have

T (z)@X(w) =
@X(z)

(z � w)2
+ . . . =

@X(w)

(z � w)2
+
@2X(w)

z � w
+ . . .

This is indeed the OPE for a primary operator of weight h = 1. ⇤

Note that higher derivatives @nX are not primary for n > 1. For example, @2X has

weight (h, h̃) = (2, 0), but is not a primary operator, as we see from the OPE,

T (z) @2X(w) = @w


@X(w)

(z � w)2
+ . . .

�
=

2@X(w)

(z � w)3
+

2@2X(w)

(z � w)2
+ . . .

The fact that the field @nX has weight (h, h̃) = (n, 0) fits our natural intuition: each

derivative provides spin s = 1 and dimension � = 1, while the field X does not appear

to be contributing, presumably reflecting the fact that it has naive, classical dimension

zero. However, in the quantum theory, it is not correct to say that X has vanishing

dimension: it has an ill-defined dimension due to the logarithmic behaviour of its OPE

(4.22). This is responsible for the following, more surprising, result

Claim 2: The field : eikX : is primary with weight h = h̃ = ↵0k2/4.

This result is not what we would guess from the classical theory5. Indeed, it’s obvious

that it has a quantum origin because the weight is proportional to ↵0, which sits outside

the action in the same place that ~ would (if we hadn’t set it to one). Note also that

this means that the spectrum of the free scalar field is continuous. This is related to the

fact that the range ofX is non-compact. Generally, CFTs will have a discrete spectrum.

Proof: Let’s first compute the OPE with @X. We have

@X(z) : eikX(w) : =
1X

n=0

(ik)n

n!
@X(z) : X(w)n :

=
1X

n=1

(ik)n

(n� 1)!
: X(w)n�1 :

✓
�↵

0

2

1

z � w

◆
+ . . .

= � i↵0k

2

: eikX(w) :

z � w
+ . . . (4.26)

5
We could, however, guess it with a little knowledge of renormalisation. Indeed, we previously

derived this result in the lectures on Statistical Field Theory where we computed RG flows in the

Sine-Gordon model; see Section 4.4.3 of those lectures.
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From this, we can compute the OPE with T .

T (z) : eikX(w) : = � 1

↵0 : @X(z)@X(z) : : eikX(w) :

=
↵0k2

4

: eikX(w) :

(z � w)2
+ ik

: @X(z)eikX(w) :

z � w
+ . . .

where the first term comes from two contractions, while the second term comes from a

single contraction. Replacing @z by @w in the final term we get

T (z) : eikX(w) :=
↵0k2

4

: eikX(w) :

(z � w)2
+
@w : eikX(w) :

z � w
+ . . . (4.27)

showing that : eikX(w) : is indeed primary. We will encounter this operator frequently

later, but will choose to simplify notation and drop the normal ordering colons. Normal

ordering will just be assumed from now on. ⇤.

Finally, lets check to see the OPE of T with itself. This is again just an exercise in

Wick contractions.

T (z)T (w) =
1

↵0 2 : @X(z) @X(z) : : @X(w) @X(w) :

=
2

↵0 2

✓
�↵

0

2

1

(z � w)2

◆2

� 4

↵0 2
↵0

2

: @X(z) @X(w) :

(z � w)2
+ . . .

The factor of 2 in front of the first term comes from the two ways of performing two

contractions; the factor of 4 in the second term comes from the number of ways of

performing a single contraction. Continuing,

T (z)T (w) =
1/2

(z � w)4
+

2T (w)

(z � w)2
� 2

↵0
@2X(w) @X(w)

z � w
+ . . .

=
1/2

(z � w)4
+

2T (w)

(z � w)2
+
@T (w)

z � w
+ . . . (4.28)

We learn that T is not a primary operator in the theory of a single free scalar field. It

is an operator of weight (h, h̃) = (2, 0), but it fails the primary test on account of the

(z � w)�4 term. In fact, this property of the stress energy tensor a general feature of

all CFTs which we now explore in more detail.

4.4 The Central Charge

In any CFT, the most prominent example of an operator which is not primary is the

stress-energy tensor itself.
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For the free scalar field, we have already seen that T is an operator of weight (h, h̃) =

(2, 0). This remains true in any CFT. The reason for this is simple: T↵� has dimension

� = 2 because we obtain the energy by integrating over space. It has spin s = 2

because it is a symmetric 2-tensor. But these two pieces of information are equivalent

to the statement that T is has weight (2, 0). Similarly, T̄ has weight (0, 2). This means

that the TT OPE takes the form,

T (z)T (w) = . . .+
2T (w)

(z � w)2
+
@T (w)

z � w
+ . . .

and similar for T̄ T̄ . What other terms could we have in this expansion? Since each

term has dimension � = 4, any operators that appear on the right-hand-side must be

of the form

On

(z � w)n
(4.29)

where �[On] = 4 � n. But, in a unitary CFT there are no operators with h, h̃ < 0.

(We will prove this shortly). So the most singular term that we can have is of order

(z � w)�4. Such a term must be multiplied by a constant. We write,

T (z)T (w) =
c/2

(z � w)4
+

2T (w)

(z � w)2
+
@T (w)

z � w
+ . . .

and, similarly,

T̄ (z̄) T̄ (w̄) =
c̃/2

(z̄ � w̄)4
+

2T̄ (w̄)

(z̄ � w̄)2
+
@̄T̄ (w̄)

z̄ � w̄
+ . . .

The constants c and c̃ are called the central charges. (Sometimes they are referred to as

left-moving and right-moving central charges). They are perhaps the most important

numbers characterizing the CFT. We can already get some intuition for the information

contained in these two numbers. Looking back at the free scalar field (4.28) we see that

it has c = c̃ = 1. If we instead considered D non-interacting free scalar fields, we would

get c = c̃ = D. This gives us a hint: c and c̃ are somehow measuring the number of

degrees of freedom in the CFT. This is true in a deep sense! However, be warned: c is

not necessarily an integer.

Before moving on, it’s worth pausing to explain why we didn’t include a (z � w)�3

term in the TT OPE. The reason is that the OPE must obey T (z)T (w) = T (w)T (z)

because, as explained previously, these operator equations are all taken to hold inside

time-ordered correlation functions. So the quick answer is that a (z�w)�3 term would
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not be invariant under z $ w. However, you may wonder how the (z � w)�1 term

manages to satisfy this property. Let’s see how this works:

T (w)T (z) =
c/2

(z � w)4
+

2T (z)

(z � w)2
+
@T (z)

w � z
+ . . .

Now we can Taylor expand T (z) = T (w)+(z�w)@T (w)+ . . . and @T (z) = @T (w)+ . . ..

Using this in the above expression, we find

T (w)T (z) =
c/2

(z � w)4
+

2T (w) + 2(z � w)@T (w)

(z � w)2
� @T (w)

z � w
+ . . . = T (z)T (w)

This trick of Taylor expanding saves the (z � w)�1 term. It wouldn’t work for the

(z � w)�3 term.

The Transformation of Energy

So T is not primary unless c = 0. And we will see shortly that all theories have c > 0.

What does this mean for the transformation of T?

�T (w) = �Res [✏(z)T (z)T (w)]

= �Res


✏(z)

✓
c/2

(z � w)4
+

2T (w)

(z � w)2
+
@T (w)

z � w
+ . . .

◆�

If ✏(z) contains no singular terms, we can expand

✏(z) = ✏(w) + ✏0(w)(z � w) +
1

2
✏00(z � w)2 +

1

6
✏000(w)(z � w)3 + . . .

from which we find

�T (w) = �✏(w) @T (w)� 2✏0(w)T (w)� c

12
✏000(w) (4.30)

This is the infinitesimal version. We would like to know what becomes of T under the

finite conformal transformation z ! z̃(z). The answer turns out to be

T̃ (z̃) =

✓
@z̃

@z

◆�2 h
T (z)� c

12
S(z̃, z)

i
(4.31)

where S(z̃, z) is known as the Schwarzian and is defined by

S(z̃, z) =

✓
@3z̃

@z3

◆ ✓
@z̃

@z

◆�1

� 3

2

✓
@2z̃

@z2

◆2 ✓@z̃
@z

◆�2

(4.32)

It is simple to check that the Schwarzian has the right infinitesimal form to give (4.30).

Its key property is that it preserves the group structure of successive conformal trans-

formations.
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4.4.1 c is for Casimir

Note that the extra term in the transformation (4.31) of T does not depend on T itself.

In particular, it will be the same evaluated on all states. It only a↵ects the constant

term — or zero mode — in the energy. In other words, it is the Casimir energy of the

system.

Let’s look at an example that will prove to be useful later for the string. Consider

the Euclidean cylinder, parameterized by

w = � + i⌧ , � 2 [0, 2⇡)

We can make a conformal transforma-

Figure 22:

tion from the cylinder to the complex

plane by

z = e�iw

The fact that the cylinder and the plane

are related by a conformal map means

that if we understand a given CFT on

the cylinder, then we immediately understand it on the plane. And vice-versa. Notice

that constant time slices on the cylinder are mapped to circles of constant radius. The

origin, z = 0, is the distant past, ⌧ ! �1.

What becomes of T under this transformation? The Schwarzian can be easily calcu-

lated to be S(z, w) = 1/2. So we find,

Tcylinder(w) = �z2 Tplane(z) +
c

24
(4.33)

Suppose that the ground state energy vanishes when the theory is defined on the plane:

hTplanei = 0. What happens on the cylinder? We want to look at the Hamiltonian,

which is defined by

H ⌘
Z

d� T⌧⌧ = �
Z

d� (Tww + T̄w̄w̄)

The conformal transformation then tells us that the ground state energy on the cylinder

is

E = �2⇡(c+ c̃)

24
(4.34)

This is indeed the (negative) Casimir energy on a cylinder. For a free scalar field, we

have c = c̃ = 1 and the energy density E/2⇡ = �1/12. This is the same result that we

got in Section 2.2.2, but this time with no funny business where we throw out infinities.
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An Application: The Lüscher Term

If we’re looking at a physical system, the cylinder will have a radius L. In this case,

the Casimir energy is given by E = �2⇡(c+ c̃)/24L. There is an application of this to

QCD-like theories. Consider two quarks in a confining theory, separated by a distance

L. If the tension of the confining flux tube is T , then the string will be stable as long

as TL . m, the mass of the lightest quark. The energy of the stretched string as a

function of L is given by

E(L) = TL+ a� ⇡c

24L
+ . . .

Here a is an undetermined constant, while c counts the number of degrees of freedom

of the QCD flux tube. (There is no analog of c̃ here because of the reflecting boundary

conditions at the end of the string). If the string has no internal degrees of freedom,

then c = 2 for the two transverse fluctuations. This contribution to the string energy

is known as the Lüscher term.

4.4.2 The Weyl Anomaly

There is another way in which the central charge a↵ects the stress-energy tensor. Recall

that in the classical theory, one of the defining features of a CFT was the vanishing of

the trace of the stress tensor,

T ↵

↵
= 0

However, things are more subtle in the quantum theory. While hT ↵

↵
i indeed vanishes

in flat space, it will not longer be true if we place the theory on a curved background.

The purpose of this section is to show that

hT ↵

↵
i = � c

12
R (4.35)

where R is the Ricci scalar of the 2d worldsheet. Before we derive this formula, some

quick comments:

• Equation (4.35) holds for any state in the theory — not just the vacuum. This

reflects the fact that it comes from regulating short distant divergences in the

theory. But, at short distances all finite energy states look basically the same.

• Because hT ↵

↵
i is the same for any state it must be equal to something that depends

only on the background metric. This something should be local and must be

dimension 2. The only candidate is the Ricci scalar R. For this reason, the

formula hT ↵

↵
i ⇠ R is the most general possibility. The only question is: what is

the coe�cient. And, in particular, is it non-zero?
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• By a suitable choice of coordinates, we can always put any 2d metric in the form

g↵� = e2!�↵�. In these coordinates, the Ricci scalar is given by

R = �2e�2!@2! (4.36)

which depends explicitly on the function !. Equation (4.35) is then telling us

that any conformal theory with c 6= 0 has at least one physical observable, hT ↵

↵
i,

which takes di↵erent values on backgrounds related by a Weyl transformation !.

This result is referred to as the Weyl anomaly, or sometimes as the trace anomaly.

• There is also a Weyl anomaly for conformal field theories in higher dimensions.

For example, 4d CFTs are characterized by two numbers, a and c, which appear

as coe�cients in the Weyl anomaly,

hT µ

µ
i4d =

c

16⇡2
C⇢��C

⇢�� � a

16⇡2
R̃⇢��R̃

⇢��

where C is the Weyl tensor and R̃ is the dual of the Riemann tensor.

• Equation (4.35) involves only the left-moving central charge c. You might wonder

what’s special about the left-moving sector. The answer, of course, is nothing.

We also have

hT ↵

↵
i = � c̃

12
R

In flat space, conformal field theories with di↵erent c and c̃ are perfectly accept-

able. However, if we wish these theories to be consistent in fixed, curved back-

grounds, then we require c = c̃. This is an example of a gravitational anomaly.

• The fact that Weyl invariance requires c = 0 will prove crucial in string theory.

We shall return to this in Chapter 5.

We will now prove the Weyl anomaly formula (4.35). Firstly, we need to derive

an intermediate formula: the Tzz̄ Tww̄ OPE. Of course, in the classical theory we found

that conformal invariance requires Tzz̄ = 0. We will now show that it’s a little more

subtle in the quantum theory.

Our starting point is the equation for energy conservation,

@Tzz̄ = �@̄ Tzz

Using this, we can express our desired OPE in terms of the familiar TT OPE,

@zTzz̄(z, z̄) @wTww̄(w, w̄) = @̄z̄Tzz(z, z̄) @̄w̄Tww(w, w̄) = @̄z̄@̄w̄


c/2

(z � w)4
+ . . .

�
(4.37)
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Now you might think that the right-hand-side just vanishes: after all, it is an anti-

holomorphic derivative @̄ of a holomorphic quantity. But we shouldn’t be so cavalier

because there is a singularity at z = w. For example, consider the following equation,

@̄z̄@z ln |z � w|2 = @̄z̄
1

z � w
= 2⇡�(z � w, z̄ � w̄) (4.38)

We proved this statement after equation (4.21). (The factor of 2 di↵erence from (4.21)

can be traced to the conventions we defined for complex coordinates in Section 4.0.1).

Looking at the intermediate step in (4.38), we again have an anti-holomorphic derivative

of a holomorphic function and you might be tempted to say that this also vanishes. But

you’d be wrong: subtle things happen because of the singularity and equation (4.38)

tells us that the function 1/z secretly depends on z̄. (This should really be understood

as a statement about distributions, with the delta function integrated against arbitrary

test functions). Using this result, we can write

@̄z̄@̄w̄
1

(z � w)4
=

1

6
@̄z̄@̄w̄

✓
@2
z
@w

1

z � w

◆
=
⇡

3
@2
z
@w@̄w̄ �(z � w, z̄ � w̄)

Inserting this into the correlation function (4.37) and stripping o↵ the @z@w derivatives

on both sides, we end up with what we want,

Tzz̄(z, z̄) Tww̄(w, w̄) =
c⇡

6
@z@̄w̄ �(z � w, z̄ � w̄) (4.39)

So the OPE of Tzz̄ and Tww̄ almost vanishes, but there’s some strange singular behaviour

going on as z ! w. This is usually referred to as a contact term between operators

and, as we have shown, it is needed to ensure the conservation of energy-momentum.

We will now see that this contact term is responsible for the Weyl anomaly.

We assume that hT ↵

↵
i = 0 in flat space. Our goal is to derive an expression for hT ↵

↵
i

close to flat space. Firstly, consider the change of hT ↵

↵
i under a general shift of the

metric �g↵�. Using the definition of the energy-momentum tensor (4.4), we have

� hT ↵

↵
(�)i = �

Z
D� e�S T ↵

↵
(�)

=
1

4⇡

Z
D� e�S

✓
T ↵

↵
(�)

Z
d2�0pg �g�� T��(�

0)

◆

If we now restrict to a Weyl transformation, the change to a flat metric is �g↵� = 2!�↵�,

so the change in the inverse metric is �g↵� = �2!�↵�. This gives

� hT ↵

↵
(�)i = � 1

2⇡

Z
D� e�S

✓
T ↵

↵
(�)

Z
d2�0 !(�0)T �

�
(�0)

◆
(4.40)
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Now we see why the OPE (4.39) determines the Weyl anomaly. We need to change

between complex coordinates and Cartesian coordinates, keeping track of factors of 2.

We have

T ↵

↵
(�)T �

�
(�0) = 16Tzz̄(z, z̄) Tww̄(w, w̄)

Meanwhile, using the conventions laid down in 4.0.1, we have 8@z@̄w̄�(z � w, z̄ � w̄) =

�@2 �(� � �0). This gives us the OPE in Cartesian coordinates

T ↵

↵
(�)T �

�
(�0) = �c⇡

3
@2 �(� � �0)

We now plug this into (4.40) and integrate by parts to move the two derivatives onto

the conformal factor !. We’re left with,

� hT ↵

↵
i = c

6
@2! ) hT ↵

↵
i = � c

12
R

where, to get to the final step, we’ve used (4.36) and, since we’re working infinitesimally,

we can replace e�2! ⇡ 1. This completes the proof of the Weyl anomaly, at least for

spaces infinitesimally close to flat space. The fact that R remains on the right-hand-

side for general 2d surfaces follows simply from the comments after equation (4.35),

most pertinently the need for the expression to be reparameterization invariant.

4.4.3 c is for Cardy

The Casimir e↵ect and the Weyl anomaly have a similar smell. In both, the central

charge provides an extra contribution to the energy. We now demonstrate a di↵erent

avatar of the central charge: it tells us the density of high energy states.

We will study conformal field theory on a Euclidean torus. We’ll keep our normal-

ization � 2 [0, 2⇡), but now we also take ⌧ to be periodic, lying in the range

⌧ 2 [0, �)

The partition function of a theory with periodic Euclidean time has a very natural

interpretation: it is related to the free energy of the theory at temperature T = 1/�.

Z[�] = Tr e��H = e��F (4.41)

At very low temperatures, � ! 1, the free energy is dominated by the lowest energy

state. All other states are exponentially suppressed. But we saw in 4.4.1 that the

vacuum state on the cylinder has Casimir energy H = �c/12. In the limit of low

temperature, the partition function is therefore approximated by

Z ! ec�/12 as � ! 1 (4.42)
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Now comes the trick. In Euclidean space,

β

2π

2π

4π
β

2

Figure 23:

both directions of the torus are on equal

footing. We’re perfectly at liberty to de-

cide that � is “time” and ⌧ is “space”.

This can’t change the value of the par-

tition function. So let’s make the swap.

To compare to our original partition func-

tion, we want the spatial direction to have

range [0, 2⇡). Happily, due to the confor-

mal nature of our theory, we arrange this through the scaling

⌧ ! 2⇡

�
⌧ , � ! 2⇡

�
�

Now we’re back where we started, but with the temporal direction taking values in

� 2 [0, 4⇡2/�). This tells us that the high-temperature and low-temperature partition

functions are related,

Z[4⇡2/�] = Z[�]

This is called modular invariance. We’ll come across it again in Section 6.4. Writing

�0 = 4⇡2/�, this tells us the very high temperature behaviour of the partition function

Z[�0] ! ec⇡
2
/3�0

as �0 ! 0

But the very high temperature limit of the partition function is sampling all states in

the theory. On entropic grounds, this sampling is dominated by the high energy states.

So this computation is telling us how many high energy states there are.

To see this more explicitly, let’s do some elementary manipulations in statistical

mechanics. Any system has a density of states ⇢(E) = eS(E), where S(E) is the

entropy. The free energy is given by

e��F =

Z
dE ⇢(E) e��E =

Z
dE eS(E)��E

In two dimensions, all systems have an entropy which scales at large energy as

S(E) ! N
p
E (4.43)

The coe�cient N counts the number of degrees of freedom. The fact that S ⇠
p
E is

equivalent to the fact that F ⇠ T 2, as befits an energy density in a theory with one
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spatial dimension. To see this, we need only approximate the integral by the saddle

point S 0(E?) = �. From (4.43), this gives us the free energy

F ⇠ N2T 2

We can now make the statement about the central charge more explicit. In a conformal

field theory, the entropy of high energy states is given by

S(E) ⇠
p
cE

This is Cardy’s formula. A more careful analysis of the coe�cients shows that the high

energy density of states scales as

S(E) ! 2⇡

r
c

6

⇣
ER� c

24

⌘
(4.44)

where the o↵set is the Casimir energy (4.34) that we derived previously. This is the

contribution from left-movers. There is a similar contribution from right-movers, de-

pending on c̃.

4.4.4 c has a Theorem

The connection between the central charge and the degrees of freedom in a theory

is given further weight by a result of Zamalodchikov, known as the c-theorem. The

idea of the c-theorem is to stand back and look at the space of all theories and the

renormalization group (RG) flows between them.

Conformal field theories are special. They are the fixed points of the renormalization

group, looking the same at all length scales. One can consider perturbing a conformal

field theory by adding an extra term to the action,

S ! S + ↵

Z
d2� O(�)

HereO is a local operator of the theory, while ↵ is some coe�cient. These perturbations

fall into three classes, depending on the dimension � of O.

• � < 2: In this case, ↵ has positive dimension: [↵] = 2 � �. Such deformations

are called relevant because they are important in the infra-red. RG flow takes

us away from our original CFT. We only stop flowing when we hit a new CFT

(which could be trivial with c = 0).

• � = 2: The constant ↵ is dimensionless. Such deformations are called marginal.

The deformed theory defines a new CFT.
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• � > 2: The constant ↵ has negative dimension. These deformations are ir-

relevant. The infra-red physics is still described by the original CFT. But the

ultra-violet physics is altered.

We expect information is lost as we flow from an ultra-violet theory to the infra-red.

The c-theorem makes this intuition precise. The theorem exhibits a function c on the

space of all theories which monotonically decreases along RG flows. At the fixed points,

c coincides with the central charge of the CFT.

A Thermodynamic Proof of the c-Theorem

There are a number of di↵erent proofs of the c-theorem. Here we give one that is

particularly physical. The basic idea is to heat up the system to a finite temperature T

and compute the speed of sound. The c-theorem follows from the requirement that the

speed of sound does not exceed the speed of light (which, in our conventions, is simply

1). I should warn you that the style of argument in this section is somewhat di↵erent

from the rest of these lectures. But, if nothing else, it reminds you that just because

you’re learning string theory, you shouldn’t neglect basic physics!

Let’s first start with a CFT. For simplicity, we assume that c = c̃. Then, from (4.44),

we have the asymptotic behaviour

S(E) ! 4⇡

r
cER

6

where we have dropped the c/24 o↵set, and the overall coe�cient is 4⇡ rather than 2⇡

because we are including both left- and right-moving sectors. To compare with familiar,

thermodynamic formulae we write this in terms of the spatial volume V = 2⇡R, so

S(E) ! 4⇡

r
⇡cEV

3

Now, the temperature is defined to be

1

T
=
@S

@E
= 2⇡

r
⇡cV

3E
)

p
E = 2⇡T

r
⇡cV

3

From this, we can compute the entropy of a CFT as a function of temperature, rather

than as a function of energy

S(T ) =
8⇡3cV T

3
) s(T ) =

8⇡3c

3
T (4.45)

where s = S/V is the entropy density.
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Now we’ll consider a more general situation. We’ll flow from some CFT in the UV

with central charge cUV to another CFT in the IR with central charge cIR. It may be

that the final theory is gapped – meaning that everything is massless – in which case

cIR = 0. Our goal is to prove that, regardless of the flow, we always have cUV � cIR
(with equality if there is no flow at all). To achieve this, we need to play around with

some thermodynamic identities. In particular, we need to following result

Claim:

s =
@P

@T

����
V

(4.46)

with P the pressure.

Proof: Given the energy E = E(S, V ), the first law of thermodynamics tells us

dE = TdS � PdV

The free energy is then defined as F (T, V ) = E � TS and obeys

dF = �SdT � PdV (4.47)

But the free energy is extensive and this means that it must, in fact, be proportional

to V since this is the only extensive quantity that it can depend on. So

F (T, V ) = �P (T )V

From this we learn that

dF = �@P
@T

V dT � PdV

Comparing to (4.47) gives us the claimed result (4.46). ⇤

Finally, we recall that the speed of sound in a system is given by (see, for example,

the lectures on Fluid Mechanics

c2
s
=

dP

d✏

where ✏ = E/V is the energy density. At fixed volume, we have

dE = TdS ) d✏ = Tds
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All of which means that we can express the speed of sound as

c2
s
=

1

T

dP

ds
=

1

T

dP

dT

dT

ds
=

s

T

dT

ds
=

d log T

d log s

This is the key result that we need. Now we define a thermal c-function

� =
s

T

As we’ve seen in (4.45), when we have a CFT the function � is proportional to the

central charge: � = 8⇡3c/3. If we flow from a CFT in the UV, with central charge cUV ,

to a di↵erent CFT in the IR with central charge cIR, then � will interpolate between

these two values (multiplied by 8⇡3/3) as we vary the temperature. To prove the c-

theorem, we need to show that as we decrease the temperature, and so excite lower

energy degrees of freedom, the function � necessarily decreases. We do this by relating

� to the speed of sound,

1

c2
s

=
d log s

d log T
=

d log(�T )

d log T
= 1 +

d log�

d log T

By causality, we must have c2
s
 1 (with equality when we have a CFT) and so

d log�

d log T
� 0 ) d�

dT
� 0

But this is what we wanted. We learn that we necessarily have cUV � cIR. This is the

c-theorem.

4.5 The Virasoro Algebra

So far our discussion has been limited to the operators of the CFT. We haven’t said

anything about states. We now remedy this. We start by taking a closer look at the

map between the cylinder and the plane.

4.5.1 Radial Quantization

To discuss states in a quantum field theory we need to think about where they live

and how they evolve. For example, consider a two dimensional quantum field theory

defined on the plane. Traditionally, when quantizing this theory, we parameterize the

plane by Cartesian coordinates (t, x) which we’ll call “time” and “space”. The states

live on spatial slices. The Hamiltonian generates time translations and hence governs

the evolution of states.
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σ

τ

Figure 25: The map from the cylinder to the plane.

However, the map between the cylinder and the plane

x

t

Figure 24:

suggests a di↵erent way to quantize a CFT on the plane. The

complex coordinate on the cylinder is taken to be !, while the

coordinate on the plane is z. They are related by,

! = � + i⌧ , z = e�i!

On the cylinder, states live on spatial slices of constant � and

evolve by the Hamiltonian,

H = @⌧

After the map to the plane, the Hamiltonian becomes the dilatation operator

D = z@ + z̄@̄

If we want the states on the plane to remember their cylindrical roots, they should live

on circles of constant radius. Their evolution is governed by the dilatation operator D.

This approach to a theory is known as radial quantization.

Usually in a quantum field theory, we’re interested in time-ordered correlation func-

tions. Time ordering on the cylinder becomes radial ordering on the plane. Operators

in correlation functions are ordered so that those inserted at larger radial distance are

moved to the left.

Virasoro Generators

Let’s look at what becomes of the stress tensor T (z) evaluated on the plane. On the

cylinder, we would decompose T in a Fourier expansion.

Tcylinder(w) = �
1X

m=�1
Lme

imw +
c

24
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After the transformation (4.33) to the plane, this becomes the Laurent expansion

T (z) =
1X

m=�1

Lm

zm+2

As always, a similar statement holds for the right-moving sector

T̄ (z̄) =
1X

m=�1

L̃m

z̄m+2

We can invert these expressions to get Lm in terms of T (z). We need to take a suitable

contour integral

Ln =
1

2⇡i

I
dz zn+1 T (z) , L̃n =

1

2⇡i

I
dz̄ z̄n+1 T̄ (z̄) (4.48)

where, if we just want Ln or L̃n, we must make sure that there are no other insertions

inside the contour.

In radial quantization, Ln is the conserved charge associated to the conformal trans-

formation �z = zn+1. To see this, recall that the corresponding Noether current, given

in (4.7), is J(z) = zn+1T (z). Moreover, the contour integral
H
dz maps to the integral

around spatial slices on the cylinder. This tells us that Ln is the conserved charge

where “conserved” means that it is constant under time evolution on the cylinder, or

under radial evolution on the plane. Similarly, L̃n is the conserved charge associated

to the conformal transformation �z̄ = z̄n+1.

When we go to the quantum theory, conserved charges become generators for the

transformation. Thus the operators Ln and L̃n generate the conformal transformations

�z = zn+1 and �z̄ = z̄n+1. They are known as the Virasoro generators. In particular,

our two favorite conformal transformations are

• L�1 and L̃�1 generate translations in the plane.

• L0 and L̃0 generate scaling and rotations.

The Hamiltonian of the system — which measures the energy of states on the cylinder

— is mapped into the dilatation operator on the plane. When acting on states of the

theory, this operator is represented as

D = L0 + L̃0
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4.5.2 The Virasoro Algebra

If we have some number of conserved charges, the first thing that we should do is

compute their algebra. Representations of this algebra then classify the states of the

theory. (For example, think angular momentum in the hydrogen atom). For conformal

symmetry, we want to determine the algebra obeyed by the Ln generators. It’s a nice

fact that the commutation relations are actually encoded TT OPE. Let’s see how this

works.

We want to compute [Lm, Ln]. Let’s write Lm as a contour integral over
H
dz and

Ln as a contour integral over
H
dw. (Note: both z and w denote coordinates on the

complex plane now). The commutator is

[Lm, Ln] =

✓I
dz

2⇡i

I
dw

2⇡i
�

I
dw

2⇡i

I
dz

2⇡i

◆
zm+1wn+1 T (z)T (w)

What does this actually mean?! We need to remember that all operator equations

are to be viewed as living inside time-ordered correlation functions. Except, now we’re

working on the z-plane, this statement has transmuted into radially ordered correlation

functions: outies to the left, innies to the right.

So LmLn means

w

z

while LnLm means

w

z

.

The trick to computing the commutator is to first fix w and do the
H
dz integrations.

The resulting contour is,

z

z

z
w

w

In other words, we do the z-integration around a fixed point w, to get

[Lm, Ln] =

I
dw

2⇡i

I

w

dz

2⇡i
zm+1wn+1 T (z)T (w)

– 97 –



=

I
dw

2⇡i
Res


zm+1wn+1

✓
c/2

(z � w)4
+

2T (w)

(z � w)2
+
@T (w)

z � w
+ . . .

◆�

To compute the residue at z = w, we first need to Taylor expand zm+1 about the point

w,

zm+1 = wm+1 + (m+ 1)wm(z � w) +
1

2
m(m+ 1)wm�1(z � w)2

+
1

6
m(m2 � 1)wm�2(z � w)3 + . . .

The residue then picks up a contribution from each of the three terms,

[Lm, Ln] =

I
dw

2⇡i
wn+1

h
wm+1@T (w) + 2(m+ 1)wm T (w) +

c

12
m(m2 � 1)wm�2

i

To proceed, it is simplest to integrate the first term by parts. Then we do the w-

integral. But for both the first two terms, the resulting integral is of the form (4.48)

and gives us Lm+n. For the third term, we pick up the pole. The end result is

[Lm, Ln] = (m� n)Lm+n +
c

12
m(m2 � 1)�m+n,0

This is the Virasoro algebra. It’s quite famous. The L̃n’s satisfy exactly the same

algebra, but with c replaced by c̃. Of course, [Ln, L̃m] = 0. The appearance of c as an

extra term in the Virasoro algebra is the reason it is called the “central charge”. In

general, a central charge is an extra term in an algebra that commutes with everything

else.

Conformal = Di↵eo + Weyl

We can build some intuition for the Virasoro algebra. We know that the Ln’s generate

conformal transformations �z = zn+1. Let’s consider something closely related: a

coordinate transformation �z = zn+1. These are generated by the vector fields

ln = zn+1@z (4.49)

But it’s a simple matter to compute their commutation relations:

[ln, lm] = (m� n)lm+n

So this is giving us the first part of the Virasoro algebra. But what about the central

term? The key point to remember is that, as we stressed at the beginning of this

chapter, a conformal transformation is not just a reparameterization of the coordinates:

it is a reparameterization, followed by a compensating Weyl rescaling. The central term

in the Virasoro algebra is due to the Weyl rescaling.
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4.5.3 Representations of the Virasoro Algebra

With the algebra of conserved charges at hand, we can now start to see how the

conformal symmetry classifies the states into representations.

Suppose that we have some state | i that is an eigenstate of L0 and L̃0.

L0 | i = h | i , L̃0 | i = h̃ | i

Back on the cylinder, this corresponds to some state with energy

E

2⇡
= h+ h̃� c+ c̃

24

For this reason, we’ll refer to the eigenvalues h and h̃ as the energy of the state. By

acting with the Ln operators, we can get further states with eigenvalues

L0Ln | i = (LnL0 � nLn) | i = (h� n)Ln | i

This tells us that Ln are raising and lowering operators depending on the sign of n.

When n > 0, Ln lowers the energy of the state and L�n raises the energy of the state. If

the spectrum is to be bounded below, there must be some states which are annihilated

by all Ln and L̃n for n > 0. Such states are called primary. They obey

Ln | i = L̃n | i = 0 for all n > 0

In the language of representation theory, they are also called highest weight states.

They are the states of lowest energy.

Representations of the Virasoro algebra can now be built by acting on the primary

states with raising operators L�n with n > 0. Obviously this results in an infinite

tower of states. All states obtained in this way are called descendants. From an initial

primary state | i, the tower fans out...

| i
L�1 | i

L2
�1 | i , L�2 | i

L3
�1 | i , L�1L�2 | i , L�3 | i

The whole set of states is called a Verma module. They are the irreducible represen-

tations of the Virasoro algebra. This means that if we know the spectrum of primary

states, then we know the spectrum of the whole theory.
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Some comments:

• The vacuum state |0i has h = 0. This state obeys

Ln |0i = 0 for all n � 0 (4.50)

Note that this state preserves the maximum number of symmetries: like all pri-

mary states, it is annihilated by Ln with n > 0, but it is also annihilated by

L0. This fits with our intuition that the vacuum state should be invariant under

as many symmetries as possible. You might think that we could go further and

require that the vacuum state obeys Ln | 0i = 0 for all n. But that isn’t consistent

with the central charge term in Virasoro algebra. The requirements (4.50) are

the best we can do.

• This discussion should be ringing bells. We saw something very similar in the

covariant quantization of the string, where we imposed conditions (2.6) as con-

straints. We will see the connection between the primary states and the spectrum

of the string in Section 5.

• There’s a subtlety that you should be aware of: the states in the Verma module

are not necessarily all independent. It could be that some linear combination

of the states vanishes. This linear combination is known as a null state. The

existence of null states depends on the values of h and c. For example, suppose

that we are in a theory in which the central charge is c = 2h(5 � 8h)/(2h + 1),

where h is the energy of a primary state | i. Then it is simple to check that the

following combination has vanishing norm:

L�2 | i �
3

2(2h+ 1)
L2
�1 | i (4.51)

• There is a close relationship between the primary states and the primary operators

defined in Section 4.2.3. In fact, the energies h and h̃ of primary states will turn

out to be exactly the weights of primary operators in the theory. This connection

will be described in Section 4.6.

4.5.4 Consequences of Unitarity

There is one physical requirement that a theory must obey which we have so far ne-

glected to mention: unitarity. This is the statement that probabilities are conserved

when we are in Minkowski signature spacetime. Unitarity follows immediately if we

have a Hermitian Hamiltonian which governs time evolution. But so far our discussion

has been somewhat algebraic and we’ve not enforced this condition. Let’s do so now.
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We retrace our footsteps back to the Euclidean cylinder and then back again to

the Minkowski cylinder where we can ask questions about time evolution. Here the

Hamiltonian density takes the form

H = Tww + Tw̄w̄ =
X

n

Lne
�in�

+
+ L̃ne

�in�
�

So for the Hamiltonian to be Hermitian, we require

Ln = L†
�n

This requirement imposes some strong constraints on the structure of CFTs. Here we

look at a couple of trivial, but important, constraints that arise due to unitarity and

the requirement that the physical Hilbert space does not contain negative norm states.

• h � 0: This fact follows from looking at the norm,

|L�1 | i| 2 = h |L+1L�1 | i = h | [L+1, L�1] | i = 2h h | i � 0

The only state with h = 0 is the vacuum state | 0i.

• c > 0: To see this, we can look at

|L�n |0i| 2 = h0| [Ln, L�n] |0i =
c

12
n(n2 � 1) � 0 (4.52)

So c � 0. If c = 0, the only state in the vacuum module is the vacuum itself. It

turns out that, in fact, the only state in the whole theory is the vacuum itself.

Any non-trivial CFT has c > 0.

There are many more requirements of this kind that constrain the theory. In fact, it

turns out that for CFTs with c < 1 these requirements are enough to classify and solve

all theories.

4.6 The State-Operator Map

In this section we describe one particularly important aspect of conformal field theories:

a map between states and local operators.

Firstly, let’s get some perspective. In a typical quantum field theory, the states

and local operators are very di↵erent objects. While local operators live at a point in

spacetime, the states live over an entire spatial slice. This is most clear if we write

down a Schrödinger-style wavefunction. In field theory, this object is actually a wave-

functional,  [�(�)], describing the probability for every field configuration �(�) at each

point � in space (but at a fixed time).
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Given that states and local operators are such very di↵erent beasts, it’s a little

surprising that in a CFT there is an isomorphism between them: it’s called the state-

operator map. The key point is that the distant past in the cylinder gets mapped to

a single point z = 0 in the complex plane. So specifying a state on the cylinder in the

far past is equivalent to specifying a local disturbance at the origin.

To make this precise, we need to recall how to write down wavefunctions using path

integrals. Di↵erent states are computed by putting di↵erent boundary conditions on

the functional integral. Let’s start by returning to quantum mechanics and reviewing

a few simple facts. The propagator for a particle to move from position xi at time ⌧i
to position xf at time ⌧f is given by

G(xf , xi) =

Z
x(⌧f )=xf

x(⌧i)=xi

Dx eiS

This means that if our system starts o↵ in some state described by the wavefunction

 i(xi) at time ⌧i then (ignoring the overall normalization) it evolves to the state

 f (xf , ⌧f ) =

Z
dxi G(xf , xi) i(xi, ⌧i)

There are two lessons to take from this. Firstly, to determine the value of the wave-

function at a given point xf , we evaluate the path integral restricting to paths which

satisfy x(⌧f ) = xf . Secondly, the initial state  (xi) acts as a weighting factor for the

integral over initial boundary conditions.

Let’s now write down the same formula in a field theory, where we’re dealing with

wavefunctionals. We’ll work with the Euclidean path integral on the cylinder. If we

start with some state  i[�i(�)] at time ⌧i, then it will evolve to the state

 f [�f (�), ⌧f ] =

Z
D�i

Z
�(⌧f )=�f

�(⌧i)=�i

D� e�S[�]  i[�i(�), ⌧i]

How do we write a similar expression for states after the map to the complex plane?

Now the states are defined on circles of constant radius, say |z| = r, and evolution is

governed by the dilatation operator. Suppose the initial state is defined at |z| = ri. In

the path integral, we integrate over all fields with fixed boundary conditions �(ri) = �i

and �(rf ) = �f on the two edges of the annulus shown in the figure,

 f [�f (�), rf ] =

Z
D�i

Z
�(rf )=�f

�(ri)=�i

D� e�S[�]  i[�i(�), ri]

This is the traditional way to define a state in field theory, albeit with a slight twist

because we’re working in radial quantization. We see that the e↵ect of the initial state

is to change the weighting of the path integral over the inner ring at |z| = ri.
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Let’s now see what happens as we take the initial state back to the far past and,

ultimately, to z = 0? We must now integrate over the whole disc |z|  rf , rather than

the annulus. The only e↵ect of the initial state is now to change the weighting of the

path integral at the point z = 0. But that’s exactly what we mean by a local operator

inserted at that point. This means that each local operator O(z = 0) defines a di↵erent

state in the theory,

 [�f ; r] =

Z
�(r)=�f

D� e�S[�] O(z = 0)

We’re now integrating over all field configurations within the disc, including all possible

values of the field at z = 0, which is analogous to integrating over the boundary

conditions
R
D�i on the inner circle.

• The state-operator map is only true in conformal field theories where we can

map the cylinder to the plane. It also holds in conformal field theories in higher

dimensions (where R⇥SD�1 can be mapped to the plane RD). In non-conformal

field theories, a typical local operator creates many di↵erent states.

• The state-operator map does not say that the number of states in the theory is

equal to the number of operators: this is never true. It does say that the states

are in one-to-one correspondence with the local operators.

• You might think that you’ve seen something like this before. In the canonical

quantization of free fields, we create states in a Fock space by acting with creation

operators. That’s not what’s going on here! The creation operators are just about

as far from local operators as you can get. They are the Fourier transforms of

local operators.

• There’s a special state that we can create this way: the vacuum. This arises

by inserting the identity operator 1 into the path integral. Back in the cylinder
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picture, this just means that we propagate the state back to time ⌧ = �1 which

is a standard trick used in the Euclidean path integral to project out all but the

ground state. For this reason the vacuum is sometimes referred to, in operator

notation, as |1i.

4.6.1 Some Simple Consequences

Let’s use the state-operator map to wrap up a few loose ends that have arisen in our

study of conformal field theory.

Firstly, we’ve defined two objects that we’ve called “primary”: states and operators.

The state-operator map relates the two. Consider the state |Oi, built from inserting a

primary operator O into the path integral at z = 0. We can look at,

Ln |Oi =
I

dz

2⇡i
zn+1 T (z)O(z = 0)

=

I
dz

2⇡i
zn+1

✓
hO
z2

+
@O
z

+ . . .

◆
(4.53)

You may wonder what became of the path integral
R
D� e�S[�] in this expression. The

answer is that it’s still implicitly there. Remember that operator expressions such as

(4.48) are always taken to hold inside correlation functions. But putting an operator in

the correlation function is the same thing as putting it in the path integral, weighted

with e�S[�].

From (4.53) we can see the e↵ect of various generators on states

• L�1 |Oi = |@Oi: In fact, this is true for all operators, not just primary ones. It

is expected since L�1 is the translation generator.

• L0 |Oi = h |Oi: This is true of any operator with well defined transformation

under scaling.

• Ln |Oi = 0 for all n > 0. This is true only of primary operators O. Moreover, it

is our requirement for |Oi to be a primary state.

This has an important consequence. We stated earlier that one of the most important

things to compute in a CFT is the spectrum of weights of primary operators. This

seems like a slightly obscure thing to do. But now we see that it has a much more

direct, physical meaning. It is the spectrum of energy and angular momentum of states

of the theory defined on the cylinder.
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Another loose end: when defining operators which carry specific weight, we made

the statement that we could always work in a basis of operators which have specified

eigenvalues under D and L. This follows immediately from the statement that we can

always find a basis of eigenstates of H and L on the cylinder.

Finally, we can use this idea of the state-operator map to understand why the OPE

works so well in conformal field theories. Suppose that we’re interested in some corre-

lation function, with operator insertions as shown in the figure. The statement of the

OPE is that we can replace the two inner operators by a sum of operators at z = 0,

independent of what’s going on outside of the dotted line. As an operator statement,

that sounds rather surprising. But this follows by computing the path integral up to

the dotted line, by which point the only e↵ect of the two operators is to determine

what state we have. This provides us a way of understanding why the OPE is exact in

CFTs, with a radius of convergence equal to the next-nearest insertion.

4.6.2 Our Favourite Example: The Free Scalar Field

Let’s illustrate the state-operator map by returning yet again to the free scalar field.

On a Euclidean cylinder, we have the mode expansion

X(w, w̄) = x+ ↵0p ⌧ + i

r
↵0

2

X

n 6=0

1

n

�
↵n e

inw + ↵̃n e
inw̄

�

where we retain the requirement of reality in Minkowski space, which gave us ↵?

n
= ↵�n

and ↵̃?

n
= ↵̃�n. We saw in Section 4.3 that X does not have good conformal properties.

Before transforming to the z = e�iw plane, we should work with the primary field on

the cylinder,

@wX(w, w̄) = �
r
↵0

2

X

n

↵n e
inw with ↵0 ⌘ i

r
↵0

2
p

– 105 –



Since @X is a primary field of weight h = 1, its transformation to the plane is given by

(4.18) and reads

@zX(z) =

✓
@z

@w

◆�1

@wX(w) = �i

r
↵0

2

X

n

↵n

zn+1

and similar for @̄X. Inverting this gives an equation for ↵n as a contour integral,

↵n = i

r
2

↵0

I
dz

2⇡i
zn @X(z) (4.54)

Just as the TT OPE allowed us to determine the [Lm, Ln] commutation relations in

the previous section, so the @X@X OPE contains the information about the [↵m,↵n]

commutation relations. The calculation is straightforward,

[↵m,↵n] = � 2

↵0

✓I
dz

2⇡i

I
dw

2⇡i
�

I
dw

2⇡i

I
dz

2⇡i

◆
zmwn @X(z) @X(w)

= � 2

↵0

I
dw

2⇡i
Res z=w


zmwn

✓
�↵0/2

(z � w)2
+ . . .

◆�

= m

I
dw

2⇡i
wm+n�1 = m�m+n,0

where, in going from the second to third line, we have Taylor expanded z around

w. Hearteningly, the final result agrees with the commutation relation (2.2) that we

derived in string theory using canonical quantization.

The State-Operator Map for the Free Scalar Field

Let’s now look at the map between states and local operators. We know from canonical

quantization that the Fock space is defined by acting with creation operators ↵�m with

m > 0 on the vacuum |0i. The vacuum state itself obeys ↵m|0i = 0 for m > 0. Finally,

there is also the zero mode ↵0 ⇠ p which provides all states with another quantum

number. A general state is given by

1Y

m=1

↵km
�m

|0; pi

Let’s try and recover these states by inserting operators into the path integral. Our

first task is to check whether the vacuum state is indeed equivalent to the insertion of

the identity operator. In other words, is the ground state wavefunctional of the theory

on the circle |z| = r really given by

 0[Xf ] =

Z
Xf (r)

DX e�S[X] ? (4.55)
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We want to check that this satisfies the definition of the vacuum state, namely ↵m|0i = 0

for m > 0. How do we act on the wavefunctional with an operator? We should still

integrate over all field configurations X(z, z̄), subject to the boundary conditions at

X(|z| = r) = Xf . But now we should insert the contour integral (4.54) at some |w| < r

(because, after all, the state is only going to vanish after we’ve hit it with ↵m, not

before!). So we look at

↵m 0[Xf ] =

Z
Xf

DX e�S[X]

I
dw

2⇡i
wm@X(w)

The path integral is weighted by the action (4.19) for a free scalar field. If a given

configuration diverges somewhere inside the disc |z| < r, then the action also diverges.

This ensures that only smooth functions @X(z), which have no singularity inside the

disc, contribute. But for such functions we have
I

dw

2⇡i
wm@X(w) = 0 for all m � 0

So the state (4.55) is indeed the vacuum state. In fact, since ↵0 also annihilates this

state, it is identified as the vacuum state with vanishing momentum.

What about the excited states of the theory?

Claim: ↵�m|0i = |@mXi. By which we mean that the state ↵�m|0i can be built

from the path integral,

↵�m|0i =
Z

DX e�S[X] @mX(z = 0) (4.56)

Proof: We can check this by acting on |@mXi with the annihilation operators ↵n.

↵n |@mXi ⇠
Z

Xf (r)

DX e�S[X]

I
dw

2⇡i
wn @X(w) @mX(z = 0)

We can focus on the operator insertions and use the OPE (4.23). We drop the path

integral and just focus on the operator equation (because, after all, operator equations

only make sense in correlation functions which is the same thing as in path integrals).

We have
I

dw

2⇡i
wn @m�1

z

1

(w � z)2

����
z=0

= m!

I
dw

2⇡i
wn�m�1 = 0 unless m = n

This confirms that the state (4.56) has the right properties. ⇤
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Finally, we should worry about the zero mode, or momentum ↵0 ⇠ p. It is simple to

show using the techniques above (together with the OPE (4.26)) that the momentum

of a state arises by the insertion of the primary operator eipX . For example,

|0; pi ⇠
Z

DX e�S[X] eipX(z=0) .

4.7 Brief Comments on Conformal Field Theories with Boundaries

The open string lives on the infinite strip

Figure 29:

with spatial coordinate � 2 [0, ⇡]. Here we

make just a few brief comments on the corre-

sponding conformal field theories.

As before, we can define the complex coordi-

nate w = � + i⌧ and make the conformal map

z = e�iw

This time the map takes us to the upper-half plane: Imz � 0. The end points of the

string are mapped to the real axis, Imz = 0.

Much of our previous discussion goes through as before. But now we need to take

care of boundary conditions at Imz = 0. Let’s first look at T↵�. Recall that the stress-

energy tensor exists because of translational invariance. We still have translational

invariance in the direction parallel to the boundary — let’s call the associated tangent

vector t↵. But translational invariance is broken perpendicular to the boundary — we

call the normal vector n↵. The upshot of this is that T↵�t� remains a conserved current.

To implement Neumann boundary conditions, we insist that none of the current flows

out of the boundary. The condition is

T↵�n
↵t� = 0 at Imz = 0

In complex coordinates, this becomes

Tzz = Tz̄z̄ at Imz = 0

There’s a simple way to implement this: we extend the definition of Tzz from the

upper-half plane to the whole complex plane by defining

Tzz(z) = Tz̄z̄(z̄)
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For the closed string we had both functions T and T̄ in the whole plane. But for the

open string, we have just one of these – say, T , — in the whole plane. This contains

the same information as both T and T̄ in the upper-half plane. It’s simpler to work in

the whole plane and focus just on T . Correspondingly, we now have just a single set of

Virasoro generators,

Ln =

I
dz

2⇡i
zn+1 Tzz(z)

There is no independent L̃n for the open string.

A similar doubling trick works when computing the propagator for the free scalar

field. The scalar field X(z, z̄) is only defined in the upper-half plane. Suppose we want

to implement Neumann boundary conditions. Then the propagator is defined by

hX(z, z̄)X(w, w̄)i = G(z, z̄;w, w̄)

which obeys @2G = �2⇡↵0 �(z � w, z̄ � w̄) subject to the boundary condition

@� G(z, z̄;w, w̄)|
�=0 = 0

But we solve problems like this in our electrodynamics courses. A useful way of pro-

ceeding is to introduce an “image charge” in the lower-half plane. We now let X(z, z̄)

vary over the whole complex plane with its dynamics governed by the propagator

G(z, z̄;w, w̄) = �↵
0

2
ln |z � w|2 � ↵0

2
ln |z � w̄|2 (4.57)

Much of the remaining discussion of CFTs carries forward with only minor di↵erences.

However, there is one point that is simple but worth stressing because it will be of

importance later. This concerns the state-operator map. Recall the logic that leads

us to this idea: we consider a state at fixed time on the strip and propagate it back

to past infinity ⌧ ! �1. After the map to the half-plane, past infinity is again the

origin. But now the origin lies on the boundary. We learn that the state-operator map

relates states to local operators defined on the boundary.

This fact ensures that theories on a strip have fewer states than those on the cylinder.

For example, for a free scalar field, Neumann boundary conditions require @X = @̄X

at Imz = 0. (This follows from the requirement that @�X = 0 at � = 0, ⇡ on the

strip). On the cylinder, the operators @X and @̄X give rise to di↵erent states; on the

strip they give rise to the same state. This, of course, mirrors what we’ve seen for the

quantization of the open string where boundary conditions mean that we have only

half the oscillator modes to play with.
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