
5. The Polyakov Path Integral and Ghosts

At the beginning of the last chapter, we stressed that there are two very di↵erent

interpretations of conformal symmetry depending on whether we’re thinking of a fixed

2d background or a dynamical 2d background. In applications to statistical physics,

the background is fixed and conformal symmetry is a global symmetry. In contrast, in

string theory the background is dynamical. Conformal symmetry is a gauge symmetry,

a remnant of di↵eomorphism invariance and Weyl invariance.

But gauge symmetries are not symmetries at all. They are redundancies in our

description of the system. As such, we can’t a↵ord to lose them and it is imperative

that they don’t su↵er an anomaly in the quantum theory. At worst, theories with

gauge anomalies make no sense. (For example, Yang-Mills theory coupled to only left-

handed fundamental fermions is a nonsensical theory for this reason). At best, it may

be possible to recover the quantum theory, but it almost certainly has nothing to do

with the theory that you started with.

Piecing together some results from the previous chapter, it looks like we’re in trouble.

We saw that the Weyl symmetry is anomalous since the expectation value of the stress-

energy tensor takes di↵erent values on backgrounds related by a Weyl symmetry:

hT ↵

↵
i = � c

12
R

On fixed backgrounds, that’s merely interesting. On dynamical backgrounds, it’s fatal.

What can we do? It seems that the only way out is to ensure that our theory has c = 0.

But we’ve already seen that c > 0 for all non-trivial, unitary CFTs. We seem to have

reached an impasse. In this section we will discover the loophole. It turns out that we

do indeed require c = 0, but there’s a way to achieve this that makes sense.

5.1 The Path Integral

In Euclidean space the Polyakov action is given by,

SPoly =
1

4⇡↵0

Z
d2�

p
g g↵� @↵X

µ @�X
⌫ �µ⌫

From now on, our analysis of the string will be in terms of the path integral6. We inte-

grate over all embedding coordinates Xµ and all worldsheet metrics g↵�. Schematically,

6
The analysis of the string path integral was first performed by Polyakov in “Quantum geometry

of bosonic strings,”, Phys. Lett. B 103, 207 (1981). The paper weighs in at a whopping 4 pages. As

a follow-up, he took another 2.5 pages to analyze the superstring in “Quantum geometry of fermionic

strings,” Phys. Lett. B 103, 211 (1981).
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the path integral is given by,

Z =
1

Vol

Z
DgDX e�SPoly[X,g]

The “Vol” term is all-important. It refers to the fact
Gauge OrbitsGauge

Fixing

Figure 30:

that we shouldn’t be integrating over all field configura-

tions, but only those physically distinct configurations not

related by di↵eomorphisms and Weyl symmetries. Since

the path integral, as written, sums over all fields, the

“Vol” term means that we need to divide out by the vol-

ume of the gauge action on field space.

To make the situation more explicit, we need to split

the integration over all field configurations into two pieces:

those corresponding to physically distinct configurations — schematically depicted as

the dotted line in the figure — and those corresponding to gauge transformations —

which are shown as solid lines. Dividing by “Vol” simply removes the piece of the

partition function which comes from integrating along the solid-line gauge orbits.

In an ordinary integral, if we change coordinates then we pick up a Jacobian factor for

our troubles. The path integral is no di↵erent. We want to decompose our integration

variables into physical fields and gauge orbits. The tricky part is to figure out what

Jacobian we get. Thankfully, there is a standard method to determine the Jacobian,

first introduced by Faddeev and Popov. This method works for all gauge symmetries,

including Yang-Mills and you will also learn about it in the “Advanced Quantum Field

Theory” course.

5.1.1 The Faddeev-Popov Method

We have two gauge symmetries: di↵eomorphisms and Weyl transformations. We will

schematically denote both of these by ⇣. The change of the metric under a general

gauge transformation is g ! g ⇣ . This is shorthand for,

g↵�(�) �! g ⇣

↵�
(�0) = e2!(�)

@��

@�0↵
@��

@�0� g��(�)

In two dimensions these gauge symmetries allow us to put the metric into any form

that we like — say, ĝ. This is called the fiducial metric and will represent our choice

of gauge fixing. Two caveats:

• Firstly, it’s not true that we can put any 2d metric into the form ĝ of our choosing.

This is only true locally. Globally, it remains true if the worldsheet has the
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topology of a cylinder or a sphere, but not for higher genus surfaces. We’ll revisit

this issue in Section 6.

• Secondly, fixing the metric locally to ĝ does not fix all the gauge symmetries. We

still have the conformal symmetries to deal with. We’ll revisit this in the Section

6 as well.

Our goal is to only integrate over physically inequivalent configurations. To achieve

this, first consider the integral over the gauge orbit of ĝ. For some value of the gauge

transformation ⇣, the configuration g ⇣ will coincide with our original metric g. We can

put a delta-function in the integral to get
Z

D⇣ �(g � ĝ ⇣) = ��1
FP

[g] (5.1)

This integral isn’t equal to one because we need to take into account the Jacobian

factor. This is analogous to the statement that
R
dx �(f(x)) = 1/|f 0|, evaluated at

points where f(x) = 0. In the above equation, we have written this Jacobian factor as

��1
FP

. The inverse of this, namely �FP , is called the Faddeev-Popov determinant. We

will evaluate it explicitly shortly. Some comments:

• This whole procedure is rather formal and runs into the usual di�culties with

trying to define the path integral. Just as for Yang-Mills theory, we will find that

it results in sensible answers.

• We will assume that our gauge fixing is good, meaning that the dotted line in the

previous figure cuts through each physically distinct configuration exactly once.

Equivalently, the integral over gauge transformations D⇣ clicks exactly once with

the delta-function and we don’t have to worry about discrete ambiguities (known

as Gribov copies in QCD).

• The measure is taken to be the analogue of the Haar measure for Lie groups,

invariant under left and right actions

D⇣ = D(⇣ 0⇣) = D(⇣⇣ 0)

When gauge fixing in Yang-Mills theory, the first thing we do is prove that the

Faddeev-Popov determinant �FP is gauge invariant. However, our route here is a little

more subtle. As we’ve stressed above, the Weyl anomaly means that our original theory

actually fails to be gauge invariant. We will see that the Faddeev-Popov determinant

also fails but can, in certain circumstances, cancel the original failure leaving behind a

well-defined theory.
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The Faddeev-Popov procedure starts by inserting a factor of unity into the path

integral, in the guise of

1 = �FP [g]

Z
D⇣ �(g � ĝ ⇣)

We’ll call the resulting path integral expression Z[ĝ] since it depends on the choice of

fiducial metric ĝ. The first thing we do is use the �(g � ĝ ⇣) delta-function to do the

integral over metrics,

Z[ĝ] =
1

Vol

Z
D⇣DXDg �FP [g] �(g � ĝ ⇣) e�SPoly[X,g]

=
1

Vol

Z
D⇣DX �FP [ĝ

⇣ ] e�SPoly[X,ĝ
⇣ ] (5.2)

At this stage the integrand depends on ĝ⇣ , where ⇣ is shorthand for a di↵eoemorphism

and Weyl transformation. Everything in the equation is invariant under di↵eomor-

phisms, but Weyl transformations are another matter. We know that quantum theoryR
DX e�SPoly su↵ers a Weyl anomaly. The action SPoly is invariant under Weyl rescal-

ings, so the subtlety must come from the measure. Meanwhile, anticipating what’s to

come, we will find a similar issue with the Faddeev-Popov determinant �FP .

If, however, we find ourselves in the fortunate situation where the problems cancel

then things would work out nicely. In that situation, everything on the right-hand

side of (5.2) would be conspire to be invariant under both di↵eomorphisms and Weyl

transformations and we could write

Z[ĝ] =
1

Vol

Z
D⇣DX �FP [ĝ] e

�SPoly[X,ĝ]

But now, nothing depends on the gauge transformation ⇣. Indeed, this is precisely the

integration over the gauge orbits that we wanted to isolate and it cancels the “Vol”

factor sitting outside. We’re left with

Z[ĝ] =

Z
DX �FP [ĝ] e

�SPoly[X,ĝ] (5.3)

This is the integral over physically distinct configurations — the dotted line in the

previous figure. We see that the Faddeev-Popov determinant is precisely the Jacobian

factor that we need.

Clearly the above discussion only flies if we find ourselves in a situation in which

the theory (5.2) is genuinely Weyl invariant. Our next task is to understand when this

happens which means that we need to figure out what becomes of �FP when we do a

Weyl transformation.
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5.1.2 The Faddeev-Popov Determinant

We still need to compute �FP [ĝ]. It’s defined in (5.1). Let’s look at gauge transfor-

mations ⇣ which are close to the identity. In this case, the delta-function �(g � ĝ ⇣)

is going to be non-zero when the metric g is close to the fiducial metric ĝ. In fact, it

will be su�cient to look at the delta-function �(ĝ � ĝ ⇣), which is only non-zero when

⇣ = 0. We take an infinitesimal Weyl transformation parameterized by !(�) and an

infinitesimal di↵eomorphism ��↵ = v↵(�). The change in the metric is

�ĝ↵� = 2!ĝ↵� +r↵v� +r�v↵

Plugging this into the delta-function, the expression for the Faddeev-Popov determinant

becomes

��1
FP

[ĝ] =

Z
D!Dv �(2!ĝ↵� +r↵v� +r�v↵) (5.4)

where we’ve replaced the integral D⇣ over the gauge group with the integral D!Dv over

the Lie algebra of group since we’re near the identity. (We also suppress the subscript

on v↵ in the measure factor to keep things looking tidy).

At this stage it’s useful to represent the delta-function in its integral, Fourier form.

For a single delta-function, this is �(x) =
R
dp exp(2⇡ip x). But the delta-function in

(5.4) is actually a delta-functional: it restricts a whole function. Correspondingly, the

integral representation is in terms of a functional integral,

��1
FP

[ĝ] =

Z
D!DvD� exp

✓
2⇡i

Z
d2�

p
ĝ �↵�[2!ĝ↵� +r↵v� +r�v↵]

◆

where �↵� is a symmetric 2-tensor on the worldsheet.

We now simply do the
R
D! integral. It doesn’t come with any derivatives, so it

merely acts as a Lagrange multiplier, setting

�↵� ĝ↵� = 0

In other words, after performing the ! integral, �↵� is symmetric and traceless. We’ll

take this to be the definition of �↵� from now on. So, finally we have

��1
FP

[ĝ] =

Z
DvD� exp

✓
4⇡i

Z
d2�

p
ĝ �↵�r↵v�

◆
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5.1.3 Ghosts

The previous manipulations give us an expression for ��1
FP

. But we want to invert it

to get �FP . Thankfully, there’s a simple way to achieve this. Because the integrand

is quadratic in v and �, we know that the integral computes the inverse determinant

of the operator r↵. (Strictly speaking, it computes the inverse determinant of the

projection of r↵ onto symmetric, traceless tensors. This observation is important

because it means the relevant operator is a square matrix which is necessary to talk

about a determinant). But we also know how to write down an expression for the

determinant �FP , instead of its inverse, in terms of path integrals: we simply need to

replace the commuting integration variables with anti-commuting fields,

�↵� �! b↵�

v↵ �! c↵

where b and c are both Grassmann-valued fields (i.e. anti-commuting). They are known

as ghost fields. This gives us our final expression for the Faddeev-Popov determinant,

�FP [g] =

Z
DbDc exp[iSghost]

where the ghost action is defined to be

Sghost =
1

2⇡

Z
d2�

p
g b↵�r↵c� (5.5)

and we have chosen to rescale the b and c fields at this last step to get a factor of 1/2⇡

sitting in front of the action. (This only changes the normalization of the partition

function which doesn’t matter). Rotating back to Euclidean space, the factor of i

disappears. The expression for the full partition function (5.3) is

Z[ĝ] =

Z
DXDbDc exp (�SPoly[X, ĝ]� Sghost[b, c, ĝ])

Something lovely has happened. Although the ghost fields were introduced as some

auxiliary constructs, they now appear on the same footing as the dynamical fields X.

We learn that gauge fixing comes with a price: our theory has extra ghost fields.

The role of these ghost fields is to cancel the unphysical gauge degrees of freedom,

leaving only the D � 2 transverse modes of Xµ. Unlike lightcone quantization, they

achieve this in a way which preserves Lorentz invariance.
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Simplifying the Ghost Action

The ghost action (5.5) looks fairly simple. But it looks even simpler if we work in

conformal gauge,

ĝ↵� = e2!�↵�

The determinant is
p
ĝ = e2!. Recall that in complex coordinates, the measure is

d2� = 1
2d

2z, while we can lower the index on the covariant derivative using rz =

gzz̄rz̄ = 2e�2!rz̄. We have

Sghost =
1

2⇡

Z
d2z (bzzrz̄c

z + bz̄z̄rzc
z̄)

In deriving this, remember that there is no field bzz̄ because b↵� is traceless. Now comes

the nice part: the covariant derivatives are actually just ordinary derivatives. To see

why this is the case, look at

rz̄c
z = @z̄c

z + �z

z̄↵
c↵

But the Christo↵el symbols are given by

�z

z̄↵
=

1

2
gzz̄ (@z̄g↵z̄ + @↵gz̄z̄ � @z̄gz̄↵) = 0 for ↵ = z, z̄

So in conformal gauge, the ghost action factorizes into two free theories,

Sghost =
1

2⇡

Z
d2z bzz @z̄c

z + bz̄z̄ @zc
z̄

The action doesn’t depend on the conformal factor !. In other words, it is Weyl

invariant without any need to change b and c: these are therefore both neutral under

Weyl transformations.

(It’s worth pointing out that b↵� and c↵ are neutral under Weyl transformations.

But if we raise or lower these indices, then the fields pick up factors of the metric. So

b↵� and c↵ would not be neutral under Weyl transformations).

5.2 The Ghost CFT

Fixing the Weyl and di↵eomorphism gauge symmetries has left us with two new dy-

namical ghost fields, b and c. Both are Grassmann (i.e. anti-commuting) variables.

Their dynamics is governed by a CFT. Define

b = bzz , b̄ = bz̄z̄

c = cz , c̄ = cz̄
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The ghost action is given by

Sghost =
1

2⇡

Z
d2z

�
b @̄c+ b̄ @c̄

�

Which gives the equations of motion

@̄b = @b̄ = @̄c = @c̄ = 0

So we see that b and c are holomorphic fields, while b̄ and c̄ are anti-holomorphic.

Before moving onto quantization, there’s one last bit of information we need from

the classical theory: the stress tensor for the bc ghosts. The calculation is a little

bit fiddly. We use the general definition of the stress tensor (4.4), which requires

us to return to the theory (5.5) on a general background and vary the metric g↵�.

The complications are twofold. Firstly, we pick up a contribution from the Christo↵el

symbol that is lurking inside the covariant derivative r↵. Secondly, we must also

remember that b↵� is traceless. But this is a condition which itself depends on the

metric: b↵�g↵� = 0. To account for this we should add a Lagrange multiplier to the

action imposing tracelessness. After correctly varying the metric, we may safely retreat

back to flat space where the end result is rather simple. We have Tzz̄ = 0, as we must

for any conformal theory. Meanwhile, the holomorphic and anti-holomorphic parts of

the stress tensor are given by,

T = 2(@c) b+ c @b , T̄ = 2(@̄c̄) b̄+ c̄ @̄b̄. (5.6)

Operator Product Expansions

We can compute the OPEs of these fields using the standard path integral techniques

that we employed in the last chapter. In what follows, we’ll just focus on the holomor-

phic piece of the CFT. We have, for example,

0 =

Z
DbDc

�

�b(�)

⇥
e�Sghost b(�0)

⇤
=

Z
DbDc e�Sghost


� 1

2⇡
@̄c(�) b(�0) + �(� � �0)

�

which tells us that

@̄c(�) b(�0) = 2⇡ �(� � �0)

Similarly, looking at �/�c(�) gives

@̄b(�) c(�0) = 2⇡ �(� � �0)
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We can integrate both of these equations using our favorite formula @̄(1/z) = 2⇡�(z, z̄).

We learn that the OPEs between fields are given by

b(z) c(w) =
1

z � w
+ . . .

c(w) b(z) =
1

w � z
+ . . .

In fact the second equation follows from the first equation and Fermi statistics. The

OPEs of b(z) b(w) and c(z) c(w) have no singular parts. They vanish as z ! w.

Finally, we need the stress tensor of the theory. After normal ordering, it is given by

T (z) = 2 : @c(z) b(z) : + : c(z)@b(z) :

We will shortly see that with this choice, b and c carry appropriate weights for tensor

fields which are neutral under Weyl rescaling.

Primary Fields

We will now show that both b and c are primary fields, with weights h = 2 and h = �1

respectively. Let’s start by looking at c. The OPE with the stress tensor is

T (z) c(w) = 2 : @c(z) b(z) : c(w)+ : c(z) @b(z) : c(w)

=
2@c(z)

z � w
� c(z)

(z � w)2
+ . . . = � c(w)

(z � w)2
+

@c(w)

z � w
+ . . .

confirming that c has weight �1. When taking the OPE with b, we need to be a little

more careful with minus signs. We get

T (z) b(w) = 2 : @c(z) b(z) : b(w)+ : c(z) @b(z) : b(w)

= �2b(z)

✓
�1

(z � w)2

◆
� @b(z)

z � w
=

2b(w)

(z � w)2
+

@b(w)

z � w
+ . . .

showing that b has weight 2. As we’ve pointed out a number of times, conformal =

di↵eo + Weyl. We mentioned earlier that the fields b and c are neutral under Weyl

transformations. This is reflected in their weights, which are due solely to di↵eomor-

phisms as dictated by their index structure: bzz and cz.

The Central Charge

Finally, we can compute the TT OPE to determine the central charge of the bc ghost

system.

T (z)T (w) = 4 : @c(z)b(z) : : @c(w)b(w) : +2 : @c(z)b(z) : : c(w)@b(w) :

+2 : c(z)@b(z) : : @c(w)b(w) : + : c(z)@b(z) : : c(w)@b(w) :
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For each of these terms, making two contractions gives a (z�w)�4 contribution to the

OPE. There are also two ways to make a single contraction. These give (z � w)�1 or

(z � w)�2 or (z � w)�3 contributions depending on what the derivatives hit. The end

result is

T (z)T (w) =
�4

(z � w)4
+

4 : @c(z)b(w) :

(z � w)2
� 4 : b(z)@c(w) :

(z � w)2

� 4

(z � w)4
+

2 : @c(z) @b(w) :

z � w
� 4 : b(z)c(w) :

(z � w)3

� 4

(z � w)4
� 4 : c(z)b(w) :

(z � w)3
+

2 : @b(z)@c(w) :

z � w

� 1

(z � w)4
� : c(z)@b(w) :

(z � w)2
+

@b(z)c(w) :

(z � w)2
+ . . .

After some Taylor expansions to turn f(z) functions into f(w) functions, together with

a little collecting of terms, this can be written as,

T (z)T (w) =
�13

(z � w)4
+

2T (w)

(z � w)2
+

@T (w)

z � w
+ . . .

The first thing to notice is that it indeed has the form expected of TT OPE. The second,

and most important, thing to notice is the central charge of the bc ghost system: it is

c = �26

5.3 The Critical “Dimension” of String Theory

Let’s put the pieces together. We’ve learnt that gauge fixing the di↵eomorphisms and

Weyl gauge symmetries results in the introduction of ghosts which contribute central

charge c = �26. We’ve also learnt that the Weyl symmetry is anomalous unless c = 0.

Since the Weyl symmetry is a gauge symmetry, it’s crucial that we keep it. We’re forced

to add exactly the right degrees of freedom to the string to cancel the contribution from

the ghosts.

The simplest possibility is to add D free scalar fields. Each of these contributes c = 1

to the central charge, so the whole procedure is only consistent if we pick

D = 26

This agrees with the result we found in Chapter 2: it is the critical dimension of string

theory.
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However, there’s no reason that we have to work with free scalar fields. The consis-

tency requirement is merely that the degrees of freedom of the string are described by a

CFT with c = 26. Any CFT will do. Each such CFT describes a di↵erent background

in which a string can propagate. If you like, the space of CFTs with c = 26 can be

thought of as the space of classical solutions of string theory.

We learn that the “critical dimension” of string theory is something of a misnomer:

it is really a “critical central charge”. Only for rather special CFTs can this central

charge be thought of as a spacetime dimension.

For example, if we wish to describe strings moving in 4d Minkowski space, we can

take D = 4 free scalars (one of which will be timelike) together with some other c = 22

CFT. This CFT may have a geometrical interpretation, or it may be something more

abstract. The CFT with c = 22 is sometimes called the “internal sector” of the theory.

It is what we really mean when we talk about the “extra hidden dimensions of string

theory”. We’ll see some examples of CFTs describing curved spaces in Section 7.

There’s one final subtlety: we need to be careful with the transition back to Minkowski

space. After all, we want one of the directions of the CFT, X0, to have the wrong sign

kinetic term. One safe way to do this is to keep X0 as a free scalar field, with the

remaining degrees of freedom described by some c = 25 CFT. This doesn’t seem quite

satisfactory though since it doesn’t allow for spacetimes which evolve in time — and, of

course, these are certainly necessary if we wish to understand early universe cosmology.

There are still some technical obstacles to understanding the worldsheet of the string

in time-dependent backgrounds. To make progress, and discuss string cosmology, we

usually bi-pass this issue by working with the low-energy e↵ective action which we will

derive in Section 7.

5.3.1 The Usual Nod to the Superstring

The superstring has another gauge symmetry on the worldsheet: supersymmetry. This

gives rise to more ghosts, the so-called �� system, which turns out to have central

charge +11. Consistency then requires that the degrees of freedom of the string have

central charge c = 26� 11 = 15.

However, now the CFTs must themselves be invariant under supersymmetry, which

means that bosons come matched with fermions. If we add D bosons, then we also

need to add D fermions. A free boson has c = 1, while a free fermion has c = 1/2. So,

the total number of free bosons that we should add is D(1 + 1/2) = 15, giving us the
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critical dimension of the superstring:

D = 10

5.3.2 An Aside: Non-Critical Strings

Although it’s a slight departure from the our main narrative, it’s worth pausing to

mention what Polyakov actually did in his four page paper. His main focus was not

critical strings, with D = 26, but rather non-critical strings with D 6= 26. From the

discussion above, we know that these su↵er from a Weyl anomaly. But it turns out

that there is a way to make sense of the situation.

The starting point is to abandon Weyl invariance from the beginning. We start with

D free scalar fields coupled to a dynamical worldsheet metric g↵�. (More generally, we

could have any CFT). We still want to keep reparameterization invariance, but now

we ignore the constraints of Weyl invariance. Of course, it seems likely that this isn’t

going to have too much to do with the Nambu-Goto string, but let’s proceed anyway.

Without Weyl invariance, there is one extra term that it is natural to add to the 2d

theory: a worldsheet cosmological constant µ,

Snon�critical =
1

4⇡↵0

Z
d2�

p
g
�
g↵�@↵X

µ@�Xµ + µ
�

Our goal will be to understand how the partition function changes under a Weyl rescal-

ing. There will be two contributions: one from the explicit µ dependence and one from

the Weyl anomaly. Consider two metrics related by a Weyl transformation

ĝ↵� = e2!g↵�

As we vary !, the partition function Z[ĝ] changes as

1

Z

@Z

@!
=

1

Z

Z
DX e�S

✓
� @S

@ĝ↵�

@ĝ↵�
@!

◆

=
1

Z

Z
DX e�S

✓
� 1

2⇡

p
ĝ T ↵

↵

◆

=
c

24⇡

p
ĝ R̂� 1

2⇡↵0 µe
2!

=
c

24⇡

p
g(R� 2r2!)� 1

2⇡↵0 µe
2!

where, in the last two lines, we used the Weyl anomaly (4.35) and the relationship be-

tween Ricci curvatures (1.29). The central charge appearing in these formulae includes

the contribution from the ghosts,

c = D � 26
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We can now just treat this as a di↵erential equation for the partition function Z and

solve. This allows us to express the partition function Z[ĝ], defined on one worldsheet

metric, in terms of Z[g], defined on another. The relationship is,

Z[ĝ] = Z[g] exp


� 1

4⇡↵0

Z
d2�

p
g

✓
2µe2! � c↵0

6

�
g↵� @↵! @�! +R!

�◆�

We see that the scaling mode ! inherits a kinetic term. It now appears as a new

dynamical scalar field in the theory. It is often called the Liouville field on account of

the exponential potential term multiplying µ. Solving this theory is quite hard7. Notice

also that our new scalar field ! appears in the final term multiplying the Ricci scalar

R. We will describe the significance of this in Section 7.2.1. We’ll also see another

derivation of this kind of Lagrangian in Section 7.4.4.

5.4 States and Vertex Operators

In Chapter 2 we determined the spectrum of the string in flat space. What is the

spectrum for a general string background? The theory consists of the b and c ghosts,

together with a c = 26 CFT. At first glance, it seems that we have a greatly enlarged

Hilbert space since we can act with creation operators from all fields, including the

ghosts. However, as you might expect, not all of these states will be physical. After

correctly accounting for the gauge symmetry, only some subset survives.

The elegant method to determine the physical Hilbert space in a gauge fixed action

with ghosts is known as BRST quantization. You will learn about it in the “Advanced

Quantum Field Theory” course where you will apply it to Yang-Mills theory. Although

a correct construction of the string spectrum employs the BRST method, we won’t

describe it here for lack of time. A very clear description of the general method and its

application to the string can be found in Section 4.2 of Polchinski’s book.

Instead, we will make do with a poor man’s attempt to determine the spectrum of the

string. Our strategy is to simply pretend that the ghosts aren’t there and focus on the

states created by the fields of the matter CFT (i.e. the Xµ fields if we’re talking about

flat space). As we’ll explain in the next section, if we’re only interested in tree-level

scattering amplitudes then this will su�ce.

To illustrate how to compute the spectrum of the string, let’s go back to flat D = 26

dimensional Minkowski space and the discussion of covariant quantization in Section

7
A good review can be found Seiberg’s article “Notes on Quantum Liouville Theory and Quantum

Gravity”, Prog. Theor. Phys. Supl. 102 (1990) 319.
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2.1. We found that physical states | i are subject to the Virasoro constraints (2.6)

and (2.7) which read

Ln | i = 0 for n > 0

L0 | i = a | i

and similar for L̃n,

L̃n | i = 0 for n > 0

L̃0 | i = ã | i

where we have, just briefly, allowed for the possibility of di↵erent normal ordering

coe�cients a and ã for the left- and right-moving sectors. But there’s a name for states

in a conformal field theory obeying these requirements: they are primary states of

weight (a, ã).

So how do we fix the normal ordering ambiguities a and ã? A simple way is to

first replace the states with operator insertions on the worldsheet using the state-

operator map: | i ! O. But we have a further requirement on the operators O:

gauge invariance. There are two gauge symmetries: reparameterization invariance and

Weyl symmetry. Both restrict the possible states.

Let’s start by considering reparameterization invariance. In the last section, we hap-

pily placed operators at specific points on the worldsheet. But in a theory with a

dynamical metric, this doesn’t give rise to a di↵eomorphism invariant operator. To

make an object that is invariant under reparameterizations of the worldsheet coor-

dinates, we should integrate over the whole worldsheet. Our operator insertions (in

conformal gauge) are therefore of the form,

V ⇠
Z

d2z O (5.7)

Here the ⇠ sign reflects the fact that we’ve dropped an overall normalization constant

which we’ll return to in the next section.

Integrating over the worldsheet takes care of di↵eomorphisms. But what about Weyl

symmetries? The measure d2z has weight (�1,�1) under rescaling. To compensate,

the operator O must have weight (+1,+1). This is how we fix the normal ordering

ambiguity: we require a = ã = 1. Note that this agrees with the normal ordering

coe�cient a = 1 that we derived in lightcone quantization in Chapter 2.
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This, then, is the rather rough derivation of the string spectrum. The physical states

are the primary states of the CFT with weight (+1,+1). The operators (5.7) associated

to these states are called vertex operators.

5.4.1 An Example: Closed Strings in Flat Space

Let’s use this new language to rederive the spectrum of the closed string in flat space.

We start with the ground state of the string, which was previously identified as a

tachyon. As we saw in Section 4, the vacuum of a CFT is associated to the identity

operator. But we also have the zero modes. We can give the string momentum pµ by

acting with the operator eip·X . The vertex operator associated to the ground state of

the string is therefore

Vtachyon ⇠
Z

d2z : eip·X : (5.8)

In Section 4.3.3, we showed that the operator eip·X is primary with weight h = h̃ =

↵0p2/4. But Weyl invariance requires that the operator has weight (+1,+1). This is

only true if the mass of the state is

M2 ⌘ �p2 = � 4

↵0

This is precisely the mass of the tachyon that we saw in Section 2.

Let’s now look at the first excited states. In covariant quantization, these are of

the form ⇣µ⌫ ↵
µ

�1 ↵̃
⌫

�1 |0; pi, where ⇣µ⌫ is a constant tensor that determines the type

of state, together with its polarization. (Recall: traceless symmetric ⇣µ⌫ corresponds

to the graviton, anti-symmetric ⇣µ⌫ corresponds to the Bµ⌫ field and the trace of ⇣µ⌫
corresponds to the scalar known as the dilaton). From (4.56), the vertex operator

associated to this state is,

Vexcited ⇠
Z

d2z : eip·X @Xµ@̄X⌫ : ⇣µ⌫ (5.9)

where @Xµ gives us a ↵µ

�1 excitation, while @̄Xµ gives a ↵̃µ

�1 excitation. It’s easy to

check that the weight of this operator is h = h̃ = 1+↵0p2/4. Weyl invariance therefore

requires that

p2 = 0

confirming that the first excited states of the string are indeed massless. However, we

still need to check that the operator in (5.9) is actually primary. We know that @X is

– 124 –



primary and we know that eip·X is primary, but now we want to consider them both

sitting together inside the normal ordering. This means that there are extra terms in

the Wick contraction which give rise to 1/(z�w)3 terms in the OPE, potentially ruining

the primacy of our operator. One such term arises from a double contraction, one of

which includes the eip·X operator. This gives rise to an o↵ending term proportional to

pµ⇣µ⌫ . The same kind of contraction with T̄ gives rise to a term proportional to p⌫⇣⌫µ.

In order for these terms to vanish, the polarization tensor must satisfy

pµ⇣µ⌫ = p⌫⇣µ⌫ = 0

which is precisely the transverse polarization condition expected for a massless particle.

5.4.2 An Example: Open Strings in Flat Space

As explained in Section 4.7, vertex operators for the open-string are inserted on the

boundary @M of the worldsheet. We still need to ensure that these operators are dif-

feomorphism invariant which is achieved by integrating over @M. The vertex operator

for the open string tachyon is

Vtachyon ⇠
Z

@M
ds : eip·X :

We need to figure out the dimension of the boundary operator : eip·X :. It’s not the

same as for the closed string. The reason is due to presence of the image charge in

the propagator (4.57) for a free scalar field on a space with boundary. This propagator

appears in the Wick contractions in the OPEs and a↵ects the weights. Let’s see why

this is the case. Firstly, we look at a single scalar field X,

@X(z) : eipX(w,w̄) : =
1X

n=1

(ip)n

(n� 1)!
: X(w, w̄)n�1 :

✓
�↵0

2

1

z � w
� ↵0

2

1

z � w̄

◆
+ . . .

= � i↵0p

2
: eipX(w,w̄) :

✓
1

z � w
+

1

z � w̄

◆
+ . . .

With this result, we can now compute the OPE with T ,

T (z) : eipX(w,w̄) : =
↵0p2

4
: eipX :

✓
1

z � w
+

1

z � w̄

◆2

+ . . .

When the operator : eipX(w,w̄) : is placed on the boundary w = w̄, this becomes

T (z) : eipX(w,w̄) :=
↵0p2 : eipX(w,w̄) :

(z � w)2
+ . . .

This tells us that the boundary operator : eip·X : is indeed primary, with weight ↵0p2.
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For the open string, Weyl invariance requires that operators have weight +1 in order

to cancel the scaling dimension of �1 coming from the boundary integral
R
ds. So the

mass of the open string ground state is

M2 ⌘ �p2 = � 1

↵0

in agreement with the mass of the open string tachyon computed in Section 3.

The vertex operator for the photon is

Vphoton ⇠
Z

@M
ds ⇣a : @Xa eip·X : (5.10)

where the index a = 0, . . . , p now runs only over those directions with Neumann bound-

ary conditions that lie parallel to the brane worldvolume. The requirement that this is

a primary operator gives pa⇣a = 0, while Weyl invariance tells us that p2 = 0. This is

the expected behaviour for the momentum and polarization of a photon.

5.4.3 More General CFTs

Let’s now consider a string propagating in four-dimensional Minkowski space M4,

together with some internal CFT with c = 22. Then any primary operator of the

internal CFT with weight (h, h) can be assigned momentum pµ, for µ = 0, 1, 2, 3 by

dressing the operator with eip·X . In order to get a primary operator of weight (+1,+1)

as required, we must have

↵0p2

4
= 1� h

We see that the mass spectrum of closed string states is given by

M2 =
4

↵0 (h� 1)

where h runs over the spectrum of primary operators of the internal CFT. Some com-

ments:

• Relevant operators in the internal CFT have h < 1 and give rise to tachyons

in the spectrum. Marginal operators, with h = 1, give massless particles. And

irrelevant operators result in massive states.

• Notice that requiring the vertex operators to be Weyl invariant determines the

mass formula for the state. We say that the vertex operators are “on-shell”, in

the same sense that external legs of Feynman diagrams are on-shell. We will have

more to say about this in the next section.
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