
2 The Supersymmetry Algebra

The purpose of this section is to describe, in mathematical terms, what supersymmetry

actually is. Usually in physics, we think of symmetries as associated to groups. But,

at least for continuous symmetries, these groups have an underlying algebra and often

that contains all the information that we need. So it is with supersymmetry. We will

describe the algebra that underlies supersymmetry and start to explore some of its

representations.

I should warn you that this section will be a little dry in flavour. There will be few

fields and certainly no dynamics. These will come in later sections. But this section

lays the necessary groundwork for the stories that are to come.

2.1 The Lorentz Group

Minkowski space R1,3 is the stage for relativistic quantum field theory. This space

comes equipped with the Minkowski metric

⌘µ⌫ = diag(+1,�1,�1,�1)

The set of symmetries of Minkowski space include Lorentz transformations of the form

xµ
! ⇤µ

⌫
x⌫ where

⇤T⌘⇤ = ⌘

Embedded among these are a couple of discrete transformations: parity with ⇤ =

diag(1,�1,�1,�1) and time reversal with ⇤ = diag(�1, 1, 1, 1). The transformations

that are continuously connected to the identity have det⇤ = 1 and ⇤0
0 > 0 and form the

Lorentz group SO(1, 3). (The restriction to ⇤0
0 > 0 is sometimes written as SO+(1, 3).)

Our main goal in this section is the spell out some properties of the spinor represen-

tations of the Lorentz group. In fact, strictly speaking the group SO(1, 3) doesn’t have

any spinor representations. However, there is a closely related group called Spin(1, 3)

that does admit spinors. This is the double cover, in the sense that

SO(1, 3) ⇠= Spin(1, 3)/Z2

where that Z2 is the famous minus sign that spinors pick up under a 2⇡ rotation, a

minus sign that vectors like xµ are oblivious to. The fact that there are spinors in our

world is the statement that the true symmetry group is Spin(1, 3) rather than SO(1, 3).
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When we introduced spinors in the Quantum Field Theory course, we did so by first

looking at the algebra so(1, 3) that is shared by both groups Spin(1, 3) and SO(1, 3).

A Lorentz transformation acting on a 4-vector can be written as

⇤ = exp

✓
�
i

2
!µ⌫M

µ⌫

◆
(2.1)

where !µ⌫ are six numbers that specify what Lorentz transformation we’re doing, while

Mµ⌫ = �M ⌫µ are a choice of six 4 ⇥ 4 anti-symmetric matrices that generate the

di↵erent Lorentz transformations. The matrix indices are suppressed in the above

expressions; in their full glory we would write (Mµ⌫)⇢
�
. So, for example

(M01)⇢
�
= i

 
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

!
and (M12)⇢

�
= i

 
0 0 0 0

0 0 �1 0

0 1 0 0

0 0 0 0

!
(2.2)

(Note that the generators di↵er by a factor of i from those defined in the Quantum

Field Theory lectures. This is compensated by an extra factor of i in the exponent

(2.1).) The matrices generate the algebra so(1, 3),

[Mµ⌫ ,M⇢�] = i (⌘⌫⇢Mµ�
� ⌘⌫�Mµ⇢ + ⌘µ�M ⌫⇢

� ⌘µ⇢M ⌫�) (2.3)

In the lectures on Quantum Field Theory, we then constructed the spinor representa-

tions by first looking at the Cli↵ord algebra of gamma matrices, {�µ, �⌫} = 2⌘µ⌫ and,

from these, constructing a new representation of the Lorentz algebra (2.3). Here, we’ll

take a slightly di↵erent path. It will be useful to first extract a little more information

from the algebra (2.3).

The six di↵erent Lorentz transformations naturally decompose into three rotations

Ji and three boosts Ki, defined by

Ji =
1

2
✏ijkMjk and Ki = M0i

where these j, k = 1, 2, 3 indices are summed over, and ✏123 = +1. The rotation

matrices are Hermitian, with J†
i
= Ji while the boost matrices are anti-Hermitian with

K†
i
= �Ki. This ensures that the rotations in (2.1) give rise to a compact group while

the boosts are non-compact. From the Lorentz algebra, we find that these generators

obey

[Ji, Jj] = i✏ijkJk , [Ji, Kj] = i✏ijkKk , [Ki, Kj] = �i✏ijkJk

The rotations form an su(2) sub-algebra. That, of course, is to be expected and is

related to the fact that SO(3) ⇠= SU(2)/Z2.
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We can, however, find two mutually commuting su(2) algebras sitting inside so(1, 3).

For this we take the linear combinations

Ai =
1

2
(Ji + iKi) and Bi =

1

2
(Ji � iKi)

Both of these are Hermitian, with A†
i
= Ai and B†

i
= Bi. They obey

[Ai, Aj] = i✏ijkAk , [Bi, Bj] = i✏ijkBk , [Ai, Bj] = 0 (2.4)

But we know about representations of SU(2): they are labelled by an integer or half-

integer j 2 1
2Z which, in the context of rotations, we call “spin”. The dimension of the

representation is then 2j + 1. The fact that we can find two su(2) sub-algebras of the

Lorentz algebra tells us that all representations must carry two such labels

(j1, j2) with j1, j2 2
1

2
Z (2.5)

and has dimension (2j1+1)(2j2+1). We’ll flesh out the meaning of these representations

more below. But for now, we can identify the simplest such representations just by

counting: we have

(0, 0) : scalar

(12 , 0) : left-handed Weyl spinor

(0, 12) : right-handed Weyl spinor

(12 ,
1
2) : vector

(1, 0) : self-dual 2-form

(0, 1) : anti-self-dual 2-form

We see that the smallest representations of the Lorentz group are the left- and right-

handed Weyl spinors. What we call the physical spin of a particle is the quantum

number under rotations ~J : this is j = j1 + j2.

There’s something a little odd about the our discovery of two su(2) sub-algebras.

After all, it certainly isn’t true that the Lorentz group is isomorphic to two copies of

SU(2). This is because SU(2) is a compact group: keep doing a rotation and you will

eventually get back to where you started. Indeed, two copies of the group SU(2) give

rotation group of Euclidean space R4.

Spin(4) ⇠= SU(2)⇥ SU(2) with SO(4) ⇠= Spin(4)/Z2

In contrast, the Lorentz group is non-compact: keep boosting and you get further and

further from where you started. How does this manifest itself in the two su(2) algebras

that we’ve found in (2.4)?
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The answer is a little subtle and is to be found in the reality properties of the

generators Ai and Bi. Recall that all integer, j 2 Z, representations of SU(2) are real,

while all half-integer spin, j 2 Z + 1
2 , are pseudoreal (which means that, while not

actually real, the representation is isomorphic to its complex conjugate). However, the

Ai and Bi in (2.4) do not have these properties. You can see in (2.2) that both Ji and

Ki are pure imaginary. This, in turn, means that the generators Ai and Bi are complex

conjugates of each other

(Ai)
? = �Bi

This is where the di↵erence lies that distinguishes SO(4) from SO(1, 3). The Lie algebra

so(1, 3) does not contain two, mutually commuting copies of the real Lie algebra su(2),

but only after a suitable complexification. This means that certain complex linear

combinations of the Lie algebra su(2) ⇥ su(2) are isomorphic to so(1, 3). To highight

this, the relationship between the two is sometimes written as

so(1, 3) ⇠= su(2)⇥ su(2)?

For our purposes, it means that the complex conjugate of a representation (j1, j2)

exchanges the two quantum numbers

(j1, j2)
? = (j2, j1)

Both the scalar representation (0, 0) and the vector representation (12 ,
1
2) are real, while

the left- and right-handed Weyl spinors (12 , 0) and (0, 12) are exchanged under complex

conjugation. This last statement will be important as we proceed. In the context

of quantum field theory, if a field appears in a theory then so too does its complex

conjugate. This means that if you have a left-handed spinor, you also have a right-

handed complex conjugated spinor.

2.1.1 Spinors and SL(2,C)

There is another way to discover spinors, this time one that doesn’t involve going

through the algebra. We will use the fact that there is an isomorphism between two

groups

Spin(1, 3) ⇠= SL(2,C) (2.6)

To see this, we first note that we can write a point xµ in Minkowski space as a 2 ⇥ 2

Hermitian matrix,

X = xµ�
µ =

 
x0 + x3 x1 � ix2

x1 + ix2 x0 � x3

!
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where we’ve introduced the 4-vector of 2⇥ 2 matrices,

�µ = (1, �i) with �1 =

 
0 1

1 0

!
, �2 =

 
0 �i

i 0

!
, �3 =

 
1 0

0 �1

!
(2.7)

The �i are, of course, the Pauli matrices. The matrix X is Hermitian: X = X†.

Moreover, there is clearly a one-to-one map between 4-vectors xµ and 2⇥ 2 Hermitian

matrices. The Minkowski inner product is particularly natural in this language: it is

detX = (x0)
2
� (x1)

2
� (x2)

2
� (x3)

2 = xµx
µ

Now consider an SL(2,C) transformation that acts as

X ! X 0 = SXS† (2.8)

with S 2 SL(2,C). We have (X 0)† = X 0 and detX 0 = detX since detS = 1. This

means that the map (2.8) must be a Lorentz transformation.

In fact, it is not hard to see that we can implement all Lorentz transformations this

way and we’ll give an explicit construction of the generators shortly. For now, we can

just do some simple counting. A general complex 2⇥ 2 matrix has 4 complex entries.

The requirement that its determinant is 1 reduces this to 3 complex parameters, or 6

real parameters. This agrees with the dimension of the Lorentz group: 6 = 3 rotations

+ 3 boosts. Moreover, the SL(2,C) transformation S = �1 does not act on X, which

is the reason why SL(2,C) coincides with the double cover (2.6).

It is clear that the fundamental representation of SL(2,C) is not a 2⇥ 2 matrix: it

is a 2-component, complex object  ↵ = ( 1, 2) that transforms as

 ↵ ! S �

↵
 � ↵, � = 1, 2

Clearly it is a complex two-dimensional representation. In terms of our previous clas-

sification (2.5), we take it to correspond to (12 , 0): it is what we call a left-handed Weyl

spinor.

Given any complex representation of a Lie group, we can always form another rep-

resentation by taking the conjugate. This is equivalent to the original if we can find a

matrix C for which S? = CSC�1. In the present case, no such C exists and the ma-

trix S and its conjugate S? are inequivalent representations. We denote the complex

conjugate as

( ↵)
† =  ̄↵̇
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We’ve adopted two notational flourishes to distinguish the two representations. First,

we use di↵erent indices ↵, � = 1, 2 and ↵̇, �̇ = 1, 2 for the two di↵erent representations.

This is useful because the two indices are telling us that the objects transform in

di↵erent ways. In addition, we also add a bar over any object, like  ̄, that transforms

in the conjugate representation. This allows us to identify these objects even when

we suppress the indices. (Note that a bar on a Weyl spinor simply means complex

conjugation while, as we learned in the Quantum Field Theory lectures, a bar on

a Dirac spinor means complex transpose together with multiplication by �0.) The

complex conjugate spinor then transforms as

 ̄↵̇ ! (S?) �̇

↵̇
 ̄
�̇

↵̇, �̇ = 1, 2

In our previous classification (2.5) it is the representation (0, 12). It is a right-handed

Weyl spinor.

Some of the index conventions above (and below) di↵er from what you may have

seen in other contexts and it’s worth quickly explaining why. Suppose that we’ve got

a vector u that transforms in the fundamental of SU(N). We write the components as

ua with a = 1, . . . , N . The vector u† transforms in the conjugate representation and we

would write these components as (u†)a, with the index raised and no dots in sight. This

reflects the fact that we can contract u† and u to form a singlet: (u†)aua. However,

the representations of SL(2,C) have a di↵erent structure and, as we’ll see shortly, you

can’t contract a spinor and its conjugate to get a singlet. That’s why we introduce

the strange looking dotted indices, rather than raising the index, to distinguish the

conjugate representation

Building Scalars from Spinors

The group SL(2,C) has the following invariant tensors

✏↵� = ✏↵̇�̇ =

 
0 1

�1 0

!
and ✏↵� = ✏

↵̇�̇
=

 
0 �1

1 0

!

Note that the ✏↵� with indices lowered di↵ers by a minus sign from ✏↵�. This ensures

that one is the inverse of the other: ✏↵�✏�� = �↵
�
. This, in turn, means that when we

use epsilon symbols to raise and lower indices (as we will below) then if we choose to

raise an index and subsequently lower it again then we don’t get a minus sign for our

troubles.
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Given, say, two left-handed Weyl fermions  and �, we can use the epsilon tensors

to form invariants. We define

 � := ✏↵� ��↵ =  2�1 �  1�2

To see that these are, indeed, invariants under SL(2,C), we just need to perform a

transformation

 � ! S �

↵
S �

�
✏↵� ��� = (detS)✏�� ��� =  � (2.9)

where, in the first equality we’ve used the fact that S �

↵
S �

�
✏↵� = detS ✏��, which you

can confirm simply by checking all the cases �, � = 1, 2. In the second equality we’ve

used the fact that detS = 1.

In some ways, the ✏ symbols play a role for spinors that is akin to role played by the

metric ⌘µ⌫ for vectors. Of course, one key di↵erence is that ✏↵� is anti-symmetric, but

this tallies nicely with the fact that, in quantum field theory, spinors are anti-commuting

Grassmann variables. We then have

 � =  2�1 �  1�2 = ��1 2 + �2 1 = � 

In particular,   = 2 2 1 is non-vanishing.

We can do something similar for right-handed fermions. However, a fiddly minus

sign rears its head. We define

 ̄�̄ := ✏↵̇�̇ ̄↵̇�̄�̇
=  ̄1�̄2 �  ̄2�̄1 (2.10)

With anti-commuting spinors, we again have  ̄�̄ = �̄ ̄. Note that the ordering of

the indices in (2.10) di↵ers from (2.9). The reason for choosing this di↵erent ordering,

resulting in a minus sign di↵erence in the definitions, is that it ensures that ( �)† =  ̄�̄,

since

( �)† = ( 2�1 �  1�2)
† = �̄1 ̄2 � �̄2 ̄1 =  ̄�̄

We can use the ✏ symbols to raise and lower spinor indices, just as we use the Minkowski

metric to raise and lower vector indices. We have

 ↵ = ✏↵� � ,  ↵ = ✏↵� 
� and  ̄↵̇ = ✏↵̇�̇ ̄

�̇
,  ̄↵̇ = ✏

↵̇�̇
 ̄�̇

In this notation, the Lorentz scalars (2.10) become

 � =  ↵�↵ and  ̄�̄ =  ̄↵̇�̄
↵̇

Our fiddly minus sign di↵erence between (2.9) and (2.10) has now transmuted into

the following rule: for left-handed spinors we should contract (undotted) indices in the

direction &, while for right-handed spinors we should contract (dotted) indices in the

direction %.
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We can ask how these new objects  ↵ and  ̄↵̇ fare under Lorentz transformations.

We have

 ↵
! ✏↵�S �

�
 � = (S�1T )↵

�
 �

 ̄↵̇
! ✏↵̇�̇(S?) �̇

�̇
 ̄�̇ = (S�1 †)↵̇

�̇
 ̄�̇ (2.11)

where the equality follows from the following algebra

S �

↵
✏↵�S �

�
= ✏�� ) (ST )�

↵
✏↵�S �

�
= ✏�� ) ✏↵�S �

�
= (S�1T )↵

�
✏��

with similar manipulations for the right-handed spinor. The matrices S�1T don’t form

a new representation of SL(2,C); they are equivalent to the fundamental representa-

tion since, from above, we have ✏S✏�1 = S�1T . This means that the covariant and

contravariant left-handed spinors  ↵ and  ↵ transform in equivalent representations.

Similarly, the right- handed spinors  ̄↵̇ and  ̄↵̇ transform in equivalent representations.

Building Vectors from Spinors

A key take-away from our discussion above is that if you want to form a Lorentz scalar

then you need a pair of left-handed fermions or a pair of right handed fermions. Suppose

that we instead have one object of each type, say a left-handed spinor  ↵ and a right-

handed spinor �̄↵̇. What kind of object can we then build? The answer is clear from

the quantum numbers of these representations:

(12 , 0)⌦ (0, 12) = (12 ,
1
2)

This is the vector representation of the Poincaré group.

To explicitly construct the vector, we sandwich the Pauli matrices

(�µ)↵↵̇ = (1, �i)↵↵̇

between two spinors. We write

 �µ�̄ =  ↵(�µ)↵↵̇�̄
↵̇

Note that, as shown above, the Pauli matrices �µ should come with an index of each

type – one undotted, and one dotted – and both subscripts. Taking the conjugate, we

have ( �µ�̄)† = ��µ ̄.
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To see that the object does indeed transform as a 4-vector, we can contract this with

any other 4- vector xµ to give  X�̄ with X = xµ�µ. But we know from (2.8) and (2.11)

how each of these transforms: we then have

 X�̄ =  ↵X↵↵̇�̄
↵̇

! ( �(S�1) ↵

�
)(S �

↵
X

��̇
S? �̇

↵̇
)(�̄�̇(S?�1) ↵̇

�̇
) =  X�̄

The fact that  X�̄ forms a singlet shows that  �µ�̄ must transform as a vector. In

fancy maths words, we say that the Pauli matrices act as the intertwiner between the

di↵erent representations.

We can use the epsilon symbols to raise the spinor indices on the Pauli matrices �µ

↵↵̇
.

This gives us a closely related set of matrices that we denote

(�̄µ)↵̇↵ = ✏↵�✏↵̇�̇�µ

��̇

The bar on �̄ doesn’t denote anything to do with complex conjugation. The �̄µ are

simply a di↵erent set of 2⇥2 matrices from �µ. Note that the indices have not only been

raised, but also switched: �µ has the undotted index first, while �̄µ has the dotted index

first. If we define ✏ = i�2 then, viewed as matrix multiplication, we have �̄ = ✏�T ✏T .

A quick calculation shows that

(�̄µ)↵̇↵ = (1,��i)↵̇↵

We can then similarly construct the vector

�̄�̄µ = �̄↵̇(�̄
µ)↵̇↵ ↵

This isn’t a new object: you can check that  �µ�̄ = ��̄�̄µ .

Generators of SL(2,C)

Finally we can give a description of the generators of SL(2,C). We define the anti-

symmetrised product of sigma matrices,

(�µ⌫) �

↵
=

i

4
(�µ�̄⌫

� �⌫ �̄µ) �

↵

These are linearly independent and so can be taken as a generators of SL(2,C). Because

of the anti-symmetry in µ and ⌫, there are six such generators which is the dimension

of the Lorentz group. Indeed, we can see explicitly that these generate the Lorentz

group by computing the commutator

[�µ⌫ , �⇢�] = i (⌘⌫⇢�µ�
� ⌘⌫��µ⇢ + ⌘µ��⌫⇢

� ⌘µ⇢�⌫�)
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This reproduces the algebra of the Lorentz group (2.3) as promised. A left-handed

spinor then transforms as

 ↵ ! exp

✓
�
i

2
!µ⌫�

µ⌫

◆ �

↵

 � (2.12)

where !µ⌫ are the same set of six numbers that specify the Lorentz transformation

(2.1).

The conjugate representation is generated by

(�̄µ⌫)↵̇
�̇
=

i

4
(�̄µ�⌫

� �̄⌫�µ)↵̇
�̇

These too satisfy the algebra of the Lorentz group. Correspondingly, a right-handed

spinor transforms as

 ̄↵̇
! exp

✓
�
i

2
!µ⌫ �̄

µ⌫

◆↵̇

�̇

 ̄�̇ (2.13)

Note that, from the positioning of the indices of �̄µ⌫ , these act naturally as generators

on  ̄↵̇, with the index raised.

2.1.2 Lagrangians for Spinors

We can now describe how to construct Lagrangians from a Weyl spinor. Suppose that

we have just a single left-handed Weyl spinor  to play with. This necessarily comes

with its conjugate, a right-handed spinor  ̄ =  †. We can then form a kinetic term

SWeyl = �

Z
d4x i ̄�̄µ@µ (2.14)

Upon quantisation, this theory gives a single massless, left-handed fermion of helicity

�
1
2 and massless right-handed anti-particle of helicity of +1

2 . The theory has a global

U(1) symmetry under which  ! ei↵ ; if the left-handed fermion has charge +1 then

the right-handed fermion has charge �1, as befits an anti-particle.

We can add a mass term for a single Weyl fermion. This is known as a Majorana

mass,

SMaj =

Z
d4x

m

2
  +

m?

2
 ̄ ̄ (2.15)

In general, we can takem 2 C although any complex phase of m can be absorbed into  

and, upon quantisation, the resulting particle has mass |m|. Importantly, the Majorana

mass explicitly breaks the global U(1) symmetry, so there is no quantum number to

distinguish particle from anti-particle. Upon quantisation, the theory consists of a

single massive spin 1
2 particle that is now its own anti-particle.
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Because the Majorana mass term explicitly breaks the U(1) symmetry, it is not

allowed if the U(1) is gauged. Relatedly, it’s not possible to write down such a term

for any fermion  that transforms in a complex representation of a gauge group. It is,

however, possible to write down such terms for fermions in real representations.

Recovering Dirac Spinors

All this discussion of spinors and, so far, not a gamma matrix or Cli↵ord algebra in

sight! Yet these played a central role in the discussion of spinors that we met in the

Quantum Field Theory lectures. What’s going on?

The Dirac spinor is not an irreducible representation of the Lorentz group in d = 3+1

dimensions. Instead, it consists of independent left- and right-handed spinors. In our

earlier notation:

(12 , 0)� (0, 12) : Dirac spinor

We write a Dirac spinor as a 4-component object, consisting of a left-handed Weyl

fermion  ↵ and a right-handed Weyl fermion �̄↵̇ (note the index up),

 =

 
 ↵

�̄↵̇

!

We also introduce the chiral basis of gamma matrices

�µ =

 
0 �µ

�̄µ 0

!
(2.16)

These obey the Cli↵ord algebra {�µ, �⌫} = 2⌘µ⌫ . In the Quantum Field Theory lectures,

we showed that the generators of Lorentz transformations for a Dirac spinor are

Sµ⌫ =
i

4
[�µ, �⌫ ] =

 
�µ⌫ 0

0 �̄µ⌫

!

(As with our earlier definition ofMµ⌫ , this di↵ers by a factor of i from the conventions in

the Quantum Field Theory lectures.) Under a Lorentz transformation, a Dirac spinor

transforms as  ! exp(� i

2!µ⌫Sµ⌫) . This reproduces the transformations of Weyl

spinors that we saw in (2.12) and (2.13).
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The Dirac action that we met in our Quantum Field Theory lectures is

SDirac = �

Z
d4x i ̄�µ@µ �M ̄ 

where, for a Dirac spinor (but not a Weyl spinor!) the bar notation means  ̄ =  †�0.

Decomposed in terms of Weyl fermions, it becomes

SDirac = �

Z
d4x i ̄�̄µ@µ + i��µ@µ�̄�M(� +  ̄�̄) (2.17)

The first term coincides with the kinetic term (2.14) for a left-handed fermion. The

second term is simply a di↵erent way of writing this, with the derivative now acting

on a right- handed fermion; if you play around lowering and raising indices then the

second term can be massaged to look like the first.

The mass term in (2.17) is not of the Majorana type (2.15). First, the mass is

necessarily real, M 2 R, although it can be positive or negative. Second, because the

mass term involves two distinct Weyl fermions it preserves a U(1) symmetry, under

which the phase of  and � rotate oppositely. The result is that, upon quantisation,

the action (2.17) gives a particle of spin +1
2 and charge +1, together with a distinct

anti-particle of spin +1
2 and charge �1, both with mass |M |.

It is possible to restrict the Dirac fermion  to have the same content as a single

Weyl fermion. In a general basis of gamma matrices, we do this by introducing a

charge conjugation matrix. But in the chiral basis (2.16), it’s particularly simple: we

just restrict �̄ =  ̄ ⌘  †. A Dirac spinor with such a restriction is called a Majorana

spinor.

Throughout these lectures, we will have no need to resort to 4-component spinors.

We will write everything in terms of 2-component Weyl fermions.

2.1.3 The Poincaré Group and its Extensions

The continuous symmetries of Minkowski space comprise of Lorentz transformations

together with spacetime translations. Combined, these form the Poincaré group. Space-

time translations are generated, as usual, by the momentum 4-vector P µ. Their com-

mutation relations with themselves and with the Lorentz generators Mµ⌫ are given

by

[P µ, P ⌫ ] = 0 and [Mµ⌫ , P �] = i (P µ⌘⌫� � P ⌫⌘µ�) (2.18)
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The latter of these is equivalent to the statement that P µ transforms as a 4-vector

under Lorentz transformations. These commutation relations should be considered in

conjunction with the Lorentz algebra (2.3),

[Mµ⌫ ,M⇢�] = i (⌘⌫⇢Mµ�
� ⌘⌫�Mµ⇢ + ⌘µ�M ⌫⇢

� ⌘µ⇢M ⌫�) (2.19)

Together, (2.18) and (2.19) form the algebra of the Poincaré group.

It’s not unusual for quantum field theories to exhibit further continuous symmetries.

Say, a global U(1) symmetry that rotates the phase of a complex field, or perhaps

a non-Abelian SU(N) symmetry under which a multiplet of fields transforms. The

generators of these symmetries – which we’ll denote collectively as T – correspond to

some conserved charge or isospin and are always Lorentz scalars. This means that they

necessarily commute with the Poincaré generators,

[P µ, T ] = [Mµ⌫ , T ] = 0

One could ask: is it possible for something less trivial to happen, with the new genera-

tors transforming in some interesting fashion under the Poincaré group? For example,

this would happen if the additional generators T themselves carried some spacetime

index. If this were possilble, the Poincaré group would be subsumed into a larger group.

And that sounds interesting.

A theorem due to Coleman and Mandula greatly restricts this possibility. Roughly

speaking, the theorem states that, in any spacetime dimension greater than d = 1+ 1,

the symmetry group of any interacting quantum field theory must factorise as

Poincaré ⇥ Internal (2.20)

We won’t prove the Coleman-Mandula theorem here1. The gist of the proof is that

Poincaré invariance already greatly restricts what can happen in, say, 2 to 2 scatter-

ing, with only the scattering angle left undetermined. Any internal symmetries that

factorise, as in (2.20), put restrictions on the kinds of interactions that are allowed,

for example enforcing conservation of electric charge. But if the generators T were

to carry a spacetime index then they would put further constraints on the scattering

angle itself and that would be overly restrictive, at best allowing scattering to occur

only at discrete angles. But if one assumes that the scattering amplitudes are analytic

functions of the angle then the amplitude must vanish for all angles and the theory is

free.
1The original Coleman-Mandula paper is from 1967 and entitled “All Possible Symmetries of the

S-matrix”. Witten’s “Introduction to Supersymmetry” lectures give a clear intuitive explanation of
the theorem. A full proof can be found Weinberg vol III.
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Like all no-go theorems in physics, the Coleman-Mandula theorem comes with a

number of underlying assumptions. Some of these are eminently reasonable, such as

locality and causality. But it may be possible to relax other assumptions to find inter-

esting loopholes to the Coleman-Mandula theorem. Two such loopholes have proven

to be extremely important.

• Conformal Invariance: The Coleman-Mandula theorem assumes that the the-

ory has a mass gap, meaning that all particles are massive. Indeed, it studies

symmetries of the S-matrix which is really only well defined for massive particles

where we don’t have to worry about IR divergences. For theories of massless

particles something interesting can, and often does, happen.

The first interesting thing is that interacting massless theories typically exhibit

scale invariance. This means that physics is unchanged under the symmetry

xµ
! �xµ. The associated symmetry generator is called D for “dilatation”. This

can only be a symmetry of a theory that has no dimensionful parameters. In

particular, no masses.

The second interesting thing is more surprising. For reasons that are not en-

tirely understood, theories that exhibit scale invariance also exhibit a further

symmetry known as special conformal transformations of the form

xµ
!

xµ
� aµx2

1� 2a · x+ a2x2

This transformation depends on a vector parameter aµ and the associated gen-

erator is a 4-vector Kµ. The resulting conformal algebra extends the Poincaré

algebra (2.18) and (2.19) with the non-trivial commutators

[D,Kµ] = �iKµ , [D,P µ] = iP µ

[Kµ, P ⌫ ] = 2i(D⌘µ⌫ �Mµ⌫)

[Mµ⌫ , K�] = i (K⌫⌘µ� �Kµ⌘⌫�)

Interacting conformal field theories crop up in many places in physics. In their

Euclidean incarnation, they describe critical points, or second order phase transi-

tions, that were the focus of our lectures on Statistical Field Theory. In d = 1+1

dimensions the conformal group has rather more structure and a detailed intro-

duction can be found in the lectures on String Theory. We’ll meet examples of

supersymmetric conformal field theories later in Section 6.4 when we discuss the

low-energy physics of certain gauge theories.
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• Supersymmetry: The second loophole to the Coleman-Mandula theorem is

supersymmetry. As you may by now have guessed, exploiting this loophole will

be the topic of the rest of these lectures.

2.2 The Supersymmetry Algebra

Supersymmetry evades the Coleman-Mandula no-go theorem because it is a di↵erent

kind of symmetry. In contrast to the symmetries discussed above, it is not characterised

by a Lie algebra. Instead it is characterised by a mathematical structure known as a

Z2- graded Lie algebra. For our purposes, this simply means that the algebra contains

both commutation and anti-commutation relations.

A generalisation of the Coleman-Mandula theorem to graded Lie algebras was given

by Haag, Lopuszanski and Sohnius. Roughly speaking, it says that the only possibility

is supersymmetry. We will now, finally, explain what this means.

Supersymmetric theories have a new conserved charge that is a left-handed Weyl

spinor Q↵, together with its right-handed counterpart Q̄↵̇. This is known as the su-

percharge. It is possible to have multiple supercharges, a situation known as extended

supersymmetry. We will discuss this in Section 2.4 and, for now, stick to just a single

complex supercharge. This is known as N = 1 supersymmetry.

At the heart of the supersymmetry algebra is the anti-commutation relation

{Q↵, Q̄↵̇} = 2�µ

↵↵̇
Pµ (2.21)

It is no surprise that a spinor should have an anti-commutator. But the structure of

this relation is interesting: it tells us that the supercharges should be viewed as the

square-root of spacetime translations! Our goal in these lectures is to understand what,

exactly, this means.

The full supersymmetry algebra comprises of commutation relations (2.18) and (2.19)

of the Poincaré group, which remain unchanged, together with the (anti)-commutation

relations of the supercharges. The first of these is

[Mµ⌫ , Q↵] = (�µ⌫) �

↵
Q� and [Mµ⌫ , Q̄↵̇] = (�̄µ⌫)↵̇

�̇
Q̄�̇ (2.22)

This is simply the statement that the supercharges transform under a Lorentz trans-

formation in the manner expected of operators that are Weyl fermions. To see this,

first recall from (2.12) that any spinor like Q↵ transforms as Q↵ ! U �

↵
Q� where

U = exp(� i

2!µ⌫�µ⌫). But Q↵ is also an operator acting on a Hilbert space and,

viewed through this lens, we get a di↵erent expression for how it transforms. Any
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state in the Hilbert space transforms as |�i ! V |�i with V = exp(� i

2!µ⌫Mµ⌫). Here,

Mµ⌫ is the abstract generator of Lorentz transformations and its action on any state

depends on the quantum number of that state. Correspondingly, operators O trans-

form as O ! VOV † since this ensures that the matrix elements h�0
|O|�i remains

unchanged. Equating these two ways in which the supercharge transforms, we have

V Q↵V † = (UQ)↵. The algebra (2.22) is the infinitesimal version of this transformation

law.

The remaining commutation relations are somewhat less interesting, although no less

important

[Q↵, P
µ] = {Q↵, Q�} = 0 (2.23)

There are, however, reasons why these commutators take this boring form.

First, why do we necessarily have [Q↵, P µ] = 0? Clearly the right-hand side should

be something with ↵ and µ indices so that the commutator is covariant under Lorentz

transformations. But that leaves the option for [Q↵, P µ] = c(�µ)↵↵̇Q̄↵̇ for some c 2 C.

What forces us to have c = 0?

The answer to this lies in the Jacobi identity

[P µ, [P ⌫ , Q↵]] + [P ⌫ , [Q↵, P
µ]] + [Q↵, [P

µ, P ⌫ ]] = 0

Clearly the last term vanishes, as [P µ, P ⌫ ] = 0. If we choose [Q↵, P µ] = c(�µ)↵↵̇Q̄↵̇

and, correspondingly, [Q̄↵̇, P µ] = c?(�̄µ)↵̇�Q� then the Jacobi identity becomes

�c�⌫

↵↵̇
[P µ, Q̄↵̇] + c�µ

↵↵̇
[P ⌫ , Q̄↵̇] = |c|2(�⌫ �̄µ

� �µ�̄⌫) �

↵
Q� = 0

This requires c = 0.

There is a similar reason for why we must have {Q↵, Q�} = 0. Once again, there is an

alternative since if we just try to pair up indices then we might think that {Q↵, Q�
} =

c0(�µ⌫) �

↵
Mµ⌫ would be acceptable for any c0 2 R. But if we take the commutator

with P ⇢ then, from the argument above, the left-hand-side must vanish which, because

[P ⇢,Mµ⌫ ] 6= 0, tells us that c0 = 0.

(An aside: there’s actually a subtlety in this last discussion. While it is true that

{Q↵, Q�} = 0 when sandwiched between any finite energy states, some supersymmet-

ric theories have multiple ground states and it turns out that {Q↵, Q�} can be non-

vanishing when evaluated on the infinite energy domain walls that interpolate between

these ground states. This subtlety is interesting, at least if you care about domain

walls, but somewhat beyond the scope of these lectures.)
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2.2.1 R-Symmetry

We started this section by noting that all internal symmetries must commute with the

spacetime symmetries of the Poincaré group. But must they also commute with the

supercharge Q↵? The answer is: almost.

All internal symmetries must commute with Q↵ with one exception: it may be that

theories admit an internal U(1) symmetry that acts as

Q↵ ! e�i�Q↵ and Q̄↵̇ ! ei�Q̄↵̇ (2.24)

This U(1) symmetry is known as an R-symmetry and is sometimes denoted U(1)R. If

we denote the generator as R then it has commutation relations

[R,Q↵] = �Q↵ and [R, Q̄↵̇] = +Q̄↵̇ (2.25)

When we turn to theories of extended supersymmetry in Section 2.4, we’ll see di↵erent

R-symmetry groups arising. But for theories with N = 1 symmetry we have only

U(1)R. Nonetheless, this will play an important role when we come to analyse the

dynamics of supersymmetric theories in later sections. We’ll see this, for example, in

Section 3.3.

This, then, is the supersymmetry algebra: it comprises of the algebra of the Poincaré

group (2.18) and (2.19), together with the algebra of the supercharges (2.21), (2.22)

and (2.23) and, finally, the R-symmetry (2.25). The next question is: what can we do

with it?

2.2.2 A Consequence: Energy is Positive

Even before we write down any field theories, we can derive one feature of supersym-

metric theories from the algebra alone. This follows from the key algebraic relation

(2.21),

{Q↵, Q̄↵̇} = 2�µ

↵↵̇
Pµ (2.26)

If we compute the expectation of the left-hand side in any state |�i then we find that

it is necessarily positive

h�|Q↵Q̄↵̇ + Q̄↵̇Q↵|�i = |(Q↵)
†
|�i|2 + |Q↵|�i|

2
� 0 (2.27)

The same must be true of the right-hand side

�µ

↵↵̇
h�|Pµ|�i � 0
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If we set ↵ = ↵̇ and sum over ↵ = 1, 2 then we make use of the fact that tr �0 = 2

and tr �i = 0. This then reduces to the statement that the energy of any state in a

supersymmetric theory is necessarily positive

h�|P0|�i � 0

This is curious. Usually in physics, we don’t care about the overall value of the energy:

if you add an overall constant to all energies, then physics remains unchanged. There

are two places where this state of a↵airs no longer holds. The first is in gravity where

the energy of the vacuum contributes as a cosmological constant. The second is, as

we’ve seen above, in supersymmetric theories where energies are necessarily positive

definite.

Physically, it’s far from clear if there is any deep relation between these two ideas.

In fact, as we will see later in these lectures, the energy of the ground state acts as an

order parameter for the breaking of supersymmetry. This means that the ground state

energy is zero if supersymmetry is exact, otherwise it is non-zero. In our world, it’s

clear that there is no supersymmetry visible at the TeV scale, while the cosmological

constant is many of orders of magnitude smaller, at 10�3 eV. This makes it di�cult to

see how supersymmetry can help alleviate the cosmological constant problem.

However, at the formal mathematical level, the relationship between supersymmetry

and gravity has proven rather useful. For example, there exists a greatly simplified

proof of the positive energy theorem in general relativity, due to Witten, that uses

ideas of supersymmetry.

There is one further piece of physics hiding in (2.26). For any other symmetry in field

theory, we can think about gauging it. This means that we try to construct theories

in which the symmetry is realised locally. Supersymmetry is no di↵erent. One can

construct theories in which the associated infinitesimal parameter for supersymmetry

transformations depends on xµ. From (2.26), we see that such theories necessarily enjoy

a symmetry in which you do di↵erent translations at di↵erent points in space. But

such transformations are di↵eomorphisms and are the characteristic feature of general

relativity. In other words, theories of local supersymmetry are necessarily theories of

gravity! Such theories are known as supergravity, usually shortened to the ugly acronym

“sugra”. We will mention supergravity only very briefly in this section. In subsequent

sections our interest will be entirely on theories with global supersymmetry.

– 26 –



2.3 Representations on Particle States

Given an algebra, our next task is to explore its representations. There are di↵erent

ways that we could approach this. Ultimately, we will be interested in quantum field

theories that enjoy supersymmetry and this means understanding the way supersym-

metry acts on fields. This we will do in later sections. Here, to build some intuition, we

will understand how supersymmetry acts on single particle states in the Hilbert space.

Without doing any work, we can guess that something interesting is going on. The

superchargeQ↵ is a fermionic operator, both in the sense that it carries spin 1
2 and in the

sense that it is naturally anti-commuting as in (2.21). This means that, schematically,

we must have

Q|fermioni = |bosoni and Q|bosoni = |fermioni (2.28)

This is the defining feature of supersymmetry.

In fact, it is straightforward to show that any representation of the supersymmetry

algebra must have an equal number of bosonic and fermionic states. To this end, we

introduce the fermionic number operator (�1)F . This acts on bosonic states as

(�1)F |Bi = |Bi and (�1)F |F i = �|F i

Because Q↵ swaps a bosonic state for a fermionic state, we necessarily have

(�1)FQ↵ = �Q↵(�1)F ) {(�1)F , Q↵} = 0

The result that we now want follows straightforwardly from the algebra {Q↵, Q̄↵̇} =

2�µ

↵↵̇
Pµ. Suppose that we have a finite collection of one-particle states that form a

representation of the supersymmetry algebra. We can take the folllowing trace over

elements of this multiplet

tr
⇥
(�1)F{Q↵, Q̄↵̇}

⇤
= tr

⇥
(�1)FQ↵Q̄↵̇ + (�1)F Q̄↵̇Q↵

⇤

= tr
⇥
�Q↵(�1)F Q̄↵̇ + (�1)F Q̄↵̇Q↵

⇤
= 0

Here the second equality we’ve uses the fact that {(�1)F , Q↵} = 0 while the final

equality uses the cyclicity of the trace. The supersymmetry algebra then tells us that

�µ

↵↵̇
tr
⇥
(�1)FPµ

⇤
= 0

Note that �µ

↵↵̇
sits outside the trace over states: it’s just a bunch of numbers as far as

the trace is concerned. Meanwhile Pµ sits inside the trace because it is an operator
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acting on states. We can choose these states to be momentum eigenstates, so that

Pµ|any statei = pµ|any statei. We then simply have

�µ

↵↵̇
pµ tr (�1)F = 0

But tr(�1)F simply counts the number of bosonic states nB minus the number of

fermionic states nF ,

tr(�1)F = nB � nF = 0

The number of such states must be equal. The quantity tr(�1)F is called the Witten

index.

There’s actually a loophole in the discussion above. It may be that Q↵ and Q̄↵̇

annihilate states in the supersymmetry multiplet. From the supersymmetry algebra

(and the positivity conditions (2.27) that follows from it) this can only happen for

states of zero energy which are necessarily the ground states of the system. This means

that there may be a mismatch between the number of bosonic and fermionic ground

states of a system. It is in studying such ground states that the Witten index really

finds it teeth and we’ll revisit this in Section 3.4.2. More sophisticated examples can

be found in the lectures on Supersymmetric Quantum Mechanics.

We now know that supersymmetry requires an equal number of bosonic and fermionic

states. The next step is to understand exactly what kind of fermion is paired with what

kind of boson.

2.3.1 Representations of the Poincaré Group

To set the scene, let’s first recall how we construct the irreducible representations of the

Poincaré group. In fact, let’s start even more simply: how do we construct irreducible

representations of the rotation group?

We work with the algebra so(3) ⇠= su(2) rather than the group. This is, of course,

defined by the familiar commutation relations

[Ji, Jj] = i✏ijkJk

To construct representations, the first thing we do is look to the Casimirs. These are

operators that commute with all generators of the group. For su(2), there is just a

single Casimir,

C =
3X

i=1

J2
i
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Irreducible representation are labelled by their eigenvalue of the Casimir. For su(2),

the eigenvalue of J2 is j(j + 1) with the spin j taking values in j = 0, 12 , 1, . . .. Each

representation has dimension 2j + 1, with the states within a multiplet identified by

their eigenvalue under, say, J3 whose eigenvalue lies in |j3|  j. The result is the

familiar one from quantum mechanics: states are labelled by |j, j3i

Now let’s turn to the Poincaré group. The irreducible representations are what we

call “particles”. Again, they are characterised by the Casimirs. I won’t tell you how

to construct Casimirs, but will instead just present you the result: the Poincaré group

has two Casimirs, given by

C1 = PµP
µ and C2 = WµW

µ

Here W µ = 1
2✏

µ⌫⇢�P⌫M⇢� is the Pauli-Lubański vector. It can be thought of as a

relativistic version of angular momentum.

Representations of the Poincaré group are then labelled by the eigenvalues of C1 and

C2. The first of these is simply the mass m of a particle: C1 = m2. What happens

next is a little di↵erent depending on whether the particles are massive or massless.

• Massive Particles: In this case, we can always boost to the rest frame of the

particle so that P µ = (m, 0, 0, 0). In this frame, the Pauli-Lubański vector is

W 0 = 0 and W i = �mJ i

with J i the generators of rotations. This means that C2 = �m2J2 and so is

specified by the eigenvalue of J2. We find the familiar fact that massive particles

are characterised by their mass m and spin j.

• Massless Particles: Now C1 = m2 = 0. There are some subtleties that we sweep

under the rug here, but it turns out that the most interesting representations also

have C2 = W 2 = 0, so both Casimirs vanish. To characterise the representation,

we choose a frame such that, say, P µ = (E, 0, 0, E). There, we have W µ =

M12P µ, so the constant of proportionality between W and P is determined by

the eigenvalue of the U(1) rotation in the (x1, x2)-plane. The eigenvalue of this

rotation is the helicity, h = 0, 12 , 1, . . .. We learn that massless particles are

characterised by (obviously) m = 0 and their helicity h.

Although the results are di↵erent for m = 0 and m 6= 0, the strategy is the same. In

each case, we boost to a preferred frame of the particle which is then characterised by

how it transforms under the surviving symmetry group. This surviving symmetry —

SU(2) for a massive particle, U(1) for a massless one — is called the little group.
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There is a slight twist to the story when it comes to realising these representations

on the Hilbert space of single particle states. For massive particles, the states take the

form

|pµ; j, j3i (2.29)

where the momentum is restricted to obey pµpµ = m2 while the azimuthal angular

momentum takes values in j3  |j|. This fills out the 2j + 1 dimensional set of spin

sets. However, for massless particles, there is just a single state |pµ;hi. This is because

the helicity describes the representation of the Abelian group U(1) generated by M12

rather than the non-Abelian group SU(2) and irreducible representations of Abelian

groups are one-dimensional.

The problem is that we know that massless particles also have internal degrees of

freedom. For example, the photon necessarily has two polarisation states. Clearly

we’re missing something. What we’re missing is the additional requirement that the

spectrum of states is invariant under CPT. For massive particles, this doesn’t buy us

anything new: the set of states (2.29) is already invariant under CPT. However, for

massless particles CPT flips h 7! �h and tells us that massless states must come in

pairs

|pµ;hi and |pµ,�hi

This is the origin of the two polarisation states of the photon or graviton, or the two

helicities of a massless Weyl spinor. Note that a massless scalar has helicity h = 0 and

so is CPT self-conjugate. This means that there’s no requirement from CPT to add an

additional degree of freedom in this case.

2.3.2 Massless Representations

We now turn to the representations of the N = 1 supersymmetry algebra. The simple

observation (2.28) tells us that we should expect representations to contain particles of

di↵erent spin and this will turn out to be true. Once again we need to treat massless

and massive particles separately.

The supersymmetry algebra also has two Casimirs. The first is familiar:

C1 = PµP
µ

The fact that this is a Casimir tells us that all particles in a supersymmetric multiplet

must have the same mass, C1 = m2.
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In contrast, the other Casimir of the Poincaré group, WµW µ, is not a Casimir of the

supersymmetry algebra. This is because [Wµ, Q↵] 6= 0 which, in turn, can be traced to

the commutation relation [Mµ⌫ , Q↵] 6= 0. But it was WµW µ that told us that repre-

sentations of the Poincaré group are characterised by the spin of a particle. The fact

that WµW µ is no longer a Casimir means that representations of the supersymmetry

algebra can contain particles of di↵erent spin.

It is possible to construct a new Casimir. First define

Yµ = Wµ �
1

4
Q̄↵̇�̄

↵̇�

µ
Q�

Then the second Casimir of the supersymmetry algebra turns out to be

C̃2 = (YµP⌫ � Y⌫Pµ)(Y
µP ⌫

� Y ⌫P µ)

However, in what follows we won’t need this result. Instead we will build up a repre-

sentation of the supersymmetry algebra more directly. Our strategy is to start from a

particle (i.e. a representation of the Poincaré group) and then act on it with successive

supersymmetry generators until we build up a representation of the full algebra.

It turns out that things are slightly simpler for massless representations. Consider

a state |pµ, hi of a massless particle of helicity h. We can again boost to a frame in

which pµ = (E, 0, 0, E). Restricted to act on such states, the supersymmetry algebra

becomes

{Q↵, Q̄↵̇} = 2�µ

↵↵̇
Pµ = 2E(1 + �3)↵↵̇ = 4E

 
1 0

0 0

!

From the positivity condition (2.27), we see that Q2 and Q̄2 necessarily annihilate this

state,

hpµ, h|{Q2, Q̄2}|pµ, hi = 0 ) Q2|pµ, hi = Q̄2|pµ, hi = 0

To build a representation of the full supersymmetry algebra, we only need consider

the action of Q1 and Q̄1. But these act just like fermionic creation and annihilation

operators. Specifically, if we rescale the operators to become

a =
Q1
p
4E

and a† =
Q̄1
p
4E

) {a, a†} = 1 and {a, a} = {a†, a†} = 0

The representations of this algebra are straightforward: they consist of two states |0i

and |1i such that a|0i = 0 and |1i = a†|0i. This ensures that a†|1i = 0. For us, this

means that we can start by taking a state which, by assumption, is annihilated by a,

a|pµ, hi = 0
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The full supersymmetry multiplet then consists of |pµ, hi and a†|pµ, hi. The question

is: what is the helicity of this second state? This follows from the commutation relation

(2.22)

[Mµ⌫ , Q↵] = (�µ⌫) �

↵
Q� and [Mµ⌫ , Q̄↵̇] = (�̄µ⌫)↵̇

�̇
Q̄�̇ (2.30)

Restricting to rotations in the (x1, x2) plane, which is what we mean by helicity, we

have

[M12, Q1] =
1

2
Q1 and [M12, Q2] = �

1

2
Q2

[M12, Q̄1] =
1

2
Q̄1 and [M12, Q̄2] = �

1

2
Q̄2

The first equation tells us that Q1 raises the helicity by 1
2 . This suggests that the

adjoint Q̄1 lowers the helicty by 1
2 . To see that this is the case, we need to remember

that, after lowering an index, Q̄1 = �Q̄2 so we have

[M12, Q̄1] = �
1

2
Q̄1

So Q̄1 does indeed lower the helicity by 1
2 as anticipated. We learn that the massless

representations of the supersymmetry algebra consist of just two states:

|pµ, hi and |pµ, h�
1

2
i =

Q̄1
p
4E

|pµ, hi

As we saw above, for massless states we must also add their CPT conjugates. The

di↵erent representations of the supersymmetry algebra then arise by picking di↵erent

starting helicities h. There are three representations that are most important:

• If we start with h = 1
2 then we have

h �
1
2 0 +1

2

multiplicity 1 2 1

This is the matter content that we get from quantising a single Weyl spinor

together with a complex scalar. This is known as a chiral multiplet.

The chiral multiplets should be thought of as matter particles. We will devote

Section 3 to studying field theories associated to chiral multiplets. Here we make a

quick comment. The fact that any other internal symmetry generator must com-

mute with Q↵ means that the fermion and scalar in a given chiral multiplet must

experience the same force. In particular, if one is charged under a gauge group

then so is the other. We’ll see this explicitly when we construct supersymmetry

gauge theories in Section 4.
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• If we start with h = 1 then we have

h �1 �
1
2 +1

2 +1

multiplicity 1 1 1 1

This is the matter content of a photon together with a single Weyl spinor. It is

known as the gauge multiplet or vector multiplet.

We will devote Section 4 to the study of vector multiplets. There we will see

that we can construct supersymmetric versions of Yang-Mills theory with gauge

group G by taking dimG vector multiplets. As usual, the h = 1 gauge bosons

transform in the adjoint of the gauge group. But now, so too, must its fermionic

supersymmetric partner. In this context, the fermion is called a gaugino.

• If we start with h = 2 then we have

h �2 �
3
2 +3

2 +2

multiplicity 1 1 1 1

This is the matter content of a graviton together with a helicity 3
2 spinor, some-

times known as a Rarita-Schwinger field or, in this context, the gravitino. They

combine to form the supergravity multiplet.

If we keep going, we get massless fields with helicity h > 2. But there are strong

restrictions that prohibit the existence of interacting theories with massless fields of such

high helicity. (This statement is true in Minkowski spacetimes; there are remarkable

”higher spin” theories that include an infinite tower of massless states in de Sitter or

anti de Sitter spacetimes.) We also skipped the h = 3
2 multiplet for similar reasons; it

turns out that the existence of a massless helicity 3
2 particle implies the existence of a

local supersymmetry which, in turn, requires that the theory is coupled to gravity.

2.3.3 Massive Representations

We next turn to massive representations of the supersymmetry algebra. In the rest

frame of a particle we have pµ = (m, 0, 0, 0). Acting on such states, the supersymmetry

algebra becomes

{Q↵, Q̄↵̇} = 2�µ

↵↵̇
Pµ = 2m�0

↵↵̇
= 2m

 
1 0

0 1

!
(2.31)
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This time, after rescaling, both Q1 and Q2 act as fermionic creation/annihilation op-

erators

a↵ =
Q↵
p
2m

and a†
↵̇
=

Q̄↵̇
p
2m

) {a↵, a
†
↵̇
} = �↵↵̇

with {a↵, a�} = {a†
↵̇
, a†

�̇
} = 0. We start with a state |⌦i = |pµ; j, j3i that we assume to

be annihilated by a↵|⌦i = 0. Then the full supermultiplet consists of four states

|⌦i

a†1|⌦i and a†2|⌦i

a†1a
†
2|⌦i

Again, the question is: what is the spin of these other states. We could use the

commutation relations (2.30) to understand how the new states transform under the

SU(2) little group but it’s a little fiddly while the end result is intuitive and straight-

forward. The initial state |⌦i has spin j. The states a†
↵
|⌦i then sit in the tensor

product of representations j ⌦ 1
2 = (j + 1

2) � (j � 1
2). The final state can be written

as a†1a
†
2|⌦i =

1
2✏

↵�a†
↵
a†
�
|⌦i, where the ✏↵� now contracts the creation operators to be a

spin singlet. This means that the state a†1a
†
2|⌦i once again has spin j.

The upshot is that a massive supermultiplet contains two particles of spin j, a particle

of spin j� 1
2 and a particle of spin j+ 1

2 . Note that the degeneracy of the two particles

of spin j is precisely equal to the degeneracies of the other two particles:

2⇥ (2j + 1) =


2

✓
j +

1

2

◆
+ 1

�
+


2

✓
j �

1

2

◆
+ 1

�

This is simply that statement that we saw previously: a supermultiplet must have an

equal number of bosonic and fermionic degrees of freedom.

There are just two massive supermultiplets that will be of interest

• If we start with j = 0, we have

j 0 1
2

multiplicity 2 1

This is the matter content of a massive complex scalar with a single massive Weyl

fermion. We recognise it as the same matter content as the chiral multiplet that

we met previously, now of course with all particles having a mass.
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• If we start with j = 1
2 , we have

j 0 1
2 1

multiplicity 1 2 1

In other words, we have a massive spin 1 particle, two massive Weyl fermions,

and a massive spin 0 particle. This is now more states than we found in the mass-

less gauge multiplet. In fact, this collection of states is equivalent to a massless

gauge multiplet and a massless chiral multiplet. But that makes sense. In quan-

tum field theory, a massless gauge boson can become massive only through the

Higgs mechanism, in which the gauge boson “eats” a scalar. The supersymmetric

extension of this is that a massless vector multiplet “eats” a chiral multiplet to

become the massive vector multiplet described above.

There’s one further subtlety that is worth flagging up. This is how parity acts on

the two scalars in the massive chiral multiplet. It turns out that one of them is a scalar

and the other a pseudoscalar. Here, the meaning of a “pseudoscalar” is that it picks up

a minus sign under parity. This statement follows, like everything else in this section,

from the supersymmetry algebra. We denote the parity operator as P̂ to distinguish it

from the momentum operator P µ. By definition, we must have

P̂P µ
P̂

�1 = (P 0,�P i)

Meanwhile, parity also exchanges left-handed and right-handed spinors. This means

that parity must exchange some combination of Q↵ and Q̄↵̇. One can check that the

supersymmetry algebra remains unchanged if we take

P̂Q↵P̂
�1 = (�0)↵↵̇Q̄

↵̇ and P̂Q̄↵̇
P̂

�1 = �(�0)↵̇↵Q↵

(More generally one can include a complex phase in these relations but it will not a↵ect

our discussion here.)

Now our two scalar states in the massive chiral multiplet are |⌦i and |⌦0
i = a†1a

†
2|⌦i ⇠

Q̄1Q̄2|⌦i. They obey Q↵|⌦i = Q̄↵̇|⌦0
i = 0. Since parity exchanges Q↵ and Q̄↵̇, it must

also exchange |⌦i and |⌦0
i. This means that the parity eigenstates are

P̂ (|⌦i± |⌦0
i) = ± (|⌦i± |⌦0

i)

and we have one scalar (with the + sign) and one pseudoscalar (with the - sign) as

advertised.
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2.4 Extended Supersymmetry

It is possible for theories to exhibit more than one supersymmetry. This means that

there is a collection of N supercharges

QI

↵
and Q̄I

↵̇
I = 1, . . . ,N

Each of these supercharges retains the same commutation relations with the generators

of the Poincaré group,

[Mµ⌫QI

↵
] = (�µ⌫) �

↵
QI

�
and [P µ, QI

↵
] = 0

and the key part of the supersymmetry algebra holds for each generator separately

{QI

↵
, Q̄J

↵̇
} = 2�µ

↵↵̇
Pµ �

IJ

However, there are two novelties. The first is that the anti-commutator of the super-

charges with themselves can be more interesting

{QI

↵
, QJ

�
} = ✏↵�Z

IJ and {Q̄I

↵̇
, Q̄J

�̇
} = ✏

↵̇�̇
(Z†)IJ (2.32)

Here ZIJ = �ZJI is a central charge, meaning that it commutes with all other elements

of the algebra. The exact nature of these central charges depends on the precise theory

that we consider, but they must be constructed from other conserved quantities that

are at hand. We’ll see the role that these central charges play shortly.

The second novelty is the R-symmetry group. Recall that for N = 1 we had a

U(1)R symmetry (2.24) that rotates the phase of the supercharge. For N > 1, the

R-symmetry rotates the supercharges among themselves. For reasons that will become

clear shortly, our primary interest will be in N = 2 and N = 4 supersymmetry. Here

the R-symmetries are:

• N = 2: The R-symmetry group is U(2)R ⇠= U(1)R ⇥ SU(2)R.

• N = 4: A priori, the R-symmetry group is U(4). However, it turns out that

only SU(4) is realised on fields. This is equivalent to SU(4) ⇠= Spin(6). (This is

sometimes written, a little inaccurately, as SO(6) but the supercharges transform

in the spinor representation of Spin(6) which is not a representation of SO(6) =

Spin(6)/Z2.)

Theories with extended supersymmetry are a subset of those theories with N = 1

supersymmetry. This means that the representations of theories with N > 1 must be

constructed by joining together the N = 1 supermultiplets that we described above.

In the rest of this section, we explain how this works.
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2.4.1 Massless Representations

For representations on states |pµ, hi of massless particles, we proceed as before. We

boost to a frame with pµ = (E, 0, 0, E) and restrict attention to the algebra on such

states. We then have

{QI

↵
, Q̄J

↵̇
} = 4E

 
1 0

0 0

!
�IJ

As previously, we haveQI

2|p
µ, hi = Q̄I

2|p
µ, hi = 0. From (2.32), we then have ZIJ

|pµ, hi =

0 which tells us that the central charges play no role for the massless states. We’re left,

as before, just with the QI

1 and Q̄I

1 operators to deal with. These now form a collection

of N fermionic creation and annihilation operators

aI =
QI

1
p
4E

and aI† =
Q̄I

1
p
4E

) {aI , aJ†} = �IJ and {aI , aJ} = {aI†, aJ†} = 0

We now start with some fiducial state |⌦i = |pµ, hi satisfying aI |⌦i = 0 and build up

the full representation by acting with successive creation operators. The end result is

a collection of states

|⌦i

aI†|⌦i

aI†aJ†|⌦i

. . .

a1† . . . aN†
|⌦i

Our initial state |⌦i has helicity h. If we act with p of the a† excitation operators then

there are
�N
p

�
di↵erent states, each of which has helicity h � p/2. The full multiplet

consists of 2N di↵erent states. If we add the CPT conjugate states then we have 2N+1

states overall. Let’s now look at some specific examples.

N = 2 Supersymmetry

Again, the di↵erent multiplets arise by considering initial states |⌦i with di↵erent

helicities. We’ll deal with each in turn.

• If we start with h = 1
2 then there are two states in the first level, aI†|⌦i, each

with h = 0, and a single state in the final level, a1†a2†|⌦i, with h = �
1
2 . After

adding the CPT conjugate we end up with
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h �
1
2 0 +1

2

multiplicity 2 4 2

This is called a hypermultiplet. In consists of two chiral multiplets or, equivalently,

two complex scalars and a Dirac fermion (i.e. two Weyl fermions).

You might wonder why we needed to add the CPT conjugate in this case. After

all, starting with h = +1
2 gave a single chiral multiplet which is already CPT self-

conjugate. The answer to this is buried in the details of the SU(2)R symmetry

which acts on the scalars aI†|⌦i as a doublet. But this means that each of

these scalars must be complex and that, in turn, requires that we add the CPT

conjugate.

• If we start with h = 0 then we get two additional states with h = �
1
2 and one

with h = �1. Adding the CPT conjugate gives

h �1 �
1
2 0 +1

2 +1

multiplicity 1 2 2 2 1

This is the N = 2 vector multiplet, comprising of an N = 1 vector multiplet and

N = 1 chiral multiplet.

• If we start with h = 2 then, after adding the CPT conjugate, we end up with

h �2 �
3
2 �1 +1 +3

2 +2

multiplicity 1 2 1 1 2 1

This is the N = 2 supergravity multiplet. It comprises of an N = 1 supergravity

multiplet together with an N = 1 vector multiplet.

There’s one important feature of the spectrum above that is worth highlighting.

The fermions now come in pairs, meaning that they can be viewed as Dirac fermions

rather than Weyl fermions. This puts restrictions on the kind of supersymmetric theo-

ries that we can build. In particular, it’s not possible to construct a chiral gauge theory

with N > 1 supersymmetry. Here a chiral theory is one in which left- and right-handed

fermions experience di↵erent forces, like in the Standard Model. Such theories are pos-

sible with N = 1 supersymmetry (or, indeed, N = 0 supersymmetry as in our world!).

But any extended supersymmetry forces the theories to be vector-like.
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N = 4 Supersymmetry

We can play the same game with N = 4 supersymmetry.

• If we start with h = 1 then we get the following multiplet

h �1 �
1
2 0 +1

2 +1

multiplicity 1 4 6 4 1

This consists of an N = 2 vector multiplet with an N = 2 hypermultiplet and is

the unique N = 4 multiplet that does not include gravity. Note that there is now

no longer a distinction between forces and matter: once you specify the gauge

group, all matter content is also fixed. Furthermore, all matter fields necessarily

transform in the adjoint representation of the gauge group.

For once, we did not need to add the CPT conjugate to the above multiplet: it’s

already CPT self- conjugate. As we saw above, it was almost possible to achieve

this for the N = 2 matter representation but we fell at the last hurdle when we

considered how the SU(2)R symmetry acts on the scalars. But now we have no

such concern. The scalars are the set of 6 states aI†aJ†|⌦i and transform in the 6

of the SU(4) R-symmetry. But this is a real representation and there is no need

to add the CPT conjugate.

• If we start with h = 2 then, after adding the CPT conjugate multiplet, we have

h �2 �
3
2 �1 �

1
2 0 +1

2 +1 +3
2 +2

multiplicity 1 2 2 2 2 2 2 2 1

This is the N = 4 supergravity multiplet, comprising of an N = 2 supergravity

multiplet and N = 2 vector multiplet.

You may have noticed that we jumped straight from N = 2 to N = 4, missing

out N = 3 in the middle. If you try to build a multiplet of single particle states

with N = 3 supersymmetry starting from, say, h = 1
2 or h = 1 then you’ll find that

you’re obliged to add the CPT conjugate representation and you just end up with

N = 4 supersymmetry after all. This observation is the key element of a proof that

says any perturbative theory with N = 3 global supersymmetry necessarily has N = 4

supersymmetry.
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The word “perturbative” is important in the above statement. This means that the

theory is weakly coupled and the single particle states that we’re considering here are

a good approximation to the spectrum of the theory. It turns out N = 3 supersym-

metry can be realised in strongly coupled, interacting quantum field theories, with no

perturbative regime.

N = 8 Supersymmetry

If we go beyond N = 4 supersymmetry then we no longer have multiplets with helicities

h  1. This means that we are now necessarily in the realm of local supersymmetry

and supergravity. Furthermore, by the time we get beyond N = 8 supersymmetry the

multiplets have particles with helicity h > 2. As we mentioned before, such theories

are always free in Minkowski space and therefore of limited interest. In this sense,

N = 8 is the maximum number of supersymmetries possible. The theory has a unique

supergravity multiplet with the following degeneracies

h �2 �
3
2 �1 �

1
2 0 +1

2 +1 +3
2 +2

multiplicity 1 8 28 56 70 56 28 8 1

N = 8 supergravity has some interesting properties and plays a role in string theory.

However, we won’t discuss it further in this course.

2.4.2 Massive Representations and BPS Bounds

Rather than repeating the whole story for massive representations, we will instead

just focus on the novelty. This arises from the central charges ZIJ that appear in the

supersymmetry algebra

{QI

↵
, QJ

�
} = ✏↵�Z

IJ

For reasons that we now explain, this is where much of the power of extended super-

symmetry comes from.

Our goal is to understand representations of this algebra, in conjunction with the

original supersymmetry algebra which, in the rest frame of the particle, reads (2.31)

{QI

↵
, Q̄J

↵̇
} = 2m

 
1 0

0 1

!
�IJ

We’ll illustrate the story with N = 2 supersymmetry, although the general idea holds

for any theory with extended supersymmetry. With N = 2, the anti-symmetric central

charge is necessarily just a complex number Z

ZIJ = 2✏IJZ
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For simplicity, we take Z to be real. (Typically it’s not but we’ll dodge this issue

for now and state the full result below.) We then define the following combination of

creation and annihilation operators

a↵ =
1
p
2

 
Q1

1 + Q̄2
2

Q1
2 � Q̄2

1

!
and b↵ =

1
p
2

 
Q1

1 � Q̄2
2

Q1
2 + Q̄2

1

!

Note that we’ve mixed up ↵ and ↵̇ indices. This is acceptable because we’re working

in the rest frame of the particle and so have already broken Lorentz invariance. The

choice of a and b operators is designed to disentangle the mass and central charge Z,

so their commutation relations read

{a↵, a
†
�
} = 2(m+ Z)�↵� and {b↵, b

†
�
} = 2(m� Z)�↵�

with all other anti-commutators vanishing. The {a↵, a
†
�
} and {b↵, b

†
�
} are both positive

definite, so the corresponding right-hand sides must be too. But this is only true if the

masses are bounded by the central charges,

m � |Z|

This formula also holds if Z is complex; we just need to redefine the operators a

and b using a phase to derive the same result. This formula is interesting. Although

we haven’t seen yet any specific examples, recall that the central charge Z is some

combination of conserved charges in the quantum field theory. We learn that the masses

of particles is bounded by the charges. This is known as the BPS bound although in

the present context the name Witten-Olive bound would be more appropriate.

What about the representation theory of the algebra? Crucially, this depends on

whether m > |Z| or m = |Z|.

If m > |Z|, then we are in a situation very similar to the massive representation

theory that we saw before. Both a†
↵
and b†

↵
act as creation operators and the result is

that we have a multiplet comprising of 16 states. This is known as a long multiplet. We

can also repeat this story with N supersymmetries to find that long multiplets have

22N states.

More interesting is what happens when m = |Z|. In this case, half of the creation

operators do nothing. For example, when m = Z, the b↵ operators must just vanish

on all states in the multiplet. Now we’re back to the situation we met when discussing

massless representations, with only a†
↵
acting as creation operators. The result is the

hypermultiplet or vector multiplet that we saw above, each with 8 states, but now with

a mass m = Z. This is known as a short multiplet.
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The existence of short multiplets, whose mass is fixed to be m = |Z|, turns out to

be a wonderfully powerful tool in the study of quantum field theories with extended

supersymmetry. The basic idea is that one can usually solve quantum field theories at

weak coupling. There we can identify the various states and understand the spectrum

of long and short multiplets. As one moves into the strong coupling realm, we typically

lose control over the dynamics. However, the short multiplets are special because their

mass is pinned to be m = |Z|. The mass can’t deviate from |Z| because this would

need there to be extra states in the Hilbert space and these can’t magically appear

from nowhere as some parameter, like a coupling constant, is varied. The only way

that the short multiplets can free themselves from this constraint is if two or more short

multiplets become degenerate and then combine to become a long multiplet whose mass

is no longer protected. By understanding when this can (or, better yet, can’t) happen

we get a precious handle on the strong coupling dynamics of certain quantum field

theories.

In this way, the study of short BPS multiplets shines a rare light into what happens

at strong coupling. It allows us to e↵ectively solve the dynamics of N = 2 and N = 4

gauge theories. It also allows us to understand the strong coupling limits of string

theory, including the existence of M-theory, and to compute the microscopic entropy

of certain BPS black hole solutions. It is, in short, a very useful tool.

The BPS trick is not available for N = 1 theories and so we won’t be wielding it for

much of these lectures. (Actually, it can be used to compute the tension of domain walls

and vortex strings in certain N = 1 theories, but not the masses of particle states.)

2.4.3 Supersymmetry in Other Dimensions

Throughout these lectures, we will restrict ourselves to supersymmetric theories in

d = 3 + 1 spacetime dimensions. There are, however, many interesting things to say

about supersymmetric theories in other dimensions. Here we merely make a few very

simple comments.

Supersymmetric Gauge Theories in Di↵erent Dimensions

We’ve seen that the vector multiplet of N = 1 supersymmetry has a photon paired

with a single massless Weyl spinor. This works because both have two internal degrees

of freedom in d = 3 + 1 dimensions. We can ask: in what other spacetime dimensions

might we be able to pair a photon with a fermion?

The number of polarisation states of a photon is d � 2. So the question really is:

in what dimensions does a spinor have d � 2 degrees of freedom? We will see that we
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can have a supersymmetric theory in which a photon pairs with a single fermion in

d = 3, 4, 6 and 10 Lorentzian spacetime dimensions.

The story is simplest in d = 3 + 1 and d = 5 + 1. In even spacetime dimension d, a

Dirac spinor has 2d/2 complex components. But the irreducible representations of the

Lorentz group are Weyl spinors with 2(d�2)/2 complex components. While a complex

scalar has two degrees of freedom, a complex spinor has the same number of degrees

of freedom as the number of components. This is because the Dirac equation (or Weyl

equation) is first order so these components include both “position” and “momentum”.

This means that if we want the number of degrees of freedom of a Weyl spinor to match

those of a photon then we need to solve the equation

2(d�2)/2 = d� 2

The solutions are d = 4 and d = 6 as advertised.

In d = 3 + 1 dimensions we can choose to impose either a Majorana condition or a

chiral projection to a Weyl fermion. However in d = 2 mod 8 spacetime dimensions, it

is possible to impose both a Majorana and Weyl condition. This halves the number of

degrees of freedom of a Weyl fermion. Attempting to match the degrees of freedom of

a Majorana-Weyl fermion to a photon we have

2(d�4)/2 = d� 2 with d = 2 mod 8

The unique solution is d = 10.

Finally we’re left searching solutions in odd spacetime dimensions. It is not hard

to see that there is just one possibility. In d = 2 + 1 dimensions, a photon has just

a single polarisation state. Meanwhile, a Dirac spinor in d = 2 + 1 has two complex

components. However we can impose a Majorana condition to make the spinor real.

(For example, we can take the real Cli↵ord algebra �0 = i�2, �1 = �2 and �2 = �3.)

So a Majorana spinor in d = 2 + 1 has two real components and, correspondingly, one

degree of freedom, matching that of the photon.

If we’re not in the magic spacetime dimension d = 3, 4, 6 or 10 then we can still have

supersymmetric theories that relate a photon to a fermion. But now we need to include

extra scalar degrees of freedom as well to make up the numbers.

The fact that the number of fermion degrees of freedom increases exponentially with

d, while the number of bosonic degrees of freedom increases only linearly, suggests that

there may be a maximum spacetime dimension in which supersymmetry is possible.
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Indeed this is the case. If we don’t wish to get our hands dirty with supergravity then

d = 9 + 1 dimensions is the highest we can go. If we’re happy to include gravity in

the mix then there is a unique supersymmetry theory in d = 10+1 dimensions known,

reasonably enough, as eleven dimensional supergravity. It is extremely interesting and

describes the low-energy behaviour of M-theory.

Extended Supersymmetry and Higher Dimensions

There is a close relationship between supersymmetric theories in higher dimensions and

extended supersymmetry. In particular, theories with N = 2 supersymmetry naturally

descend from d = 5+ 1 dimensions while those with N = 4 supersymmetry come from

d = 9+1 dimensions. (This statement, taken at face value, is true only at the classical

level. But there are also a myriad of subtle and wonderful connections at the quantum

level, none of which will be touched upon in these lectures.)

To see this, we will briefly jump ahead of ourselves slightly and use the language of

fields, rather than the language of single particle quantum states that we’ve invoked

until now. The relationship between theories in di↵erent dimensions involves a pro-

cess known as dimensional reduction. This means that we take the fields in a higher

dimension and state, by fiat, that they are independent of certain spatial coordinates.

For example, consider a gauge field AM in, say, d = 5 + 1 dimensions. This means

that M = 0, 1, . . . , 5. Upon dimensional reduction, we insist that this gauge field only

depends on xµ with µ = 0, 1, 2, 3. The gauge field itself then decomposes as

AM ! (Aµ,�4,�5)

That is, we get a d = 3+1 dimensional gauge field Aµ together with two real scalars �4

and �5. But this is precisely the bosonic content of the N = 2 vector multiplet that we

found above. A d = 5 + 1 Weyl fermion decomposes into two d = 3 + 1 Weyl fermions

in a similar fashion (although you have to work a little harder playing around with the

gamma matrices to see this).

Playing the same game with a d = 9 + 1 gauge field, we find a d = 3 + 1 gauge field

together with 10 � 4 = 6 scalars. This is the bosonic content of the N = 4 vector

multiplet that we found above. Decomposing a d = 9 + 1 Majorana-Weyl fermion

completes the story, giving four d = 3 + 1 Weyl fermions.

Finally, if you dimensionally reduce eleven dimensional supergravity you find N = 8

supergravity in d = 3 + 1 dimensions.
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Counting Supersymmetries

The way in which we count supersymmetries in di↵erent dimensions can be rather

bewildering when you first meet it. In d = 3 + 1 we count supersymmetries by the

number of Weyl spinor supercharges QI

↵
with I = 1, . . . ,N . But this is clearly specific

to 4d. In other dimensions the counting depends on what kinds of minimal spinors we

can construct. Moreover, if we dimensionally reduce then what is a minimal supersym-

metry in a higher dimension typically becomes an extended supersymmetry in a lower

dimension.

To avoid this confusion, it can be useful to count the number of components of the su-

percharges. We count these as N (rather than the calligraphic N .) These components

are, sadly, also referred to a supercharges! Because spinors can be real in some dimen-

sions, we count the number of real components or, equivalently, twice the number of

complex components. This means that, in d = 3+1 dimensions, N = 1 supersymmetry

has four supercharges, N = 2 has eight supercharges, and so on.

To orient you, here is a list of some of the most interesting classes of supersymmetric

theories and how they are labelled in various dimensions. The list is by no means

complete but gives some sense of the more compelling supersymmetric stories out there.

The maximum number of supercharges is N = 32. These are all supergravity theories

and can exist in any dimension d = 10 + 1 and below. Upon dimensional reduction,

the number of minimal spinor supercharges N in various dimensions is

N=32 supercharges:
Dimension d 11 10 6 4

Supersymmetry N 1 (1,1) (2,2) 8

This is not an exhaustive list: supersymmetric theories with N = 32 supercharges exist

in all dimension d  11. But the dimensions listed above are, for various reasons, the

most interesting and well studied.

Note the strange (n, n) notation in d = 5 + 1 and d = 9 + 1. This is because of one

more subtlety of representations of the Cli↵ord algebra. When d = 2 mod 4, the two

types of Weyl spinor are not related by complex conjugation in Lorentzian signature.

This means that you can have a spinor of one chirality without necessarily having the

other. In contrast, when d = 0 mod 4 (including, as we saw in great detail, in d = 3+1)

the complex conjugate of a left-handed spinor is a right-handed spinor, so if you have

one then you always have the other. The notation (n, n) tells us how many left- and

right-handed spinor supercharges we have.

– 45 –



There is another supergravity theory in d = 9 + 1 dimension which has also 32

supercharges but with N = (2, 0) supersymmetry. This is more commonly known as

Type IIB supergravity, with the N = (1, 1) theory known as Type IIA. They are the

low-energy descriptions of Type IIA and IIB string theories.

Theories with N = 16 supercharges can exist in dimensions d = 9 + 1 and below.

Upon dimensional reduction, the associated supersymmetry is:

N=16 supercharges:
Dimension d 10 6 4 3 2

Supersymmetry N (1,0) (1,1) 4 8 (8,8)

The most famous and well studied of these is the Yang-Mills theory associated to the

N = 4 vector multiplet in d = 3 + 1. It has many remarkable properties, including

electromagnetic duality and the fact that, at strong coupling, it is can be viewed as

a theory of quantum gravity through the AdS/CFT correspondence. There are also

interesting stories to tell about the quantum dynamics of the theories in d = 2+ 1 and

d = 1 + 1 dimensions.

There is one further interesting theory with 16 supercharges. This is a strongly

interacting superconformal quantum field theory in d = 5 + 1 dimensions with N =

(2, 0) supersymmetry. In some ways, it can be viewed as the grandfather of all quantum

field theories. Given its importance, it has a remarkably rubbish name: it is simply

called the (2, 0) theory.

Theories with N = 8 supercharges exist in d = 5 + 1 dimensions and below. Upon

dimensional reduction, the names of the supersymmetries that one finds are

N=8 supercharges:
Dimension d 6 4 3 2

Supersymmetry N (1,0) 2 4 (4,4)

Again, the theories with N = 2 supersymmetry in d = 3 + 1 dimensions are the best

studied and were first solved by Seiberg and Witten.

Theories with N = 4 supercharges exist in d = 3 + 1 dimensions and below. Upon

dimensional reduction, this becomes

N=4 supercharges:
Dimension d 4 3 2

Supersymmetry N 1 2 (2,2)

Much of the focus of these lectures notes will be on understanding the dynamics of

N = 1 theories in d = 3 + 1 dimensions. But there are many beautiful stories in lower
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dimensions as well. In particular, the study of superconformal N = (2, 2) theories in

d = 1 + 1 dimensions is where one can first find the mathematical study of mirror

symmetry. There are also interesting 2d theories with N = (0, 4) supersymmetry.

Finally, theories with N = 2 supercharges exist in d = 2 + 1 dimensions and below.

The dimensional reduction to d = 1 + 1 gives

N=2 supercharges:
Dimension d 3 2

Supersymmetry N 1 (1,1)

There are also N = (0, 2) theories that do not descend from d = 2 + 1 dimensions.

Note that these are usually written as (0, 2) rather than (2, 0) to give an extra hint

that we’re talking about 2d theories rather than the 6d theory mentioned above.

I’ve not included d = 0 + 1 theories in the above list, also known as quantum

mechanics, but it’s not for want of things to say. You can read about supersymmetric

quantum mechanics in the companion lecture notes.
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