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Recommended Books and Resources

Here is a collection of useful textbooks on supersymmetry.
e Wess and Bagger “Supersymmetry’

This is a strange little book, with chapters that are 2 pages long followed by several
pages of key equations. It’s not particularly good for learning the subject, but makes
a remarkably useful reference guide.

e Bailin and Love “Supersymmetric Gauge Field Theory and String Theory”
Probably the best book covering the basics of supersymmetric Lagrangians.
e Dan Freedman and Toine Van Proeyen “Supergravity’

As the name suggests, this book is mostly focussed on supergravity rather than global
supersymmetry. But it kicks off with a really excellent description of classical field
theory. The section on spinors in various dimensions is particularly useful.

e Steven Weinberg “The Quantum Theory of Fields, Volume III: Supersymmetry’

The third volume of Weinberg’s magnum opus covers supersymmetry. As always, it
contains many important things that are difficult to find elsewhere. As always, these
things are sometimes frustratingly buried in unconventional notation and dressed with
more indices than you can shake a stick at.

e John Terning “Modern Supersymmetry: Dynamics and Duality’

This is one of the few books (possibly the only book) that describes the quantum dy-
namics of supersymmetric field theories, rather than just their classical action. (Wein-
berg has a chapter on the Seiberg-Witten solution, but it feels like his heart isn’t in
it and any mention of Seiberg duality is noticeably absent.) There are, fortunately,
many lecture notes that make up for the deficiency. You can find links on the course
webpage.
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This is one of the more advanced courses in Part III. It assumes a familiarity with
quantum field theory, in particular the renormalisation group. You will also need to be
comfortable with some group theory.

Spinor Conventions

We work in Minkowski space with signature (+, —, —, —). Spinor indices are raised and
lowered with ¢® = %5 and * = e‘j‘ﬁzﬁg where the invariant, anti-symmetric tensor

s 0 1
P = P = —€ap = —€45 =
-10

Left-handed spinors are contracted as ¥y = ©¥*x, and right-handed spinors are con-

1S

tracted as ¥y = 14 ¥*. Sigma matrices are defined by
(o-u)aéc = (]-7 o-i)ao'c and (5’”)6[& = Eaﬁedﬁlggﬁ. — (1’ _o-i)da

and the generators of the Lorentz group in the left-handed and right-handed spinor
representation are, respectively,

{ _ _ NG v, _ :
(") = 2 ("7 = 0"5")) and (7")% = 1 (6"0" = 5"0")"



1 Introduction

Supersymmetry is the name given to a novel symmetry that relates bosons and fermions.
In many ways it is a surprise that such a symmetry could exist at all. This is because
bosons and fermions are, to put it mildly, different.

Bosons are gregarious. Put many of them in a box and they huddle together to form
a macroscopic quantum object called a Bose-Einstein condensate. In contrast, fermions
are loners, an isolation enforced by the Pauli exclusion principle. Put many fermions
in a box and you get a more familiar, but ultimately even stranger, state of quantum
matter called a Fermi surface.

Within the framework of relativistic quantum field theories, the difference between
fermions and bosons is even more stark. Fermions are matter particles. Bosons are
force carriers. Any symmetry that relates the two must somehow entail a unification
of matter and force.

Of course, we know from our earlier lessons on Quantum Field Theory that the dis-
tinction between bosons and fermion can be traced to something that is, in some sense,
rather minor. They differ only by the simple matter of A/2 in their angular momen-
tum, with the spin-statistics theorem then doing the heavy lifting that ensures the
resulting particles have such different properties. However, this too highlights just how
unusual supersymmetry must be. The angular momentum of a particle is a property
that follows from the symmetries of spacetime. Anything that relates particles with
different angular momentum must involve some kind of extension of the symmetries of
spacetime. And that sounds interesting!

All of this means that it’s not at all obvious that something like supersymmetry can
exist and we should, if nothing else, be curious about how it can come about. But why
else should we care? In the rest of this introduction, I give three reasons why studying
supersymmetric quantum field theories is worthwhile.

Reason 1: Strongly Interacting Quantum Field Theories

Quantum field theory is hard. This is particularly true when coupling constants, which
specify the strength of interactions, are not small. This means that we can no longer
understand the physics using the familiar methods of perturbation theory and Feynman
diagrams. In this case, the word “hard” typically means “no one knows how to solve
it”.
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Supersymmetric theories are not wildly different from other quantum field theories.
They have a carefully curated collection of fields, with some interactions tuned to take
certain values, but otherwise they exhibit many of the strongly coupled phenomena
expected of any other quantum field theory. The magic of supersymmetry, however,
is that in many cases we are able to make exact statements about the properties of
the theory. This is because supersymmetry places certain restrictions on the kind of
dynamics that can occur. Fortuitously, it turns out that these restrictions are not
strong enough to stop interesting things happening, but are strong enough to allow us
to solve certain aspects of the theory. In this way, supersymmetric field theories provide
an important collection of toy models that allow us to understand what quantum field
theory can do in regimes where we would otherwise have very little control.

Here is an example. The theory of the strong nuclear force, QCD, exhibits a re-
markable property known as confinement. Quarks are always trapped inside hadrons
and we never see isolated quarks on their own. There is no doubt that the theory of
QCD has this property — we can see it clearly in numerical simulations — but we are
a long way from being able to prove confinement from first principles. However, there
are supersymmetric gauge theories, similar to QCD but with slightly different matter
content, where confinement can be proven analytically. (This follows from the famous
Seiberg-Witten solution of N' = 2 supersymmetric theories.) While the supersymmet-
ric proof of confinement is not directly applicable to real-world QCD, it nonetheless
gives us good intuition for how confinement might proceed in that context.

These lectures will very much be given in the spirt of using supersymmetry to tell
us interesting things about strongly coupled quantum field theories. We will learn
about topics that exist for real world QCD, such as confinement and chiral symmetry
breaking, and see how these manifest themselves in more tractable supersymmetric
theories. We will also learn about novelties that appear not to be of relevance for
QCD but give us an insight into what strongly interacting quantum field theories can
do. Foremost among these novelties is the concept of duality, the idea that two very
different looking quantum field theories may, in fact, describe the same physics.

Reason 2: Mathematics

As our understanding of supersymmetric field theories grew, increasingly sophisticated
mathematical constructs were found lurking within them. These are primarily, but not
exclusively, ideas from geometry.

This link between supersymmetry and mathematics starts with some simple quantum
mechanical models whose solutions give new perspectives on, among other things, Morse



theory and index theorems. But the real fun starts when we turn to supersymmetric
field theories. Understanding supersymmetric field theories in d = 1 4+ 1 dimensions
led to the discovery of mirror symmetry, a relationship between topologically distinct
manifolds. As we move to higher dimensional quantum field theories, we find ever more
elaborate structures, some of which are known to mathematicians and some of which
are novel. It is clear that there is much more to uncover.

We won’t have anything to say about the connection to mathematics in these lectures,
although we will stumble upon the concept of Kdhler geometry as we proceed which at
least gives a feel for how interesting geometric concepts arise naturally from supersym-
metry. The companion lectures on Supersymmetric Quantum Mechanics have more
of an eye towards the mathematical aspects of supersymmetry, albeit without getting
very deep into the subject.

Reason 3: Our World

The million dollar question is: does supersymmetry have anything to do with our
world? The rather disappointing answer is: we don’t know.

There is certainly no experimental evidence that supersymmetry is a symmetry of
nature at the fundamental level. Moreover, it’s not for want of trying. To fill in the
details, Il first explain what it would mean for our world to be supersymmetric. Then
I'll explain what reasons we have (or had!) for thinking that this might be the case.

In any supersymmetric theory, particles come in pairs — one a boson, the other a
fermion — and this pair of particles share many of their properties, such as their masses
and the forces that they experience. You don’t need to build an LHC to realise that
our world most certainly does not have this property! There is no bosonic particle
with the same mass and charge as an electron; no massless fermionic particle with the
same properties as the photon. (No, the neutrino doesn’t do it!) There is, in short, no
supersymmetry.

However, not all symmetries are manifest in the world around us. This is because
of the phenomenon of symmetry breaking in which the dynamics of the theory make a
choice which masks the underlying symmetry. There are many examples of symmetry
breaking that we know take place, some mundane and familiar, others more exotic. Here
are two. In a magnet, all the spins align in a given direction, breaking the underlying
rotation symmetry. In the Standard Model, electroweak symmetry is broken by the
Higgs boson ensuring, among other things, that the (left-handed) electron and neutrino
look very different to our low-energy eyes despite the fact that they are indistinguishable
at high energies.
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It may well be that supersymmetry is a symmetry of our world but is broken and
so hidden at low-energies. If this is the case, the breaking comes with an energy scale
that we will call Myus,. All of the superpartners — the other half of each boson/fermion
pair — would get a mass that sits somewhere around Mg,s,. So to answer the question
of whether supersymmetry exists in nature we must also address the partner question:
what is the scale of Mgy, ?

For many years, supersymmetry was viewed as the most promising candidate for
physics beyond the Standard Model, with Mg,s, ~ 1 TeV. At this scale, supersymmetry
provides a compelling solution to the hierarchy problem (the question of why the Higgs
mass is not driven to higher scales by quantum fluctuations). Furthermore, if you adopt
this solution then it comes with a number of happy consequences, from the unification
of coupling constants to enticing candidates for dark matter.

However, with the advent of the LHC we have now explored the TeV scale and there
is no sign of the predicted superpartners. It’s not quite game over: it may well be that
these extra particles are lurking just around the corner, tantalisingly out of reach of
our current accelerator and will be found as we go to higher energies. But it’s certainly
fair to say that the parameter space of allowed theories has shrunk dramatically, as
have our reasons for believing in supersymmetry at the TeV scale. This means that if
supersymmetry is a symmetry of our world, it now appears to be broken at some scale
Mgysy 2 1 TeV. But where?

There is reason to think that supersymmetry might show up by the time we reach
the Planck scale My ~ 10" TeV. This reason is string theory. Of course, we don’t
know that string theory is the right theory of quantum gravity but it is presently the
only viable candidate where a microscopic quantum theory gives the Einstein equations
emerging at large distances. And string theory appears to require supersymmetry. (I
include the word “appears” here because there are some open questions about bosonic
(i.e. non-supersymmetric) string theory that we don’t have a good handle on and it
may be premature to throw this out as a viable theory.)

So if you buy into string theory, then you’ll most likely want supersymmetry to be
manifest by the time you get M. And, as we've seen above, it looks like it should be
broken at some scale M,sy 2 1 TeV. But there are 15 orders of magnitude between the
TeV scale and the Planck scale. Where in this range should we expect supersymmetry
to be broken if not at the TeV scale, or just above it, to provide a solution to the
hierarchy problem? Sadly, I don’t think that we have any good idea, and there are



no hints from nature that it is more useful to have Ms,s, at some large scale > TeV
rather than another.

This leaves us with the current situation, one of no small befuddlement about what
role, if any, supersymmetry has to play in our world. Given this, in these lectures we
won’t make any attempt to describe how supersymmetry may appear in our world.
In particular, we will not devote effort to constructing supersymmetric versions of
the Standard Model (the simplest is known as the MSSM where the first M stands
for “minimal” and you can guess the rest) nor will we describe the many subtleties
that come with how supersymmetry might be broken and how this manifests itself.
Instead we will focus on places where supersymmetry has proved invaluable, viewing
the theories as toy models to guide us in our understanding of quantum field theories.

1.1 A First Look at Supersymmetry

To motivate some of what lies ahead, we’ll jump in with a particularly simple super-
symmetric theory. The theory consists of a single, complex scalar ¢ together with a
2-component Weyl fermion v,. (If you're unfamiliar with Weyl fermions, we’ll describe
their properties in detail in Section 2.1.)

The following action has kinetic terms for these two fields, together with some care-
fully tuned interactions

= ow ] 10w 10°WT -
— 4 il — bt |20 -z -z
S = /d X [aﬂd) Mo — a0 ' 9o 2 02 Y 2 0pi2 Y (1.1)
Here o* = (1,0") with ¢ the usual collection of three Pauli matrices. Note that

there is a relation between the scalar potential V(¢) = |[IW/(¢)|*> and the scalar-fermion
interactions, both of which are dictated by a function W (¢) known as the superpotential.
If we want a renormalisable theory, this function should be no more than cubic

1 1

W(¢) = 5md” + SA0"
2 3

This ensures that the potential is a quartic polynomical, V(¢) = |m¢ + A¢?|?, while the

scalar-fermion interactions take the usual Yukawa form ¢iy1). Crucially, the function

W (¢) should be holomorphic: it depends only on ¢ and not on ¢'. This fact will take

on increasing significance as these lectures progress, but for now we will just take this
as given.



Even without doing any detailed calculations, we can see that there’s something
curious about the action (1.1): the boson ¢ and the fermion i have the same mass
|m|. Usually in quantum field theory, we shouldn’t ascribe too much meaning to such
an observation since masses receive quantum corrections and there’s no guarantee that
the physical masses of two distinct particles will coincide just because the masses in
the Lagrangian are equal. However, for the particular action (1.1), it turns out that
the equality of bosonic and fermionic masses persists in the full quantum theory. This
arises because the action enjoys a rather surprising symmetry, with the infinitesimal
variation given by

oWt

6 =V2ep and 0 = V2i0"€D,p — V2e oot

(1.2)

This is our first example of supersymmetry. It is a symmetry that relates the bosonic
field ¢ with the fermionic field ¢. Because 1 is a Grassmann field, while ¢ is not,
the infinitesimal object e, which parameterises the transformation, must also be a
Grassmann-valued Weyl spinor.

You can’t tell just by staring at the action (1.1) that it is invariant under the super-
symmetry transformation (1.2). Instead, it takes a calculation, one that turns out to
be a little bit of a headache. (Some balm for this headache will be offered in Section
3.2.3.)

The action (1.1) is the simplest supersymmetric theory in d = 3 + 1 dimensions. It
is known as the Wess-Zumino model. The existence of such a symmetry opens up a
number of questions. What, if anything, is the symmetry good for? Are there other
theories that also exhibit such symmetry? What properties might they have? All of
these will be answered as these lectures progress.

There is also another question that might have occurred to you: why is it such a pain
to see that the action (1.1) is invariant under supersymmetry? Usually, the existence
of symmetries in an action jumps out at you. Indeed, one of the main advantages of
working with the Lagrangian approach, rather than the Hamiltonian approach, is that
all symmetries are manifest. Typically you need do little more than ensure that various
indices are contracted in the right way. This suggests that there may be a better way
to write the action (1.1) that makes supersymmetry as obvious as any other symmetry.
And there is. Our first task in these lectures — one that will carry us through much of
Sections 2, 3 and 4 — is to better understand the structure behind supersymmetry and
the corresponding supersymmetric actions.



2 The Supersymmetry Algebra

The purpose of this section is to describe, in mathematical terms, what supersymmetry
actually is. Usually in physics, we think of symmetries as associated to groups. But,
at least for continuous symmetries, these groups have an underlying algebra and often
that contains all the information that we need. So it is with supersymmetry. We will
describe the algebra that underlies supersymmetry and start to explore some of its
representations.

I should warn you that this section will be a little dry in flavour. There will be few
fields and certainly no dynamics. These will come in later sections. But this section
lays the necessary groundwork for the stories that are to come.

2.1 The Lorentz Group

Minkowski space R'3 is the stage for relativistic quantum field theory. This space
comes equipped with the Minkowski metric

N = diag(+1, -1, -1, —1)

The set of symmetries of Minkowski space include Lorentz transformations of the form
x* — A* x¥ where

ATnA =1

Embedded among these are a couple of discrete transformations: parity with A =
diag(1,—1,—1,—1) and time reversal with A = diag(—1,1,1,1). The transformations
that are continuously connected to the identity have detA = 1 and A% > 0 and form the
Lorentz group SO(1,3). (The restriction to A% > 0 is sometimes written as SO™(1,3).)

Our main goal in this section is the spell out some properties of the spinor represen-
tations of the Lorentz group. In fact, strictly speaking the group SO(1,3) doesn’t have
any spinor representations. However, there is a closely related group called Spin(1,3)
that does admit spinors. This is the double cover, in the sense that

SO(1,3) = Spin(1, 3)/Zs

where that Zs is the famous minus sign that spinors pick up under a 27 rotation, a
minus sign that vectors like z# are oblivious to. The fact that there are spinors in our
world is the statement that the true symmetry group is Spin(1, 3) rather than SO(1, 3).



When we introduced spinors in the Quantum Field Theory course, we did so by first
looking at the algebra so(1,3) that is shared by both groups Spin(1,3) and SO(1, 3).
A Lorentz transformation acting on a 4-vector can be written as

A =exp (—%ww,]\/[“”> (2.1)

where w,,,, are six numbers that specify what Lorentz transformation we’re doing, while
M* = —M"F are a choice of six 4 x 4 anti-symmetric matrices that generate the
different Lorentz transformations. The matrix indices are suppressed in the above
expressions; in their full glory we would write (M*)” . So, for example

0100 00 0 O
(MOl)pUZ@'(éﬁgE) and (M”)”gzi<3folg> (2:2)

000O0 00 0 O

(Note that the generators differ by a factor of ¢ from those defined in the Quantum
Field Theory lectures. This is compensated by an extra factor of ¢ in the exponent
(2.1).) The matrices generate the algebra so(1, 3),

(M2, MP7) = i (" MM — " MV 4 7 M — 3 D) (2.3)

In the lectures on Quantum Field Theory, we then constructed the spinor representa-
tions by first looking at the Clifford algebra of gamma matrices, {v*,7"} = 2n** and,
from these, constructing a new representation of the Lorentz algebra (2.3). Here, we’ll
take a slightly different path. It will be useful to first extract a little more information
from the algebra (2.3).

The six different Lorentz transformations naturally decompose into three rotations
J; and three boosts K, defined by

1
Ji = §€ijijk and Kl = M()i
where these 7,k = 1,2,3 indices are summed over, and €153 = +1. The rotation

matrices are Hermitian, with J! = J; while the boost matrices are anti-Hermitian with
K J = — K. This ensures that the rotations in (2.1) give rise to a compact group while
the boosts are non-compact. From the Lorentz algebra, we find that these generators
obey

i, Ji] = i€, i K| = teu Ky, [KG, K] = —iegndk

The rotations form an su(2) sub-algebra. That, of course, is to be expected and is
related to the fact that SO(3) = SU(2)/Zs.

— 10 —
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We can, however, find two mutually commuting su(2) algebras sitting inside so(1, 3).
For this we take the linear combinations

1 1
Both of these are Hermitian, with Al = 4; and B} = B;. They obey
[Ai, Aj] = ieiwAx . [Bi, Bj] = tei B, [Ai Bj] =0 (2.4)

But we know about representations of SU(2): they are labelled by an integer or half-
integer j € %Z which, in the context of rotations, we call “spin”. The dimension of the
representation is then 25 + 1. The fact that we can find two su(2) sub-algebras of the
Lorentz algebra tells us that all representations must carry two such labels

o : A |
(J1,J2) with ]1,j2€§Z (2.5)

and has dimension (2j;+1)(2j2+1). We'll flesh out the meaning of these representations
more below. But for now, we can identify the simplest such representations just by
counting: we have

scalar

left-handed Weyl spinor

Ni= O
o O

right-handed Weyl spinor
vector

self-dual 2-form

— O NI NI

~— — ~— ~— ~— ~—

O = W=

anti-self-dual 2-form

-]

We see that the smallest representations of the Lorentz group are the left- and right-
handed Weyl spinors. What we call the physical spin of a particle is the quantum
number under rotations J: this is j = 71 + J».

There’s something a little odd about the our discovery of two su(2) sub-algebras.
After all, it certainly isn’t true that the Lorentz group is isomorphic to two copies of
SU(2). This is because SU(2) is a compact group: keep doing a rotation and you will
eventually get back to where you started. Indeed, two copies of the group SU(2) give
rotation group of Euclidean space R*.

Spin(4) = SU(2) x SU(2) with SO(4) = Spin(4)/Z,

In contrast, the Lorentz group is non-compact: keep boosting and you get further and
further from where you started. How does this manifest itself in the two su(2) algebras
that we’ve found in (2.4)7

- 11 -



The answer is a little subtle and is to be found in the reality properties of the

generators A; and B;. Recall that all integer, j € Z, representations of SU(2) are real,
1
29
actually real, the representation is isomorphic to its complex conjugate). However, the

A; and B; in (2.4) do not have these properties. You can see in (2.2) that both J; and
K are pure imaginary. This, in turn, means that the generators A; and B, are complex

while all half-integer spin, j € Z + 5, are pseudoreal (which means that, while not

conjugates of each other
(Ai))" = —B;

This is where the difference lies that distinguishes SO(4) from SO(1, 3). The Lie algebra
so(1,3) does not contain two, mutually commuting copies of the real Lie algebra su(2),
but only after a suitable complexification. This means that certain complex linear
combinations of the Lie algebra su(2) x su(2) are isomorphic to so(1,3). To highight
this, the relationship between the two is sometimes written as

so(1,3) = su(2) x su(2)*
For our purposes, it means that the complex conjugate of a representation (71, j2)
exchanges the two quantum numbers
(J1,J2)" = (J2, J1)
11

272
the left- and right-handed Weyl spinors ( %, 0) and (0, %) are exchanged under complex

Both the scalar representation (0,0) and the vector representation (3, 5) are real, while

conjugation. This last statement will be important as we proceed. In the context
of quantum field theory, if a field appears in a theory then so too does its complex
conjugate. This means that if you have a left-handed spinor, you also have a right-
handed complex conjugated spinor.

2.1.1 Spinors and SL(2,C)

There is another way to discover spinors, this time one that doesn’t involve going
through the algebra. We will use the fact that there is an isomorphism between two
groups

Spin(1,3) = SL(2, C) (2.6)

To see this, we first note that we can write a point x* in Minkowski space as a 2 x 2
Hermitian matrix,

To+ T3 Ty — 1o
X =z,0!" = <

I +'LZE2 o — I3
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where we’ve introduced the 4-vector of 2 x 2 matrices,

, 01 0 — 1 0
ot =(1,0") with o' = , 0= ' , 00 = (2.7)
10 0 0 —1

The o' are, of course, the Pauli matrices. The matrix X is Hermitian: X = XT.
Moreover, there is clearly a one-to-one map between 4-vectors z* and 2 x 2 Hermitian
matrices. The Minkowski inner product is particularly natural in this language: it is

det X = (20)* — (21)? — (22)* — (23)* = 2"
Now consider an SL(2, C) transformation that acts as
X — X' =8Xx¢5" (2.8)

with S € SL(2,C). We have (X')I = X’ and det X’ = det X since det S = 1. This
means that the map (2.8) must be a Lorentz transformation.

In fact, it is not hard to see that we can implement all Lorentz transformations this
way and we’ll give an explicit construction of the generators shortly. For now, we can
just do some simple counting. A general complex 2 X 2 matrix has 4 complex entries.
The requirement that its determinant is 1 reduces this to 3 complex parameters, or 6
real parameters. This agrees with the dimension of the Lorentz group: 6 = 3 rotations
+ 3 boosts. Moreover, the SL(2,C) transformation S = —1 does not act on X, which
is the reason why SL(2,C) coincides with the double cover (2.6).

It is clear that the fundamental representation of SL(2,C) is not a 2 x 2 matrix: it
is a 2-component, complex object 1, = (11, 1) that transforms as

VYo — SPvs a,f=1,2

Clearly it is a complex two-dimensional representation. In terms of our previous clas-
sification (2.5), we take it to correspond to (%, 0): it is what we call a left-handed Weyl
spinor.

Given any complex representation of a Lie group, we can always form another rep-
resentation by taking the conjugate. This is equivalent to the original if we can find a
matrix C for which S* = CSC~!. In the present case, no such C exists and the ma-
trix S and its conjugate S* are inequivalent representations. We denote the complex
conjugate as

(%)T = QZc‘u
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We’ve adopted two notational flourishes to distinguish the two representations. First,
we use different indices o, 8 = 1,2 and ¢, 8 = 1,2 for the two different representations.
This is useful because the two indices are telling us that the objects transform in
different ways. In addition, we also add a bar over any object, like ¢, that transforms
in the conjugate representation. This allows us to identify these objects even when
we suppress the indices. (Note that a bar on a Weyl spinor simply means complex
conjugation while, as we learned in the Quantum Field Theory lectures, a bar on
a Dirac spinor means complex transpose together with multiplication by ~7°.) The
complex conjugate spinor then transforms as

ba = (SO0, @ b=1,2

L), Tt is a right-handed

In our previous classification (2.5) it is the representation (0, 5

Weyl spinor.

Some of the index conventions above (and below) differ from what you may have
seen in other contexts and it’s worth quickly explaining why. Suppose that we've got
a vector u that transforms in the fundamental of SU(N). We write the components as
U, with @ = 1,..., N. The vector u' transforms in the conjugate representation and we
would write these components as (u')?%, with the index raised and no dots in sight. This
reflects the fact that we can contract ' and u to form a singlet: (u')%u,. However,
the representations of SL(2,C) have a different structure and, as we’ll see shortly, you
can’t contract a spinor and its conjugate to get a singlet. That’s why we introduce
the strange looking dotted indices, rather than raising the index, to distinguish the
conjugate representation

Building Scalars from Spinors

The group SL(2,C) has the following invariant tensors

.~ 0 1 0 -1
€ =¥ = and €5 = €45 =
—-10 10

Note that the €, with indices lowered differs by a minus sign from €¢*?. This ensures
that one is the inverse of the other: eaﬁem = 05. This, in turn, means that when we
use epsilon symbols to raise and lower indices (as we will below) then if we choose to
raise an index and subsequently lower it again then we don’t get a minus sign for our
troubles.
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Given, say, two left-handed Weyl fermions ¢ and y, we can use the epsilon tensors
to form invariants. We define

Yx = €PPaXa = ax1 — Y1Xo

To see that these are, indeed, invariants under SL(2,C), we just need to perform a
transformation

vy — Sa”*k‘S'ﬁ‘seaﬁw(;XV = (det S)e”‘sw(;)@ =y (2.9)
where, in the first equality we've used the fact that S,7.S ﬁ‘seaﬁ = det S €, which you

can confirm simply by checking all the cases v,0 = 1,2. In the second equality we've
used the fact that det S = 1.

In some ways, the € symbols play a role for spinors that is akin to role played by the
metric n* for vectors. Of course, one key difference is that €%’ is anti-symmetric, but
this tallies nicely with the fact that, in quantum field theory, spinors are anti-commuting
Grassmann variables. We then have

YX = tax1 — Yix2 = —Xx1¥2 + X2t = XY
In particular, ¢ = 2191 is non-vanishing.

We can do something similar for right-handed fermions. However, a fiddly minus
sign rears its head. We define

X = €haXy = UiXa — ok (2.10)
With anti-commuting spinors, we again have 1)y = x¢. Note that the ordering of
the indices in (2.10) differs from (2.9). The reason for choosing this different ordering,

resulting in a minus sign difference in the definitions, is that it ensures that (1x)! = ¥y,
since

WX)T = (Y2x1 — ¢1X2)T = Yaths — Xot1 = VX

We can use the e symbols to raise and lower spinor indices, just as we use the Minkowski
metric to raise and lower vector indices. We have

Y=, o =y’ and Y% =My s = e;p0°
In this notation, the Lorentz scalars (2.10) become
YX =19 and Py = Pax”
Our fiddly minus sign difference between (2.9) and (2.10) has now transmuted into
the following rule: for left-handed spinors we should contract (undotted) indices in the

direction N\, while for right-handed spinors we should contract (dotted) indices in the
direction .
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We can ask how these new objects ® and 1® fare under Lorentz transformations.
We have

v — Gaﬁsngw = (SilTyIﬁwB

P o @9 by = (571 (2.11)
where the equality follows from the following algebra

Sa76a55ﬁ5 = = (ST)VQEO‘BSﬁ‘s = = 6‘“5555 = (571T)a7€75

with similar manipulations for the right-handed spinor. The matrices S™'7 don’t form
a new representation of SL(2,C); they are equivalent to the fundamental representa-
tion since, from above, we have eSe™! = S~'7. This means that the covariant and
contravariant left-handed spinors v, and ¢ transform in equivalent representations.
Similarly, the right- handed spinors 14 and 1® transform in equivalent representations.

Building Vectors from Spinors

A key take-away from our discussion above is that if you want to form a Lorentz scalar
then you need a pair of left-handed fermions or a pair of right handed fermions. Suppose
that we instead have one object of each type, say a left-handed spinor 1, and a right-
handed spinor ys. What kind of object can we then build? The answer is clear from
the quantum numbers of these representations:

This is the vector representation of the Poincaré group.

To explicitly construct the vector, we sandwich the Pauli matrices
(Uu)ad = (170i)ad
between two spinors. We write
Yo'x = ¥(0")aa X"

Note that, as shown above, the Pauli matrices ¢* should come with an index of each
type — one undotted, and one dotted — and both subscripts. Taking the conjugate, we

have (Yax)f = o).
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To see that the object does indeed transform as a 4-vector, we can contract this with
any other 4- vector z* to give )X x with X = z,0%. But we know from (2.8) and (2.11)
how each of these transforms: we then have

YXY = 0" XaaX® = (7SS X385 ) (RS = v Xy

The fact that ¥ Xy forms a singlet shows that ¥o*Y must transform as a vector. In
fancy maths words, we say that the Pauli matrices act as the intertwiner between the
different representations.

We can use the epsilon symbols to raise the spinor indices on the Pauli matrices o/, .
This gives us a closely related set of matrices that we denote

—p\do _ _af _Gf
(aH)* = e*e Tyi

The bar on & doesn’t denote anything to do with complex conjugation. The o* are

simply a different set of 2 x 2 matrices from o#. Note that the indices have not only been

raised, but also switched: o* has the undotted index first, while * has the dotted index

first. If we define € = i0? then, viewed as matrix multiplication, we have & = eo”e’.

A quick calculation shows that
(3")5 = (1, —o')d@
We can then similarly construct the vector
XT") = Xa(0")*a
This isn’t a new object: you can check that yoty = —ya*.

Generators of SL(2,C)

Finally we can give a description of the generators of SL(2,C). We define the anti-
symmetrised product of sigma matrices,

1
(") = § (0" — "),
These are linearly independent and so can be taken as a generators of SL(2, C). Because
of the anti-symmetry in p and v, there are six such generators which is the dimension
of the Lorentz group. Indeed, we can see explicitly that these generate the Lorentz
group by computing the commutator

[O_,uzx7 O_pcr] _ (nypo_;w - T]VUO'M) + n/,wo_z/p o n,u,po_ya)
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This reproduces the algebra of the Lorentz group (2.3) as promised. A left-handed
spinor then transforms as

. B
o — exp (—%wwa“l’> (0F (2.12)

where w,,, are the same set of six numbers that specify the Lorentz transformation
(2.1).
The conjugate representation is generated by
AN . v —v o
(6")% = Z(a“a —a'a")%
These too satisfy the algebra of the Lorentz group. Correspondingly, a right-handed
spinor transforms as

Y — exp (—%wwa’”’> .77/_)6 (2.13)
B

Note that, from the positioning of the indices of 6*¥, these act naturally as generators
on 1%, with the index raised.

2.1.2 Lagrangians for Spinors

We can now describe how to construct Lagrangians from a Weyl spinor. Suppose that
we have just a single left-handed Weyl spinor ¢ to play with. This necessarily comes
with its conjugate, a right-handed spinor ) = 1f. We can then form a kinetic term

SWeyl = — / d'x a0, (2.14)

Upon quantisation, this theory gives a single massless, left-handed fermion of helicity
—% and massless right-handed anti-particle of helicity of —i—%. The theory has a global
U(1) symmetry under which 1 — e*®; if the left-handed fermion has charge +1 then
the right-handed fermion has charge —1, as befits an anti-particle.

We can add a mass term for a single Weyl fermion. This is known as a Majorana
mass,

*
Sy = [ s T+ 50 (215)
In general, we can take m € C although any complex phase of m can be absorbed into
and, upon quantisation, the resulting particle has mass |m|. Importantly, the Majorana
mass explicitly breaks the global U(1) symmetry, so there is no quantum number to
distinguish particle from anti-particle. Upon quantisation, the theory consists of a
single massive spin % particle that is now its own anti-particle.
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Because the Majorana mass term explicitly breaks the U(1) symmetry, it is not
allowed if the U(1) is gauged. Relatedly, it’s not possible to write down such a term
for any fermion ¢ that transforms in a complex representation of a gauge group. It is,
however, possible to write down such terms for fermions in real representations.

Recovering Dirac Spinors

All this discussion of spinors and, so far, not a gamma matrix or Clifford algebra in
sight! Yet these played a central role in the discussion of spinors that we met in the
Quantum Field Theory lectures. What’s going on?

The Dirac spinor is not an irreducible representation of the Lorentz group in d = 3+1
dimensions. Instead, it consists of independent left- and right-handed spinors. In our
earlier notation:

(3,0)® (0,%) : Dirac spinor

We write a Dirac spinor as a 4-component object, consisting of a left-handed Weyl
fermion 1), and a right-handed Weyl fermion Y (note the index up),

()

We also introduce the chiral basis of gamma matrices

by 0 o#
W= <5u O) (2.16)

These obey the Clifford algebra {v#, 7"} = 2n*. In the Quantum Field Theory lectures,
we showed that the generators of Lorentz transformations for a Dirac spinor are

WZE b o 0
St =" (()UW

(As with our earlier definition of M*¥| this differs by a factor of 7 from the conventions in
the Quantum Field Theory lectures.) Under a Lorentz transformation, a Dirac spinor
transforms as ¥ — exp(—%wWS“”)\I/. This reproduces the transformations of Weyl
spinors that we saw in (2.12) and (2.13).
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The Dirac action that we met in our Quantum Field Theory lectures is
Sbirac = — / d'z iUy"0, U — MUW

where, for a Dirac spinor (but not a Weyl spinor!) the bar notation means ¥ = W¥f40,
Decomposed in terms of Weyl fermions, it becomes

SDirac = — / d*z et O, + ixot 9, x — M(x¥ + ¥Y) (2.17)

The first term coincides with the kinetic term (2.14) for a left-handed fermion. The
second term is simply a different way of writing this, with the derivative now acting
on a right- handed fermion; if you play around lowering and raising indices then the
second term can be massaged to look like the first.

The mass term in (2.17) is not of the Majorana type (2.15). First, the mass is
necessarily real, M € R, although it can be positive or negative. Second, because the
mass term involves two distinct Weyl fermions it preserves a U(1) symmetry, under
which the phase of 1 and x rotate oppositely. The result is that, upon quantisation,
the action (2.17) gives a particle of spin —i—% and charge +1, together with a distinct
anti-particle of spin —i—% and charge —1, both with mass |M].

It is possible to restrict the Dirac fermion W to have the same content as a single
Weyl fermion. In a general basis of gamma matrices, we do this by introducing a
charge conjugation matrix. But in the chiral basis (2.16), it’s particularly simple: we
just restrict Y = ¢ = ¢!. A Dirac spinor with such a restriction is called a Majorana
Spinor.

Throughout these lectures, we will have no need to resort to 4-component spinors.
We will write everything in terms of 2-component Weyl fermions.

2.1.3 The Poincaré Group and its Extensions

The continuous symmetries of Minkowski space comprise of Lorentz transformations
together with spacetime translations. Combined, these form the Poincaré group. Space-
time translations are generated, as usual, by the momentum 4-vector P*. Their com-
mutation relations with themselves and with the Lorentz generators M*"” are given
by

[P*, P =0 and [M*,P7) =i(Pty" — P'n") (2.18)
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The latter of these is equivalent to the statement that P* transforms as a 4-vector
under Lorentz transformations. These commutation relations should be considered in
conjunction with the Lorentz algebra (2.3),

(MM, MP7) = i (g MHT — " MP g7 MY — M) (2.19)
Together, (2.18) and (2.19) form the algebra of the Poincaré group.

It’s not unusual for quantum field theories to exhibit further continuous symmetries.
Say, a global U(1) symmetry that rotates the phase of a complex field, or perhaps
a non-Abelian SU(N) symmetry under which a multiplet of fields transforms. The
generators of these symmetries — which we’ll denote collectively as T — correspond to
some conserved charge or isospin and are always Lorentz scalars. This means that they
necessarily commute with the Poincaré generators,

[P*,T) = [M™,T] =0

One could ask: is it possible for something less trivial to happen, with the new genera-
tors transforming in some interesting fashion under the Poincaré group? For example,
this would happen if the additional generators T" themselves carried some spacetime
index. If this were possilble, the Poincaré group would be subsumed into a larger group.
And that sounds interesting.

A theorem due to Coleman and Mandula greatly restricts this possibility. Roughly
speaking, the theorem states that, in any spacetime dimension greater than d =141,
the symmetry group of any interacting quantum field theory must factorise as

Poincaré x Internal (2.20)

We won’t prove the Coleman-Mandula theorem here'. The gist of the proof is that
Poincaré invariance already greatly restricts what can happen in, say, 2 to 2 scatter-
ing, with only the scattering angle left undetermined. Any internal symmetries that
factorise, as in (2.20), put restrictions on the kinds of interactions that are allowed,
for example enforcing conservation of electric charge. But if the generators T' were
to carry a spacetime index then they would put further constraints on the scattering
angle itself and that would be overly restrictive, at best allowing scattering to occur
only at discrete angles. But if one assumes that the scattering amplitudes are analytic
functions of the angle then the amplitude must vanish for all angles and the theory is
free.

'The original Coleman-Mandula paper is from 1967 and entitled “All Possible Symmetries of the
S-matrix”. Witten’s “Introduction to Supersymmetry” lectures give a clear intuitive explanation of
the theorem. A full proof can be found Weinberg vol III.
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Like all no-go theorems in physics, the Coleman-Mandula theorem comes with a
number of underlying assumptions. Some of these are eminently reasonable, such as
locality and causality. But it may be possible to relax other assumptions to find inter-
esting loopholes to the Coleman-Mandula theorem. Two such loopholes have proven
to be extremely important.

e Conformal Invariance: The Coleman-Mandula theorem assumes that the the-
ory has a mass gap, meaning that all particles are massive. Indeed, it studies
symmetries of the S-matrix which is really only well defined for massive particles
where we don’t have to worry about IR divergences. For theories of massless
particles something interesting can, and often does, happen.

The first interesting thing is that interacting massless theories typically exhibit
scale invariance. This means that physics is unchanged under the symmetry
¥ — Ax*. The associated symmetry generator is called D for “dilatation”. This
can only be a symmetry of a theory that has no dimensionful parameters. In
particular, no masses.

The second interesting thing is more surprising. For reasons that are not en-
tirely understood, theories that exhibit scale invariance also exhibit a further
symmetry known as special conformal transformations of the form

ot — ata?

t — o
1—2a-x+a’x

This transformation depends on a vector parameter a* and the associated gen-
erator is a 4-vector K*. The resulting conformal algebra extends the Poincaré
algebra (2.18) and (2.19) with the non-trivial commutators

D, K" = —iK, , [D,P=iP*
(K", PY] = 2i(Dy — M)
[MH, K] = i (K07 — Ki”?)

Interacting conformal field theories crop up in many places in physics. In their
Euclidean incarnation, they describe critical points, or second order phase transi-
tions, that were the focus of our lectures on Statistical Field Theory. Ind =141
dimensions the conformal group has rather more structure and a detailed intro-
duction can be found in the lectures on String Theory. We’ll meet examples of
supersymmetric conformal field theories later in Section 6.4 when we discuss the
low-energy physics of certain gauge theories.
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e Supersymmetry: The second loophole to the Coleman-Mandula theorem is
supersymmetry. As you may by now have guessed, exploiting this loophole will
be the topic of the rest of these lectures.

2.2 The Supersymmetry Algebra

Supersymmetry evades the Coleman-Mandula no-go theorem because it is a different
kind of symmetry. In contrast to the symmetries discussed above, it is not characterised
by a Lie algebra. Instead it is characterised by a mathematical structure known as a
Z,- graded Lie algebra. For our purposes, this simply means that the algebra contains
both commutation and anti-commutation relations.

A generalisation of the Coleman-Mandula theorem to graded Lie algebras was given
by Haag, Lopuszanski and Sohnius. Roughly speaking, it says that the only possibility
is supersymmetry. We will now, finally, explain what this means.

Supersymmetric theories have a new conserved charge that is a left-handed Weyl
spinor Q,, together with its right-handed counterpart Q4. This is known as the su-
percharge. 1t is possible to have multiple supercharges, a situation known as extended
supersymmetry. We will discuss this in Section 2.4 and, for now, stick to just a single
complex supercharge. This is known as N’ = 1 supersymmetry.

At the heart of the supersymmetry algebra is the anti-commutation relation
{Qua, Qa} = 204, P, (2.21)

It is no surprise that a spinor should have an anti-commutator. But the structure of
this relation is interesting: it tells us that the supercharges should be viewed as the
square-root of spacetime translations! Our goal in these lectures is to understand what,
exactly, this means.

The full supersymmetry algebra comprises of commutation relations (2.18) and (2.19)
of the Poincaré group, which remain unchanged, together with the (anti)-commutation
relations of the supercharges. The first of these is

[M™,Qu] = (") )Qs and  [M™, Q%] = (6")%,Q" (2.22)

This is simply the statement that the supercharges transform under a Lorentz trans-
formation in the manner expected of operators that are Weyl fermions. To see this,
first recall from (2.12) that any spinor like @, transforms as Q, — U,’Qs where
U = exp(—%ww,a‘“’). But @), is also an operator acting on a Hilbert space and,
viewed through this lens, we get a different expression for how it transforms. Any
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state in the Hilbert space transforms as |¢) — V|¢) with V = exp(—iw,, M*"). Here,
M™ is the abstract generator of Lorentz transformations and its action on any state
depends on the quantum number of that state. Correspondingly, operators O trans-
form as O — VOV since this ensures that the matrix elements (¢/|O0|¢) remains
unchanged. Equating these two ways in which the supercharge transforms, we have
VQ,VT = (UQ),. The algebra (2.22) is the infinitesimal version of this transformation
law.

The remaining commutation relations are somewhat less interesting, although no less
important

[Qa, P*] ={Qa, Qs} =0 (2.23)
There are, however, reasons why these commutators take this boring form.

First, why do we necessarily have [Q,, P*] = 07 Clearly the right-hand side should
be something with o and p indices so that the commutator is covariant under Lorentz
transformations. But that leaves the option for [Qq, P*] = ¢(0")aaQ® for some ¢ € C.
What forces us to have ¢ = 07

The answer to this lies in the Jacobi identity
[P, [PY, Qa]l + [P, [Qa, P*]] + [Qa, [P*, PY]] = 0

Clearly the last term vanishes, as [P*, PY] = 0. If we choose [Qq, P*] = ¢(0")aaQ®
and, correspondingly, [Q%, P*] = ¢*(#)%°Q4 then the Jacobi identity becomes

—cops [P, Q% + col [P, Q%) = |c[* (075" — 0"5") [ Qs = 0
This requires ¢ = 0.

There is a similar reason for why we must have {Q,, @s} = 0. Once again, there is an
alternative since if we just try to pair up indices then we might think that {Q., Q°} =
(o) M, would be acceptable for any ¢ € R. But if we take the commutator
with P? then, from the argument above, the left-hand-side must vanish which, because
[P, M"] # 0, tells us that ¢ = 0.

(An aside: there’s actually a subtlety in this last discussion. While it is true that
{Qa,Qp} = 0 when sandwiched between any finite energy states, some supersymmet-
ric theories have multiple ground states and it turns out that {Q.,Qs} can be non-
vanishing when evaluated on the infinite energy domain walls that interpolate between
these ground states. This subtlety is interesting, at least if you care about domain
walls, but somewhat beyond the scope of these lectures.)
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2.2.1 R-Symmetry

We started this section by noting that all internal symmetries must commute with the
spacetime symmetries of the Poincaré group. But must they also commute with the
supercharge ),?7 The answer is: almost.

All internal symmetries must commute with (Q, with one exception: it may be that
theories admit an internal U(1) symmetry that acts as

Qo — Q. and Q4 — Q4 (2.24)

This U(1) symmetry is known as an R-symmetry and is sometimes denoted U(1)g. If
we denote the generator as R then it has commutation relations

[R7 Qa] - _Qa and [R7 Qd] = +Qd (225)

When we turn to theories of extended supersymmetry in Section 2.4, we’ll see different
R-symmetry groups arising. But for theories with N' = 1 symmetry we have only
U(1)g. Nonetheless, this will play an important role when we come to analyse the
dynamics of supersymmetric theories in later sections. We’ll see this, for example, in
Section 3.3.

This, then, is the supersymmetry algebra: it comprises of the algebra of the Poincaré
group (2.18) and (2.19), together with the algebra of the supercharges (2.21), (2.22)
and (2.23) and, finally, the R-symmetry (2.25). The next question is: what can we do
with it?

2.2.2 A Consequence: Energy is Positive

Even before we write down any field theories, we can derive one feature of supersym-
metric theories from the algebra alone. This follows from the key algebraic relation
(2.21),

{Qaa Qd} = 20’5de (226)

If we compute the expectation of the left-hand side in any state |¢) then we find that
it is necessarily positive

(#lQaQs + QaQald) = 1(Qa)T|0)* + 1Qald)* > 0 (2.27)

The same must be true of the right-hand side

0ha{@|Pul®) > 0
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If we set @« = & and sum over a = 1,2 then we make use of the fact that tro® = 2
and tro® = 0. This then reduces to the statement that the energy of any state in a
supersymmetric theory is necessarily positive

(9] Fol@) = 0

This is curious. Usually in physics, we don’t care about the overall value of the energy:
if you add an overall constant to all energies, then physics remains unchanged. There
are two places where this state of affairs no longer holds. The first is in gravity where
the energy of the vacuum contributes as a cosmological constant. The second is, as
we've seen above, in supersymmetric theories where energies are necessarily positive
definite.

Physically, it’s far from clear if there is any deep relation between these two ideas.
In fact, as we will see later in these lectures, the energy of the ground state acts as an
order parameter for the breaking of supersymmetry. This means that the ground state
energy is zero if supersymmetry is exact, otherwise it is non-zero. In our world, it’s
clear that there is no supersymmetry visible at the TeV scale, while the cosmological
constant is many of orders of magnitude smaller, at 1072 eV. This makes it difficult to
see how supersymmetry can help alleviate the cosmological constant problem.

However, at the formal mathematical level, the relationship between supersymmetry
and gravity has proven rather useful. For example, there exists a greatly simplified
proof of the positive energy theorem in general relativity, due to Witten, that uses
ideas of supersymmetry.

There is one further piece of physics hiding in (2.26). For any other symmetry in field
theory, we can think about gauging it. This means that we try to construct theories
in which the symmetry is realised locally. Supersymmetry is no different. One can
construct theories in which the associated infinitesimal parameter for supersymmetry
transformations depends on z*. From (2.26), we see that such theories necessarily enjoy
a symmetry in which you do different translations at different points in space. But
such transformations are diffeomorphisms and are the characteristic feature of general
relativity. In other words, theories of local supersymmetry are necessarily theories of
gravity! Such theories are known as supergravity, usually shortened to the ugly acronym
“sugra”. We will mention supergravity only very briefly in this section. In subsequent
sections our interest will be entirely on theories with global supersymmetry.
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2.3 Representations on Particle States

Given an algebra, our next task is to explore its representations. There are different
ways that we could approach this. Ultimately, we will be interested in quantum field
theories that enjoy supersymmetry and this means understanding the way supersym-
metry acts on fields. This we will do in later sections. Here, to build some intuition, we
will understand how supersymmetry acts on single particle states in the Hilbert space.

Without doing any work, we can guess that something interesting is going on. The
supercharge @), is a fermionic operator, both in the sense that it carries spin % and in the
sense that it is naturally anti-commuting as in (2.21). This means that, schematically,
we must have

Q|fermion) = |boson) and Q|boson) = |fermion) (2.28)

This is the defining feature of supersymmetry.

In fact, it is straightforward to show that any representation of the supersymmetry
algebra must have an equal number of bosonic and fermionic states. To this end, we
introduce the fermionic number operator (—1)¥. This acts on bosonic states as

(=D"IB) =[B) and (-1)"|F)=—|F)
Because @), swaps a bosonic state for a fermionic state, we necessarily have
(-D)"Qa=-Qu(-1)" = {(-1)",Qu} =0

The result that we now want follows straightforwardly from the algebra {Q., Qs} =
20" . P,. Suppose that we have a finite collection of one-particle states that form a
representation of the supersymmetry algebra. We can take the folllowing trace over
elements of this multiplet

tr [(_1)F{Qaa Qd}] = tr [(_1)FQan + (_1>FQan]
= tr [~Qa(=1)"Qa + (-1)"QaQs] = 0

Here the second equality we've uses the fact that {(—1)",Q,} = 0 while the final
equality uses the cyclicity of the trace. The supersymmetry algebra then tells us that

ohotr[(-1)"P,] =0

Note that o sits outside the trace over states: it’s just a bunch of numbers as far as
the trace is concerned. Meanwhile P, sits inside the trace because it is an operator
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acting on states. We can choose these states to be momentum eigenstates, so that
P,|any state) = p,|any state). We then simply have

ol putr (=) =0

But tr(—1)F simply counts the number of bosonic states np minus the number of
fermionic states np,

tI‘(—l)F =nNp —Ng — 0

The number of such states must be equal. The quantity tr(—1)% is called the Witten
index.

There’s actually a loophole in the discussion above. It may be that Q, and Qg
annihilate states in the supersymmetry multiplet. From the supersymmetry algebra
(and the positivity conditions (2.27) that follows from it) this can only happen for
states of zero energy which are necessarily the ground states of the system. This means
that there may be a mismatch between the number of bosonic and fermionic ground
states of a system. It is in studying such ground states that the Witten index really
finds it teeth and we’ll revisit this in Section 3.4.2. More sophisticated examples can
be found in the lectures on Supersymmetric Quantum Mechanics.

We now know that supersymmetry requires an equal number of bosonic and fermionic
states. The next step is to understand exactly what kind of fermion is paired with what
kind of boson.

2.3.1 Representations of the Poincaré Group

To set the scene, let’s first recall how we construct the irreducible representations of the
Poincaré group. In fact, let’s start even more simply: how do we construct irreducible
representations of the rotation group?

We work with the algebra so(3) = su(2) rather than the group. This is, of course,
defined by the familiar commutation relations

(i, J;) = i€y

To construct representations, the first thing we do is look to the Casimirs. These are
operators that commute with all generators of the group. For su(2), there is just a
single Casimir,

— 928 —


http://www.damtp.cam.ac.uk/user/tong/susyqm.html

Irreducible representation are labelled by their eigenvalue of the Casimir. For su(2),
the eigenvalue of J? is j(j + 1) with the spin j taking values in j = 0, 3,1,.... Each
representation has dimension 2j5 4+ 1, with the states within a multiplet identified by
their eigenvalue under, say, J; whose eigenvalue lies in |j3] < j. The result is the

familiar one from quantum mechanics: states are labelled by |7, js)

Now let’s turn to the Poincaré group. The irreducible representations are what we
call “particles”. Again, they are characterised by the Casimirs. I won’t tell you how
to construct Casimirs, but will instead just present you the result: the Poincaré group
has two Casimirs, given by

Cy =FP,P" and Cy=W,W*

Here W# = %e’“’p"Pl,MpU is the Pauli-Lubariski vector. It can be thought of as a
relativistic version of angular momentum.

Representations of the Poincaré group are then labelled by the eigenvalues of C} and
Cy. The first of these is simply the mass m of a particle: C; = m? What happens
next is a little different depending on whether the particles are massive or massless.

e Massive Particles: In this case, we can always boost to the rest frame of the
particle so that P* = (m,0,0,0). In this frame, the Pauli-Lubanski vector is

Wo=0 and W'=—mJ’

with J? the generators of rotations. This means that Cy, = —m?2J? and so is
specified by the eigenvalue of J2. We find the familiar fact that massive particles
are characterised by their mass m and spin j.

e Massless Particles: Now C; = m? = 0. There are some subtleties that we sweep

under the rug here, but it turns out that the most interesting representations also
have Cy = W? = 0, so both Casimirs vanish. To characterise the representation,
we choose a frame such that, say, P* = (F,0,0,F). There, we have W# =
M5 P*, so the constant of proportionality between W and P is determined by
the eigenvalue of the U(1) rotation in the (2!, z?)-plane. The eigenvalue of this
rotation is the helicity, h = 0, %, 1,.... We learn that massless particles are
characterised by (obviously) m = 0 and their helicity h.

Although the results are different for m = 0 and m # 0, the strategy is the same. In

each case, we boost to a preferred frame of the particle which is then characterised by

how it transforms under the surviving symmetry group. This surviving symmetry —

SU(2) for a massive particle, U(1) for a massless one — is called the little group.
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There is a slight twist to the story when it comes to realising these representations
on the Hilbert space of single particle states. For massive particles, the states take the
form

Py Js J3) (2.29)

where the momentum i