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Supersymmetry and the Atiyah-Singer Index Theorem'

Luis Alvarez-Gaume**
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Abstract. Using a recently introduced index for supersymmetric theories, we
present a simple derivation of the Atiyah-Singer index theorem for classical
complexes and its G-index generalization using elementary properties of
quantum mechanical supersymmetric systems.

I. Introduction

The mathematical structure of supersymmetric field theories has recently been
shown to be closely related to global questions of differential and algebraic
geometry [1-3].

Given a supersymmetric quantum field theory, one can define a quantity,
Tr(—1)F (where F is the fermion number) [1] which when properly regularized,
counts the number of bosonic states minus the number of fermionic states in the
Hubert space of the theory. The properties of supersymmetry however, imply that
this supersymmetric index depends only on the zero energy states due to the fact
that all non-zero energy states appear in bose-fermi pairs. Furthermore, Tr(— 1)F

is invariant under continuous deformations of the hamiltonian, and therefore is a
topological index for the full quantum theory [1].

The fact that Tr(— 1)F is a topological index was used in [1] among other
things to relate the possibility of supersymmetry breaking for supersymmetric
σ-models to the vanishing of certain topological invariants of the manifold on
which the σ-model is defined.

In this paper, we show that if we consider quantum mechanical super-
symmetric systems (i.e., field theories in 0+ 1 dimensions), and use Tr(— 1)F as a
topological invariant, it is possible to calculate the index density for the Atiyah-
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Singer index theorem [4-6] for the classical complexes, and their corresponding
G-index generalizations.

The organization of the paper is as follows: In Sect. II, we give a quick review
of the properties of Tr(—1)F that we will use. Section III presents the basic
supersymmetric theory from which all the results can be obtained. Section IV
contains the derivation of the index theorem for classical complexes. The
conclusions are presented in Sect. V.

II. Quantum Mechanics, Supersymmetry and Tr( — 1)F

The supersymmetry algebra in 0 + 1 dimensions is defined by :

{Qi,Q*j}=2δίJH, ίj =!,...,#,
(2.1)

where H is the hamiltonian of the system, and Q\ i=l, . . . ,JV are the super-
symmetric changes. Since in 0 + 1 dimensions there is no spin, we have to define
the fermion number operator (— 1)F by requiring that it anticommutes with all the
elementary fermion fields. For any of the N charges in (2.1) we have (~l)FQi

= — Qi(— 1)F. Since our arguments depend only on the existence of super-
symmetric charges, we will concentrate on just one of the <2's. If instead of using Q

and g*, we define the real operator }/2S = Q + Q*, it follows that:

S2=H. (2.2)

Let |E> be an eigenstate of the hamiltonian H with energy eigenvalue E = 0.
Then, acting with S on |£> we get another eigenstate of H, S |£>, with the same
energy, and opposite fermion number with respect to |E), and the new state is non-
vanishing because EΦO. Thus, all states with non-zero energy appear in Fermi-
Bose pairs, furnishing a two dimensional representation of supersymmetry for
each energy level E. If we consider now the states with E = 0 : |β>, then H |β> =0,
and S|Ω>=0; therefore, the zero energy states provide one dimensional repre-
sentations of supersymmetry, and the number of zero energy bosonic states is not
necessarily balanced by the number of fermionic ones. If we now compute
Tr(- 1)F, or the regularized trace, Tr(- l)Fe~βH, it follows that [1] :

Tr(-l)V-'* = *Γ0-*ro, (2.3)

where nE

B

 = Q(F) counts the number of bosonic (fermionic) zero energy states. To
show that Tr(— 1)F can also be understood as the index of an operator acting on
the Hubert space of the system, we go back to the description of S in terms of Q
and Q*. Splitting the Hubert space into bosonic and fermionic subspaces:
J^ = ̂ fB@J^F, it follows that S is an off-diagonal operator with respect to this
splitting and that β|φ>=0, Q*|^>=0 define the bosonic and fermionic zero
energy states, respectively. Since Q is the adjoint of β* with respect to the Hubert
space norm, it follows that [1] :

Tr(-l)F = Kerρ-Kerβ*. (2.4)
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Since the index of an operator is invariant under small continuous defor-
mations, Tr(— 1)F is invariant under continuous changes of the parameters of the
theory which do not change the asymptotic behavior of the hamiltonian for large
values of the fields. Therefore, if in some reliable approximation we can calculate
Tr(— 1)F perturbatively, we will obtain the index density for the operator Q.

It will be useful in what follows to realize that (2.3) has a functional integral
representation [7]. In fact, Tr(— l)Fe~βH is just the partition function at "tempera-
ture" β'1 for an ensemble described by the density matrix ρ = ( — l)Fe~βH.
Standard arguments imply that

S^φ,ψ), (2.5)
PBC

with the functional integral taken over field configurations satisfying periodic
boundary conditions (PBC) with period β, and SE being the euclidean action of the
theory.

The outline of our rederivation of the Atiyah-Singer results for classical
complexes is as follows: We first find a supersymmetric quantum mechanical
system whose conserved supercharge Q is the operator whose index we want to
calculate, and then we compute the ^-independent term of the functional integral
(2.5), which automatically yields the index density for the operator Q.

It is remarkable that the index theorem for the classical complexes (De Rahm,
Dirac, signature and Dolbeault complexes) can be obtained from a single
supersymmetric system, namely the supersymmetric non-linear σ-model.
Furthermore, by a slight modification of the non-linear σ-model, it is possible to
find as well the G-index theorem for the classical complexes.

III. The Supersymmetric σ-Model

The supersymmetric form of the σ-model can easily be obtained by finding the
supersymmetric extension of the action for harmonic maps [8]. Let (Mn,g) be an
π-dimensional riemannian manifold and g any smooth metric on it. Throughout
this paper we will only consider riemannian connections on compact manifolds.
The bosonic σ-model is defined by the Lagrangian :

L=^βijWφψ9 Φ=£tΦ> (3.1)

where φ\t) are maps of IR or S1 onto the manifold M. The supersymmetric
extension of (3.1) is [8] :

(3>2)
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ψ* = M is a two component real spinor, and y° = σ2. The action (3.2) is invariant

under the following supersymmetry transformations [8]:

. 3ψ ' (3.3)
δψi=-iγ°φiε-Γi

jkεψjψk,

ε being a real two component constant anticommuting spinor. In this section, we
want to show that (3.2) contains all the ingredients necessary to compute the index
density for the classical complexes. To see this, we first canonically quantize the
theory. Shifting to a basis where 7° is diagonal, the canonical commutation
relations for the fermions are given by:

{ψ\ t/?*-7'} =glj(0), {ψ\ ψ *} = {ψ*\ t/)*J} =0. (3.4)

This implies that states without fermions are represented by functions on M,
states with one fermion ψf |Ω> correspond to one forms on the manifold and so
on. The Hubert space of the quantum theory is represented by the exterior algebra
on M: Λ*(M)ί. Using Noether's theorem to calculate the supersymmetric charges
associated with (3.2), (3.3), one finds that Q and g* acting on Λ*(M) correspond
identically to the exterior derivative and its adjoint, d and d*, so that the
Hamiltonian is just the Laplacian on forms H = dd* + d*d. Hence the space of zero
energy bosonic (fermionic) states is given by the set of even (odd) harmonic forms
on Mπ, and [1]

n

where χ(M) is the Euler number of M, and bi is the zth Betti number.
To obtain the Hirzebruch signature, it suffices to notice that (3.2) has a discrete

symmetry ^-^(y5ψOα, i.e. ψ^ψ*1, ψ*l-+ — ψl. If Q5 is the operator implementing
this symmetry, it easily follows that TrQ5e~βH also depends only on the zero
energy states. Geometrically, the action of Q5 on A*(M) corresponds to the
interchange of φ. and ψf. Thus, it transforms p-forms into n — p forms. Thus, Q5 is
the Hodge ^-operation or Poincare duality, and [1]

ΊΐQ5e~βH = τ(M) = nE^°(Q5= + l)-π£=0(β5 = -1), (3.6)

where τ(M) is the Hirzebruch signature of M. Equation (3.6) is a bit different from
(2.5), but it is also easy to obtain a functional integral representation for it. In this
case, we have a "finite temperature" ensemble described by a density matrix
ρ5 = Q5e~βH. The functional integral is the same as in (2.5), but one has to integrate
over periodic boundary conditions for the scalars φl and negative chirality spinors
(y5ψ

l= —ψ1), and antiperiodic boundary conditions for positive chirality spinors

The Dirac operator can be obtained by reducing (3.2) from JV = 1 to N = ̂
supersymmetry. What this means is that we consider the theory defined by (3.2)

1 To be precise, Λ*(M) is a SO(n) vector bundle over M. The space of wave function of our system is
the space of sections of Λ*(M\ i.e. Γ(Λ*(M))
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and impose the condition ιp\ = ψl

2 = ψ1/ J/2. Then, the curvature term drops out
due to the Bianchi identity, and the lagrangian reduces to

L=^gίj(φ)φψ-i- lβij(φ)ψ^. (3.7)

Using Noether's theorem again, it is easy to show that the supersymmetric
charge one obtains os precisely the Dirac operator on the manifold if). If the
manifold admits a spin structure, we can compute (2.5) for (3.7) in order to obtain
the index for the Dirac operator. If there is no spin structure, then something very
similar to the SU(2)-anomaly occurs [9], and the functional integral is equal to
zero due to the fact that the fermion pfaffian does not have a well defined sign.

Finally, to obtain the Dolbeault index (the index of d on a Kahler manifold
[11]), we assume that the manifold Mn, on which the σ-model is defined, admits- a
Kahler structure. This simply means that the manifold can be covered with
complex coordinate charts, with the transition functions being holomorphic, and
with the line element satisfying

(3.8)

with

d*9λμ = dλQ^ δ*<3λ-μ =
 d^λa > (3 9)

α,α=l, . . . ,n the complex dimension of the manifold, and zα is a set of complex
coordinates. Under these conditions, it is possible to show that the σ-model has
two supersymmetries [10], and that the Kahler condition is both necessary and
sufficient in order to have N = 2 supersymmetry. Given the Kahler structure of the
manifold, we can refine the exterior algebra Λ*(M) so that

Λ*(M)= Θ Λp *(M), (3.10)
p,q = 0

Λp'q(M) being the set of form which are p-times holomorphic and g-times
antiholomorphic, i.e. Ap>q(M) is generated by dzai Λ ... Λ dzap dzβί Λ ... Λ dzβq, with
oc1 <... <ap βί <... <βq. This also implies that after canonical quantization, the
fermionic creation (annihilation) operators can be divided up between those that
create (annihilate) antiholomorphic or holomorphic indices. Hence, we can
compute Ύr(—l)Fe~βH restricted to the Hubert space sector which contain only
antiholomorphic forms, i.e. we define

Ίτ'(-l}Fe-βH= £ &°'«(-l)« = index(J). (3.11)
4 = 0

Here Tr' means that the trace is restricted to antiholomorphic forms and δ, d are
such that ifωeΛp'q, dωeΛp+1>q and 3ωeΛp>q+ί, so that d = d + d.

The G-index theorems for the classical complexes can be obtained from a
minor change of the σ-model (3.2). Let us assume that the manifold M admits a
Killing vector K\φ)\ then the following lagrangian is supersymmetric [12] :

12

T 5 =σ z , (3.12)
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and the supersymmetry transformations are:

SIP_\ . (3.13)
δψl= — ίy°φlε — Γl

jkεψjψk — λy5K
lε.

The supersymmetric algebra one obtains is different from (2.1) due to the
presence of a central charge [18]. To see what this means geometrically, we again
canonically quantize (3.12). The Hubert space is still Λ*(M\ but the action of the
supersymmetry charge on Λ*(M) is not d, but rather dλ = d + λί(K), where i(K) is
interior multiplication with the Killing vector K. (The dλ is one of the super-
symmetry operators introduced in [2] to study the connections between super-
symmetry and Morse theory.) Then, d\ = — d*2 = Λ£(K), [£(K) is the Lie derivative
with respect to K, and plays the role of the central charge] and Hλ = dλdf + d*dλ.
The zero energy states of H are given by dλΩ = d*Ω = Q, thus £(K)Ώ = 0, i.e., the
zero energy states oϊH are concentrated on K-invariant forms which are harmonic
with respect to dλ, ά*λ (in this subspace dl = d*2=0). This result implies that if we
compute Tr(— l)Fe~βHλ [Hλ is the hamiltonian associated with (3.12)], we obtain
the Lefschetz number of the De Rahm complex: L(K).

In order to obtain the signature of K, notice that (3.12) has the discrete

symmetry ψ'^σ.ψ1, σ t = I . Here σ< is essentially the same thing as Poincare
\1 O/

duality, so, if we call βx the operator producing this discrete symmetry, and repeat
the arguments that led to the Hirzebruch signature, we obtain:

ΎrQ1e~βH* = sigΆ(K) = Lsίgn(K). (3.14)

Finally, repeating the arguments which led to the indices of the Dirac and
Dolbeault complexes for the appropriate restrictions of (3.12), it follows that
Tr(— l)Fe~βH* gives their Lefshetz numbers with the proviso that K must generate
an orientation preserving spin isometry for the Dirac case or a holomorphic
isometry for the Dolbeault complex.

The only thing left to obtain the index density for the operators of interest here
is to evaluate their functional integral representations. This will be done in the next
section.

To summarize, we have shown that the elliptic operators defined by the
classical complexes are given either by the Hamiltonian or certain other symmetry
operators of a 0 + 1 dimensional supersymmetric field theory. This allows us to
identify and interpret the index of the operators in field theoretic terms, namely, in
terms of the ground states of the theory. Once this identification has been made, we
can represent the index operator in a very compact form as a functional integral
for the given field theory. This can be understood as a systematic and compact way
of rewriting the computation of the index using the heat kernel of the relevant
operator [5,6]. The fact that the field theory we have to use is supersymmetric is
crucial in identifying the operators of interest in terms of a field theoretic
Hamiltonian, in proving that the index will be invariant under continuous
deformations, and in furnishing a systematic way of evaluating the index densities
using standard methods in perturbation theory.
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IV. Computation of Index Densities

We will start by deriving the Gauss-Bonnet formula for the Euler number. As was
shown in the last section, this entails the computation of the functional integral
(2.5) for the Lagrangian (3.2). In a basis where y° is diagonal, (3.2) can be rewritten
in the more convenient form:

_ 1 - i ' j . &D j 1 #f ^ k t
2 lj at lj 4 ljk^

The integral (2.5) is over periodic configurations for the bosonic and fermionic
fields, and it is independent of the parameter β therefore we can expand φ, ψ in a
Fourier series with frequencies 2πn/β. By making β very small, the mass gap of the
non-constant modes can be made arbitrarily large, so that the only strongly
coupled modes are the constant configurations, while the non-constant modes can
be treated on a perturbative basis. Thus the functional integral splits into an
integral over constant bosonic and fermionic configurations (a finite dimensional
integral) and an integral over non-constant configurations. The latter can be
evaluated in perturbation theory, and its first term is given by the ratio of the
fermionic and bosonic determinants on the gaussian approximation to the action
for non-constant modes. The ratio of these determinants is 1 due to the
supersymmetric Ward identities which imply that the zero point fluctuations of
bosons and fermions cancel out exactly put in a different way, the eigenvalues of
the quadratic approximation to the action for both bosons and fermions are the
same and with the same multiplicity. Thus in the small /Mimit, and after rescaling
the constant fermionic configuration by a factor of β~1/4, we get:

— **•''k/'Ψ w w w , (4.2)

where d is the dimension of the manifold. If d is odd, it is easy to see that
Ύr(—ί)Fe~βH = 0 because we cannot saturate the grassmann integrals with any
term appearing in the expansion of the exponential. This is as it should be, because
the Euler number of an odd dimension compact manifold is always zero. For the
even case, it is trivial to show that :

.^»-^»RίιMι/ι...ΛWnWιι,d = 2Λ, (4.3)

which is the Gauss-Bonnet formula [13]. In the case of a four dimensional
manifold, we get the well known result :

x(M)=~KbcAfcΛ#cd (4.4)

(Rab is the curvature 2-form in a vierbein basis).
To get the index density for other complexes requires some more work. Let us

illustrate the basic ideas by computing the index density for the Hirzebruch
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signature. In this case we have to evaluate

τ(M) = τrQse-fs = J (dφ)(dψ2) J (dVl)exp(-S£). (4.5)
PBC ABC

Since fermions of the form have y5 = — 1, they are integrated over with
V/^2/

periodic boundary conditions (PBC) and fermions of the form 1 with y5 = + 1

are integrated over with antiperiodic boundary conditions (ABC). In this case if we
try to compute τ(M) as we did before for χ(M)9 we find that ψ[ cannot have
constant configurations due to the boundary conditions, so that for constant φl

and ιpl

2 and ψ\ = 0 the action vanishes identically. This is not surprising, because
these particular constant configurations are solutions to the classical equations of
motion derived from (3.2) with zero action. Therefore, in order to compute the
leading contribution to (4.5), we have to expand the lagrangian (3.2) around a
constant background configuration (</>0, v/20)

 UP to second order in small fluc-
tuations, evaluate the functional integrals in the gaussian approximation, and then
integrate over all the constant configurations. The last step necessarily requires
that we integrate only over non-constant small fluctuations in order to eliminate
overcounting. Since the functional integral is invariant under coordinate repara-
meterizations of the manifold (φl transform as a coordinate, and ψl as a vector), we
find it convenient to perform the expansion of the action S(φ, ψ) around constant
background configurations in terms of normal coordinates. This can be done
either by using superfield methods [14], or by expanding directly from the action
(3.2) in terms of component fields. After a short computation, one obtains :

L(2]= \gitf>o)W+ ^2£tήβttΦo)+ ^vί^v^o)

' (4-6)

where ξl and χl

2 are small fluctuations around φ0 and ψ20. We do not need to
expand ψ2 because there are no constant ιp1 configurations and the action is
automatically second order with respect to ψ\. Finally, before writing down the
result, we have to address the question of how to normalize the determinants that
will appear after we integrate over ξ, χ, and ψ. There are two ways of answering
this question. The first is to notice that we are interested in the contributions which
have a non-trivial dependence on the curvature, and therefore we lose nothing if
we normalize with respect to the same determinants with the curvature set equal to
zero. The second, and probably more rigorous, is to realize that for example the
functional integral over ψ\ is equivalent to computing the standard partition
function at temperature β~ 1 for a free gas of fermions moving in one dimension,
with masses determined by the eigenvalues of the curvature (a similar argument
applies also for the bosonic part of the functional integral); using elementary
methods in statistical mechanics it is clear that the partition function calculated in
this manner has no divergences and is free of normalization problems. Doing the
computation by these two different methods, we get exactly the same answer,
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which is (after taking care of the factors of i/2π arising from the Feynman measure
in the functional integral) :

τ(M)= f 4Vol)J(dv>20)Π-£-, (4.7)
M α tannxα

where xα's are the skew eigenvalues of the curvature form

Formally, the constant anticommuting numbers ψa

20 are a realization of the basis
of 1 -forms on the manifold, and the integral over ψa

20 just projects out the term
proportional to ψ\0 V^o (n = <ϋm A^) in the expansion of the integrand in (4.7). In
a more geometrical way, let Ωab be the curvature two form, Ωab = Rabcde

cΛed/2. For
a riemannian manifold, Ωab is a 2-form taking values in the Lie algebra of SO(n) if

we formally skew-diagonalize — Ωab, and label the eigenvalues again by x , the
2π

polynomial :

(4.9)

defined by its power series expansion, defines a characteristic polynomial of the
frame bundle over M [15, 16]. Since xα is a 2-form for all α, L(M) contains only a
finite number of terms, the highest order one (the "top form"), being proportional
to the volume form of the manifold. The L(M) is known as the Hirzebruch
polynomial, and what we have shown is that the index of the signature complex is
given by the top form of the Hirzebruch polynomial. In the specific case of
4-dimensional manifolds,

β = b 2

+-b-, (4.10)

^2(^2) is the number of harmonic self-dual (antiself-dual) 2-forms.
The computation of the index density for the Dirac operator is analogous to

what has just been described with the difference that the background expansion
around constant field configurations of the lagrangian (3.7) is given by (4.6) after
setting ψx =0, so that the only contribution comes from the bosonic determinant.
The characteristic polynomial one obtains in this case is :

(4.11).
Vsmh(xα/2)

and its top form gives the index density for the Dirac operator. The A(M) is known
as the Dirac genus [15, 16]. Restricting (4.11) to the 4-dimensional case, we find
that ind(ιί>)=-τ(M)/8.

For the Dolbeault complex, we choose the manifold to be a Kahler manifold. If
we restrict the computation of Tr(— l)Fe~βH to the antiholomorphic part of the
Hubert space, the computation is exactly the same as for the Dirac index. In this
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case we only have to notice that the background expansion around constant
configurations has to be done using normal coordinates adapted to the Kahler
structure, and that the curvature 2-form, when expressed in terms of normal
coordinates, takes values on the Lie algebra of U(n) (d = 2n being the dimension of
the manifold), so that the U(l) part of the curvature will also contribute to the zero
point energy of the bosonic "oscillators" appearing in the expansion of the action
to second order. As in the Dirac case, the non-trivial contribution comes from the
bosonic determinant, and after a short computation, we get that the index density
of d is determined by the following characteristic polynomial (the Todd genus):

where the ωα's are the eigenvalue of:

ocβ O/TT dLβλμ. ' \ ' '
ZJl

In the 4-dimensional case it is easy to obtain that index (d) = (χ(M) + τ(M))/4.
It is remarkable that the four characteristic polynomials just derived can be

combined into a single formula, which is a particular form of the Atiyah-Singer
index theorem applied to elliptic operators defined on SO(rc) bundles over the
manifold Mn. To see this, we can translate the previous results into a more
geometrical language. In each situation, we have two SO(rc) bundles over Mn, F,
and F, and an operator transforming sections of F into sections of F, so that the
section of both F and F generate a representation (reducible or irreducible) of
SO (rc). The curvature of F(F) is given by the standard curvature 2-form but
considered now as taking values on the representation of the Lie algebra of SO(rc)
generated by F(F). Let xa be the eigenvalues of Ω/2π (Ω is the curvature 2-form
acting on the bundle). Then the Chern character is defined by the characteristic
polynomial (for more details and examples see [16]):

ch(F)=;>Vα. (4.14)
α

Then the index of any of the four operators considered above can be written in
the form [16]

1"d(0)=i «M)

where we have to pick out the top form on the integrand, and calculate the Chern
character and the Todd genus for the corresponding complexified bundles. If the
operator is d, F, and F correspond to even and odd forms for *, they are the self-
dual and atiselfdual forms for d they are the even and odd anti-holomorphic
forms and for ίj&, they are the positive and negative chirality spin bundles. If one
wanted to obtain the general form of the Atiyah-Singer index theorem, one could
proceed along the lines of the second part of [5], but this will not be done in this
paper.

We shall now derive the G-index generalization of the index theorem for
classical complexes.
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We first start by proving the Lefshetz theorem. Let K(φ) be a Killing vector of
the riemannian manifold (M, g\ and let Mi i = 1, . . . , m be the set of fixed points of
M. In principle, each Mi is a submanifold of M. From Sect. Ill, we know that :

L(K)= I (dφ)(dιp)πp\:-Sλ(φ9ψ) ] , (4.16)
PBC

where Sλ is the euclidean action defined by (3.12). Since the leading term is
independent of λ, we can take λ very large and β small. This implies that on a
perturbative expansion, the leading contributions come from the fixed points of K
so that:

L(K}= Σ f (dφWrtexp-SJίφtψ), (4.17)
i = l M,PBC

where St is the euclidean action of the standard σ-model (3.2) restricted to the
submanifold M .. Recalling the computation of χ(M) at the beginning of this
section we obtain :

L(K) = Σ Λ). (4.18)
ί= 1

For the other classical complexes, we first make the assumption that K has
non-degenerate isolated fixed points φ%Λ\ α = l,...,w. Then V{K. is an anti-
symmetric matrix of maximal rank. Since the manifolds we have to consider for
the other three classical complexes are even dimensional, this implies that V{K
does not have a vanishing determinant. At the fixed points, the action of the
isometry generated by K is just an SO(n) rotation in the tangent space, and
therefore it can be decomposed into products of commuting 2 x 2 rotations
through angles θ(^\ a=l,...9n/2 which are the skew eigenvalues of ^Kr To
understand what we are computing, let φs be the one parameter group of
transformations generated by the Killing vector K\ and 0* its pull-back operation
mapping E1 2^>El 2? where E1 2

 are the two bundles over M in which the elliptic
operator under consideration is defined. If H19 H2 are cohomology groups of the
elliptic complex, then the Lefshetz number of the given elliptic complex for φs is
defined by : 2

LE(φs) = ΎrψfHj - Tr(0s*H2) , (4.19)

or in a different way, HVH2 provide representation spaces for the isometry group
generated by K. Therefore Tr(0fί/V), i=l ,2 just computes the character of the
representation of the isometry group on the representation space Ht. Thus, in
order to calculate LE(φs) using the functional integral, it is only necessary to realize
that the role of s is played by ίλ, because in the way we have defined the action
(3.12) [the central charge, which is the generator of the isometry, is an anti-
hermitean operator for the supersymmetric algebra defined by (3.12)]. Therefore,
we first compute the functional integral representing LE(φs) for real λ, and then
analytically continue to imaginary values. This is a well defined operation, because

2 For more details and examples in G-index theorems, see [16]
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the bosonic and fermionic determinants appearing in the evaluation of the
functional integral are entire functions of λ in the complex /l-plane.

If we consider first Lspin(φs\ we have to compute

J (ΛW(dψ)exp- ldt(\giμi)φψ + ̂ V^V^y- ^K^-άv.K^ip^] (4.20)
PBC o \/ z df z z /

Taking again λ large and β small, the functional integral is dominated by the
contributions coming from the fixed point set of the Killing vector. Expanding
around the fixed points to second order on small fluctuations, computing the
determinants, and performing the analytic continuation on λ, we arrive at :

A similar argument applies for Lsίgn(φs) and LΌolb (φs) [for L sign(φs) we have to
compute Trβ^"^] and yields3

Σ Π'CotKα)/2), (4.22)

Equations (4.20)-(4.23) are the generalized fixed point theorems first derived by
Atiyah and Bott [17].

The extension of these results to fixed point sets consisting of non-trivial
submanifolds of M is straightforward. The only difference is that at each fixed set
we will have, apart from the contribution from the non-vanishing rotation angles
of the Killing vector, a factor proportional to the index of the corresponding
complex restricted to the fixed set manifold. Similarly, it is also easy to obtain the
corresponding formuli for discrete, rather than continuous, isometries.

Conclusions

This paper has been intended to give a pedagogical derivation of the Atiyah-
Singer index theorem for classical complexes. The method used requires only a
little mathematical background and a working knowledge of the properties of
supersymmetric quantum mechanical systems. It is rather remarkable that simple
supersymmetric systems: the N = 1 and N = \ supersymmetric σ-models, can give
us so much topological information about the topology of the manifold where it is
defined.

Throughout this work we have been assuming that the manifold is compact
and without boundary. We have not pursued the derivation of the boundary
corrections to the index theorems, although it seems likely that simple extension of
the methods used here may yield the index theorems for compact manifolds with

3 Lsign(</>s) was also derived in [2] using supersymmetry but with a different method
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boundary, and that similar methods to ours may prove helpful in deriving new
mathematical results.
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