
4 Supersymmetric Gauge Theories

Finally, we turn to the main subject of these lectures: supersymmetric gauge theory. In

this section we will describe the classical structure of supersymmetric gauge theories.

In Section 6 we turn to their quantum dynamics.

4.1 Abelian Gauge Theories

A gauge field Aµ sits inside a real superfield satisfying V (x, ✓, ✓̄) = V †(x, ✓, ✓̄). Expand-

ing out such a superfield in components, we have

V (x, ✓, ✓̄) = C(x) + ✓�(x) + ✓̄�̄(x) + i✓2M(x)� i✓̄2M †(x) + ✓�µ✓̄Aµ(x)

+ ✓2✓̄

✓
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i
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✓
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◆
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1

2
⇤C(x)

◆
(4.1)

The real superfield contains two real scalars, C andD, and a complex scalarM , together

with two Weyl fermions �↵ and �↵. Importantly, it also contains a real vector field

Aµ. This will play the role of the gauge field in what follows. We’ve defined some of

the components to include derivatives of others. This should simply be thought of as

a redefinition of D(x) and �(x), admittedly one that you wouldn’t write down unless

you had an inkling of what was coming.

If Aµ is to be a gauge field, then it must enjoy a gauge transformation. These too

sit in a superfield. We start by taking a chiral superfield ⌦

⌦ = ! +
p
2✓⇢+ ✓2G+ i✓�µ✓̄@µ! �

i
p
2
✓2@µ⇢ �

µ✓̄ �
1

4
✓2✓̄2⇤!

Then i(⌦� ⌦†) is a real superfield. Consider the generalised gauge transformation

V ! V + i(⌦� ⌦†) (4.2)

The vector component of the real superfield shifts as

Aµ ! Aµ � 2@µ(Re!) := Aµ + @µ↵ (4.3)

But this is precisely the form of a gauge transformation. But under this generalised

gauge transformation, it’s not just Aµ that shifts. The other fields in V (x, ✓, ✓̄) also

transform as

C ! C � 2 Im!

� ! �+
p
2i⇢ (4.4)

M ! M +G
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Importantly, however, �! � and D ! D remain unchanged. This can be traced to the

extra derivative terms that we included in the superfield expansion (4.1) which were

designed to soak up the shift by a chiral superfield.

We can now use this gauge transformation to simply set C = � = M = 0. This is

known asWess-Zumino gauge. Note that it’s not a gauge choice that has done anything

to fix Aµ. It’s more a “super gauge choice” to fix the extraneous components in the

superfield. In Wess-Zumino gauge, the superfield takes the simpler form

VWZ = ✓�µ✓̄Aµ + ✓2 ✓̄�̄+ ✓̄2✓�+
1

2
✓2✓̄2D (4.5)

It contains a gauge field Aµ, a Weyl fermion �↵ and an extra real scalar D that, as

the top component of a superfield, will prove to be auxiliary. If we quantise Aµ and �

then we find the single-particle excitations of the gauge multiplet that we anticipated

in Section 2.3.2.

If you act with a supersymmetry transformation on VWZ , then it will take you out

of Wess-Zumino gauge. This isn’t a big headache; it just means that you have to do a

compensating transformation to put yourself back in Wess-Zumino gauge afterwards.

The supersymmetry transformations then act on the fields Aµ, � and D as

�Aµ = ✏�µ�̄+ ��µ✏̄

�� = ✏D + (�µ⌫✏)Fµ⌫ (4.6)

�D = i✏�µ@µ�̄� i@µ��̄
µ✏̄

Note that the supersymmetry transformations (3.15) alone give us a term proportional

to @µA⌫ in ��. The compensating gauge transformation to take us back into Wess-

Zumino gauge adds another term so this becomes the gauge invariant field strength

Fµ⌫ = @µA⌫ � @⌫Aµ

Finally, note that

V 2
WZ

=
1

2
✓2✓̄2AµA

µ and V 3
WZ

= 0 (4.7)

This will be useful when constructing supersymmetric actions shortly.

4.1.1 The Field Strength and Action

We will build the action out of a field strength superfield, constructed from V by

W↵ = �
1

4
D̄

2
D↵V
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This has some nice properties. First, it is a chiral superfield, obeying D̄↵̇W↵ = 0. This

follows from the fact that D̄
3 = 0. Second, it is invariant under the superfield gauge

symmetry (4.2): the ⌦† term is killed immediately by D↵⌦† = 0, while the two D̄’s

contrive to kill the ⌦ term. (You need one D̄ to get past the D↵ and the other D̄ to

kill ⌦.) The upshot is that any action formed from W↵ will be automatically gauge

invariant.

Next, we compute the components of W↵. This is a straightforward calculation

but the number of terms involved gets rather large. Happily, things are easier if we

appreciate that W↵ is a chiral superfield since this means we only need to worry about

the ✓ terms, with the ✓̄ terms following automatically from the expansion (3.19). In

components, the field strength superfield reads

W↵(x, ✓) = �↵(x) + ✓↵D(x) + (�µ⌫✓↵)Fµ⌫(x)� i✓2�µ

↵↵̇
@µ�̄

↵̇(x) + . . .

The first component of the chiral superfield W↵ is a spinor, rather than a scalar, re-

flecting the fact that W↵ is itself a spinor chiral superfield. Importantly, W↵ contains

the field strength Fµ⌫ .

SinceW↵ is chiral, we can integrate it over half of superspace to get a supersymmetric

action. We have
Z

d2✓ W↵W↵ = �
1

2
Fµ⌫F

µ⌫ +
i

2
Fµ⌫

?F µ⌫
� 2i��µ@µ�̄+D2

where the second term involves the dual field strength

?F µ⌫ =
1

2
✏µ⌫⇢�F⇢�

This is like Fµ⌫ but with the electric and magnetic fields swapped (one of them with a

minus sign).

The term iFµ⌫
?F µ⌫ is imaginary and so, at first glance, it looks like it will cancel

when we add the hermitian conjugate
R
d2✓̄ W †

↵̇
W † ↵̇. However, it turns out that this

term plays an important role (at least this is true in the non-Abelian theories that we

will discuss shortly) and we wish to keep it. This is achieved by introducing the gauge

coupling constant e2. Because this coupling constant sits in an F -term it is necessarily

complex. We define

⌧ =
#

2⇡
+

4⇡i

e2
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And then write the Lagrangian

SMaxwell = �

Z
d4x

Z
d2✓

i⌧

16⇡
W ↵W↵ + h.c.

�

=

Z
d4x


�

1

4e2
Fµ⌫F

µ⌫ +
#

32⇡2
Fµ⌫

?F µ⌫
�

i

e2
��µ@µ�̄+

1

2e2
D2

�
(4.8)

This is the supersymmetric Maxwell action. The propagating degrees of freedom are

the U(1) gauge field and a fermion � that, in this context, is called the gaugino or,

more specifically, the photino. There is also a real, auxiliary field D.

The parameter e2 is the coupling constant. It doesn’t do anything in Maxwell theory,

which is free, but will come into play when we add matter. Note that we’re working

in a convention where there is a factor of 1/e2 that sits in front of the Maxwell action.

As we’ll see, the gauge coupling doesn’t then sit anywhere else. This di↵ers from the

convention that we first met in Quantum Field Theory where the Maxwell term was

canonically normalised but there was a gauge coupling inside the covariant derivatives.

The two conventions are related by a rescaling Aµ ! eAµ. Note that the photino �

similarly has an unconventionally normalised kinetic term, with a 1/e2.

Finally, there is the parameter #. This is known as the theta angle. (We’ve used

calligraphic script # to distinguish it from the superspace coordinate ✓.) Classically,

the theta angle doesn’t do anything. This is because it multiplies a total derivative

?Fµ⌫F
µ⌫ = 2@µ(✏

µ⌫⇢�A⌫@⇢A�)

However, things are more interesting in the quantum theory and the addition of such

topological terms in the path integral can a↵ect the dynamics. This is rather subtle

for Maxwell theory, but underlies the story of 3d topological insulators. The e↵ect is

more pronounced in Yang-Mills theory and we’ll discuss it further in Section 6. You

can read (a lot) more about the theta angle in the lectures on Gauge Theory.

4.1.2 Supersymmetric QED

Next we add matter. This comes in the form of chiral multiplets �i, where i = 1, . . . , N .

We want these to be charged under the U(1) gauge field so that under a gauge trans-

formation

Aµ ! Aµ + @µ↵

The components of the chiral multiplet transform with charges qi 2 Z. This means

that the lowest components transform as

�i ! ei↵qi�i (4.9)
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By necessity, the fermions  i and auxiliary fields Fi in the chiral multiplet �i must

have the same charge,

 i ! ei↵qi i and Fi ! ei↵qiFi (4.10)

From (4.3), this gauge transformation sits within a larger superfield transformation,

under which

�i ! exp (�2iqi⌦)�i

Note that this actually includes a larger symmetry than (4.9) and (4.10), because we

can have, for example �i ! ei↵qi�i with ↵ 2 C, rather than R. This shifts the modulus

of �i, as well as the phase. In mathematical language, the gauge group has been

extended from U(1) to the complexification U(1)C. However, the extra piece also shifts

the additional fields in the vector multiplet, in particular the field C that transforms as

C ! C + Im↵, as shown in (4.4). This means that if we use the extra transformation

to go to Wess-Zumino gauge, with C = 0, then we don’t get to use it again on �i, and

we’re back to the more familiar U(1) gauge transformations with ↵ 2 R.

The canonical Kähler potential that we’ve used so far is not gauge invariant:

NX

i=1

�†
i
�i !

NX

i=1

exp
�
�2iqi(⌦� ⌦†)

�
�i�

†
i

However, it’s simple to fix up. We simply need to use the new Kähler potential

K(�i,�
†
i
, V ) =

NX

i=1

�†
i
e2qiV�i

with the transformation of V given in (4.2) rendering the whole expression gauge in-

variant. In Wess-Zumino gauge, the formulae (4.7) truncates at e2qV = 1+2qV +q2V 2.

Integrating over superspace then gives
Z

d4✓ �†e2qV� =

Z
d4x

h
|Dµ�|

2
� i ̄�̄µ

Dµ + |F |
2
�
p
2q
�
��̄ ̄ + �†� 

�
+ qD|�|2

i

Here the covariant derivatives are given by

Dµ� = @µ�� iqAµ� and Dµ = @µ � iqAµ 
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The full action for an Abelian gauge theory then comes from combining the Maxwell

action (4.8) with the matter fields. It is

S = SMaxwell +
NX

i=1

Z
d4x d4✓ �†

i
e2qiV�i

=

Z
d4x

h
�

1

4e2
Fµ⌫F

µ⌫ +
#

32⇡2
Fµ⌫

?F µ⌫
�

i

e2
��µ@µ�̄+

NX

i=1

�
|Dµ�i|

2
� i ̄�̄µ

Dµ i

�

+
1

2e2
D2 +

NX

i=1

⇣
|Fi|

2
�
p
2qi
⇣
�i�̄ ̄i + �†

i
� i

⌘
+ qiD|�i|

2
⌘ i

(4.11)

The first line contains the kinetic terms, the second the interactions. Note that there

is a Yukawa coupling between the gaugino � and the chiral multiplet fields, with �†

partnering  so that the Yukawa term is gauge invariant. In addition, there is a scalar

potential that arises when we integrate out the auxiliary fields. The F terms don’t do

anything unless we also add a superpotential, while integrating out the D term results

in the potential

V (�) =
1

2e2
D2 with D = e2

 
NX

i=1

qi|�i|
2

!
(4.12)

Provided that there are both positive and negative charges qi (and there must be as we

explain below) then the potential has flat directions in which

NX

i=1

qi|�i|
2 = 0 (4.13)

The existence of a moduli space of vacua is an important feature of supersymmetric

gauge theories. We will study it more closely in Section 4.3

A First Look at the Anomaly

There’s nothing wrong with (4.11) as a classical theory. But, as a quantum theory, it

has a problem. It turns out that for most choices of the charges qi, the quantum theory

is sick. It has an inconsistency that goes by the name of a gauge anomaly.

We will have a lot to say about anomalies, gauge and otherwise, later in these lectures.

For now we simply mention that the quantum theory only makes sense if the charges

satisfy the following two conditions

NX

i=1

qi =
NX

i=1

q3
i
= 0 (4.14)
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These conditions are not special to supersymmetric theories. They hold for any theory

that has Weyl fermions coupled to a U(1) gauge group. We’ll say more about where

these conditions come from in Section 5.2. For now, note that they require us to have

fields with both positive and negative charges which, in turn, ensures that there are

solutions to (4.13) with �i 6= 0.

There are non-trivial solutions to the consistency conditions (4.14) but, for the most

part, we will work with trivial solutions in which chiral multiplets come in pairs so

that for each � with charge q there is a second chiral multiplet that we call �̃ with

charge �q. The conditions (4.14) are then automatically satisfied. Each pair � and �̃

is sometimes referred to as a flavour. If a flavour is said to have charge q, it means that

� has charge q and �̃ charge �q.

The simplest example comprises of a U(1) gauge field interacting with N flavours

(which means 2N chiral multiplets) of charge +1. This theory is known as supersym-

metric QED, or SQED for short. The action is

SSQED = SMaxwell +
NX

i=1

Z
d4x d4✓

⇣
�†

i
e2iV�i + �̃†

i
e�2iV �̃i

⌘

=

Z
d4x

h
�

1

4e2
Fµ⌫F

µ⌫ +
#

32⇡2
Fµ⌫

?F µ⌫
�

i

e2
��µ@µ�̄

+
NX

i=1

⇣
|Dµ�i|

2 + |Dµ�̃i|
2
� i ̄�̄µ

Dµ i � i ¯̃ i�̄
µ
Dµ ̃i

⌘

�
p
2

NX

i=1

⇣
�†
i
� i � �̃†

i
� ̃i + h.c.

⌘
�

e2

2

 
NX

i=1

|�i|
2
� |�̃i|

2

!2 i
(4.15)

where we’ve integrated out both D-term and F -terms so the scalar potential takes the

form (4.12).

When we first met QED in the lectures on Quantum Field Theory, we coupled a

Dirac fermion to a U(1) gauge field. This Dirac fermion contains two chiral fermions,

one left-handed  and one right-handed �̄, both with the same charge. If we conjugate

the right-handed fermion then it becomes a left-handed fermion �. We now have two

left-handed fermions with equal and opposite charges. That’s precisely the fermionic

matter content in each flavour in (4.15).

Adding Further Terms

There are further terms that we can add to the action (4.15) (or, indeed, to the more

general action (4.11)). We can add any superpotential W (�) provided that it is gauge
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invariant. For example, we can always add to (4.15) the superpotential

W (�, �̃) =
NX

i=1

mi�̃i�i

This gives a mass |mi| to each chiral multiplet. In particular, the fermions get a Dirac

mass. Note that such mass terms are only possible if there are pairs of chiral superfields

with opposite charges.

There is one further, slightly curious term that we can add. This is known as the

Fayet-Iliopoulos term,

LFI =

Z
d4✓ 2⇣V = ⇣D (4.16)

It is gauge invariant because D doesn’t shift under the generalised gauge symmetry

(4.2). Here ⇣ 2 R is the Fayet-Ilipoulos, or FI, parameter. Since this multiplies the

D-term, it changes only the scalar potential (4.12) which becomes

V (�) =
e2

2

 
NX

i=1

qi|�i|
2
� ⇣

!2

In particular, supersymmetric vacua with V (�) = 0 now require some scalar field to get

a non-vanishing expectation value which, in turn, breaks the U(1) gauge symmetry.

4.2 Non-Abelian Gauge Theories

We can repeat everything above for non-Abelian gauge fields. We work with a gauge

group G with Lie algebra

[TA, TB] = ifABCTC

The factor of i in the commutation relations ensures that the generators are Hermi-

tian, so (TA)† = TA. We normalise the generators in the fundamental (i.e. minimal)

representation as

TrTATB =
1

2
�AB (4.17)

In what follows, generators TA will always be taken to be in the fundamental represen-

tation. If we need generators in other representations R then we will denote them as

TA

R
. In these lectures we will mostly work with

G = SU(Nc)

with the subscript on Nc short for the number of “colours”. We’ll also mention results

for other gauge groups as we go and, for now, keep things general.
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4.2.1 Super Yang-Mills

Constructing supersymmetric Yang-Mills theory is slightly more fiddly version of what

we did for Maxwell theory. We introduce a real superfield V in the adjoint of the gauge

group. As usual, we can view an object in the adjoint representation as living in the

Lie algebra by writing

V = V ATA A = 1, . . . , dimG

For G = SU(Nc), if we take TA to be in the fundamental representation then this

means that V is an Nc⇥Nc matrix. In terms of the components, we have a gauge field,

but this is now accompanied by a fermion � and auxiliary field D, both of which must

also sit in the adjoint representation. Equivalently, all of them naturally live in the Lie

algebra

Aµ = AA

µ
TA , �↵ = �A

↵
T a , D = DATA

Again, for SU(Nc) this means that each of these should be thought of as an Nc ⇥ Nc

matrix (in addition to any vector or spinor index they carry). The fermion is again

called a gaugino or sometimes a gluino.

We again want to generalise the usual non-Abelian gauge symmetry to something

that can act on a superfield. We do this by taking an adjoint valued chiral superfield

⌦ = ⌦ATA

Since ⌦ is in the Lie algebra, ei⌦ 2 G and this acts on the real superfield as

e2V ! e�2i⌦†
e2V e2i⌦

From the Baker-Cambell-Hausdor↵ formula, eXeY = eX+Y+ 1
2 [X,Y ]+..., we get the trans-

formation law for the superfield itself

V ! V + i(⌦� ⌦†)� i[V,⌦+ ⌦†] + . . .

We can use the shift that appears in the first term to once again go to Wess-Zumino

gauge where the real superfield takes the form (4.5), now with all fields in the adjoint

of G. You can check that the remaining gauge symmetry acts on Aµ in the usual way,

Aµ ! UAµU
�1 + iU@µU

�1

with U 2 G. The field strength lives in a chiral multiplet, defined as

W↵ = �
1

8
D̄

2
�
e�2V

D↵e
2V
�

– 106 –



Evaluated in Wess-Zumino gauge, we use the fact that V 3 = 0, as in (4.7), to expand

e2V = 1 + 2V + 2V 2. A short calculation then shows that

W↵(y, ✓) = �
1

4
D̄

2 (D↵V � [V,D↵V ])

= �↵(y) + ✓↵D(y) + (�µ⌫✓)↵Fµ⌫(y)� i✓2�µ

↵�̇
Dµ�̄

�̇(y)

with the non-Abelian field strength and covariant derivative defined by

Fµ⌫ = @µA⌫ � @⌫Aµ � i[Aµ, A⌫ ] and Dµ� = @µ � i[Aµ,�]

To construct the action, we again define the complexified gauge coupling

⌧ =
#

2⇡
+

4⇡i

g2
(4.18)

The action is then given by

SSYM = �

Z
d4x Tr

Z
d2✓

i⌧

8⇡
W↵W↵ + h.c.

�

=

Z
d4x Tr

h
�

1

2g2
Fµ⌫F

µ⌫ +
#

16⇡2
Fµ⌫

?F µ⌫
�

2i

g2
��µ

Dµ�̄+
1

g2
D2
i

(4.19)

This is super Yang-Mills. After all that work, it’s actually a very simple theory: just

Yang-Mills coupled to a single, adjoint Weyl fermion. The factor of 2 di↵erences com-

pared to the Maxwell action (4.8) can be traced to the normalisation convention (4.17).

4.2.2 Supersymmetric QCD

We can add matter transforming in any representation R of the gauge group. The

matter sits, as always, in a chiral superfield � that now transforms as

� ! exp
�
�2i⌦ATA

R

�
� (4.20)

We construct a gauge invariant, supersymmetric action with the superfield expression
Z

d4x d4✓ �†e2V� = Dµ�
†
D

µ�� i ̄�̄µ
Dµ + F †F

�
p
2( ̄�ATA

R
�+ �†�ATA

R
 ) + �†DATA

R
�

Here the covariant derivatives include the gauge field transforming in the appropriate

representation R.
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Again, various anomaly cancellation conditions must be satisfied when coupling Weyl

fermions to non-Abelian gauge groups in complex representations. The simplest way

forward is to work instead with Dirac fermions. This means that we take pairs of

chiral superfields, � transforming in some representation R and �̃ in the conjugate

representation R̄. (In much of the literature, these superfields are denoted Q and Q̃

but we’ll stick with � and �̃ to avoid any unnecessary confusion with the supercharges.)

The most common is to take R to be the fundamental representation. We could, for

example, consider G = SU(Nc) gauge group with Nf flavours of fermions, each in the

fundamental representation. The action is then

SSQCD =

Z
d4x Tr

h
�

1

2g2
Fµ⌫F

µ⌫ +
#

16⇡2
Fµ⌫

?F µ⌫
�

2i

g2
��µ

Dµ�̄
i

+

NfX

i=1

h
|Dµ�i|

2 + |Dµ�̃|
2
� i ̄i�̄

µ
Dµ i � i ̃i�

µ
Dµ

¯̃ i

i

�
p
2

NfX

i=1

h
�†
i
� i � �̃i�̄

¯̃ i + h.c.
i
� V (�, �̃) (4.21)

Here the covariant derivatives are

Dµ� = @µ�� iAµ� and Dµ = @µ � iAµ 

for the fields in the fundamental representation, and

Dµ�̃ = @µ�̃+ i�̃Aµ and Dµ ̃ = @µ ̃ + i ̃Aµ

for those in the anti-fundamental representation. Finally, the scalar potential is again

given by the D-terms

V (�, �̃) =
1

2g2
DADA with DA = �g2

NfX

i=1

⇣
�†
i
TA�i � �̃iT

A�̃†
i

⌘
(4.22)

with TA the Nc ⇥Nc generators in the fundamental representation. This is the action

of supersymmetric QCD, or SQCD for short. In a nod to the real world, we refer to the

fermions  and  ̃ as quarks. Their supersymmetric scalar partners � and �̃ are called

squarks.

Once again, we can also add masses for the quark multiplets by including the gauge

invariant superpotential

W(�, �̃) =

NfX

i=1

mi�̃i�i

– 108 –



This gives an extra term to the scalar potential

�Lmass = �

NfX

i=1

|mi|
2
⇣
|�i|

2 + |�̃i|
2
⌘

as well as Dirac masses for  i and  ̃i.

There is no FI parameter that we can add for non-Abelian theories. The non-Abelian

analog of (4.16) would involve TrD but the trace of the generators of any non-Abelian

Lie algebra always vanishes. Fayet-Iliopoulos terms can only be introduced for U(1)

gauge theories.

4.3 The Moduli Space of Vacua

In the absence of a superpotential, supersymmetric gauge theories do not have a unique

ground state. Instead, the D-term potential has a flat direction with V (�) = 0. This

is the moduli space of vacua. It will turn out that this moduli space holds the key

to understanding the quantum dynamics of supersymmetric gauge theories. For this

reason, we will spend some time studying its structure.

Consider, for example, U(1) SQED with a single flavour. If we don’t turn on a FI

parameter then the D-term is (4.15)

D = �g2(|�|2 � |�̃|2)

Clearly any solution with

|�|2 = |�̃|2 = v2

has zero energy. To fully specify the classical theory, we must decide where on this

moduli space we want to sit.

At all points on the moduli space, there are always massless particles. Indeed, the

low-energy physics is dominated by the fluctuations along the moduli space, which

always correspond to massless particles, together with their fermionic superpartners.

Meanwhile, the masses of heavy particles typically depend on where you sit on the

moduli space which, in the current example, means that value of v2. Because � is

charged under the U(1) gauge field, when it gets an expectation value, the Higgs mech-

anism kicks in and the photon gets a mass of order

m2
�
⇠ e2v2
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But the Yukawa terms in (4.15) mean that a particular combination of fermions also

gets a mass, given by

mfermion ⇠ ev

The fact that this is the same as m� is, of course, no coincidence: the photon, massive

fermion and an additional massive scalar in the spectrum form a massive vector multi-

plet of the kind discussed in Section 2.3. The origin of the moduli space, at � = �̃ = 0,

is special because here the vector multiplet becomes massless.

The Geometry of Moduli Space

We denote the moduli space of vacua as M. As we now explain, this manifold naturally

comes with a number of interesting geometric structures.

First M is defined by the requirement that V (�) = 0. In the absence of a superpo-

tential, this is equivalent to D(�) = 0. (Note that here � denotes all chiral multiplet

scalars and, for SQED and SQCD, this means both � and �̃.). However, we should

also remember that the gauge group G acts on these scalars. The gauge symmetry is

not really a symmetry of the theory, but rather a redundancy in our description. This

means that any two values of � related by a gauge transformation should be viewed

as physically equivalent. The upshot is that the vacuum moduli space M is defined as

the quotient

M = {� |D(�) = 0}/G (4.23)

We have stumbled upon a construction known to mathematicians as the symplectic

reduction. It’s particularly natural because, as we’ve seen above, the D-term constraint

D(�) = 0 is fully specified by the action of the group G. In this way, the group G gets

to act twice: once as a constraint, and again as a quotient. Mathematicians call the

constraint D(�) = 0 the moment map. If G includes an Abelian factor, the associated

FI parameter is known as the level.

There are two, further ways to describe the moduli space M. We will now describe

these, but won’t prove the equivalence with (4.23). Instead, we will content ourselves

with some heuristic justification, followed by some examples2.

2A full proof can be found in the paper by Marcus Luty and Wati Taylor, Varieties of vacua in
classical supersymmetric gauge theories.
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The fact that the group G “acts twice”, is even more apparent if the second way of

writing the moduli space: it is the holomorphic quotient

M = {� }/GC (4.24)

with GC the complexified gauge group. This means that we take the real parameters

↵ that usually specify a gauge transformation – that is � ! eiq↵� for Abelian G or

� ! ei↵
a
T

a
R� for non-Abelian – and quotient by transformations with ↵ 2 C. You

should think of the D-term constraint in (4.23) as like a gauge-fixing condition for the

non-Hermitian part of the GC transformations.

In fact, looking back at our construction of supersymmetric gauge theories, the gauge

transformations started life in a chiral superfield ⌦ where everything was complex.

They became real only after moving to Wess-Zumino gauge. From the perspective

of supersymmetric gauge theory, the equivalence of (4.23) and (4.24) is best seen by

looking at the more general gauge transformations before imposing Wess-Zumino gauge.

The final description of the moduli space will, in some circumstances, turn out to be

the most useful. The manifold M can alternatively be viewed as

M = {Gauge invariant, holomorphic monomials} / {Algebraic relations} (4.25)

This is a description of M in terms of what mathematicians call an algebraic variety.

This definition is best elucidated by examples that we will turn to below, but here we

give the basic gist.

There are three key ideas that we need to explain in this definition: gauge invariant,

holomorphic, and the algebraic relations. We cover each in turn:

• Because gauge symmetry is merely a redundancy in our choice of description,

it should be possible to describe the dynamics of massless particles in terms of

some gauge invariant fields. This is the basic idea underlying the characterisation

(4.25)

• It’s always possible to build such gauge invariant fields by taking combinations

like �†�. These are invariant under G, but not invariant under the larger GC

that defines the moduli space according to (4.24). The need to impose invariance

under GC, or equivalently the need to impose theD-term constraintD = 0, means

that we should work with holomorphic gauge invariant combinations, meaning

monomials that involve � alone and not �†. Alternatively, and more physically,

supersymmetry means that we should be able to describe the fields in terms of

chiral multiplets, and these are necessarily holomorphic.
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• Finally, it will turn out that, for some examples, not all of the gauge invariant

combinations are independent. This is why there is the need to quotient by certain

relations between them. This is best illustrated when we turn to examples below.

Mathematically, the equivalence between the quotient constructions (4.23) and (4.24)

and the algebraic description (4.25) goes by the name of geometric invariant theory.

4.3.1 The Moduli Space of SQED

We’ll start by looking at the simpler case of SQED. This is a U(1) gauge theory coupled

to N flavours. If we set the FI parameter to zero for now, then the D-term condition

is (4.15)

NX

i=1

|�i
|
2
� |�̃i|

2 = 0 (4.26)

In addition, we should quotient by the U(1) gauge action

�i
! ei��i and �̃i ! e�i��̃i (4.27)

We started with 2N fields � and �̃. There is one real constraint (4.26) which, together

with the quotient (4.27) reduces the complex dimension of the vacuum moduli space

by one. We then have

dimM = 2N � 1 (4.28)

Let’s see how to reproduce this counting when thinking of M as an algebraic variety

defined by (4.25). The gauge invariant monomial are the bilinears

M i

j
= �̃j�

i (4.29)

We will refer to these, not entirely accurately, as “mesons”. There are N2 such fields

and, at first glance, it looks like we have way too many. However, they are not all

independent and this is where the algebraic relations in (4.25) come into play.

The meson matrix M is built from vectors � and �̃ and so has, at most, rank 1. This

means that there are N � 1 eigenvalues that are guaranteed to vanish. In general, the

determinant of an N ⇥N matrix A can be written as

✏i1...iNA
i1
j1
. . . AiN

jN
= detA ✏j1...jN

The rank 1 matrix M therefore obeys

✏i1...iN (M
i1

j1
� �� i1

j1
) . . . (M iN

jN
� �� iN

jN
) = det(M � �) ✏j1...jN = �N�1(�� �0)✏j1...jN
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This tells us that if we expand out the left-hand side, all terms of order �N�2 and lower

must vanish for a rank 1 matrix. In other words, we have the constraints

✏i1...iNM
i1

j1
M i2

j2
= 0 (4.30)

with all other constraints following by contracting with further M i

j
. Our next task is

to count how many independent constraints we have here. The i3, . . . , iN indices are

left hanging so by picking these we can restrict i1 and i2 to run over any pair. But

the resulting constraints aren’t all independent. For example, there is a constraint

that arises from (i1, i2) = (1, 2) and another that arises from (i1, i2) = (1, 3). But

dividing the first constraint by the second, and rearranging, gives the constraint that

arise from (i1, i2) = (2, 3). In fact, it’s not hard to convince yourself that the constraints

that come from (i1, i2) = (1, anything but 1) are independent and su�cient to give all

others. Clearly there are N � 1 of these.

For each of these constraints, we still have the (j1, j2) indices hanging. These too

are anti-symmetrised and the same argument that we gave above for (i1, i2) also holds

for (j1, j2). This means that the total number of constraints from (4.30) is (N � 1)2.

The algebraic variety M, defined by all mesons (4.29) subject to the constraints (4.30)

then has complex dimension

dimM = N2
� (N � 1)2 = 2N � 1

in agreement with our earlier counting (4.28).

The Metric on the Vacuum Moduli Space

The vacuum moduli space inherits a natural metric. Indeed, if we restrict to very low

energies the dynamics is that of the massless fields, corresponding to fluctuations along

the moduli space. This is the realm of the non-linear sigma model that we discussed

in Section 3.2.4. On general grounds, we know that not only is there a metric on M

but this metric must be Kähler.

It is straightforward to compute this metric. Here we do it in two di↵erent ways for

the simplest case of N = 1 flavour. The easiest way to proceed is to start with the

Kähler potential

K = �†�+ �̃†�̃

Note that the Kähler potential for a gauge theory involves terms like e2qV , with V the

real superfield, to ensure gauge invariance. We simply set the gauge fields to zero in the
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following calculation, so the Kähler potential is the canonical one above. Restricting to

the moduli space (4.26), we have |�|2 = |�̃|2. Furthermore, if we work with the meson

field M = �̃�, the Kähler potential becomes

K = 2|�|2 = 2
p

M †M (4.31)

The associated metric is just

ds2 =
|dM |

2

2|M |
(4.32)

We see immediately that the metric is singular at the origin M = 0. This singularity

is telling us something important: when � = �̃ = 0, there are new massless degrees of

freedom. This is simply the photon and its superpartner which become massless at the

origin because the Higgs mechanism turns o↵.

This is a lesson that we’ve seen before. When we integrated out heavy fields in Section

3.3, we found that the low-energy e↵ective theory had singularities at points where the

heavy fields became light. This is a general feature of low-energy e↵ective theories,

and one that will be important in Section 6 when we come to discuss the quantum

dynamics of these theories. For now, the lesson is worth repeating one more time:

singularities in the low-energy e↵ective action signal the emergence of new, massless

degrees of freedom.

There is a more prosaic way to do this same calculation that highlights our original

quotient description of the vacuum moduli space (4.23). The general solution to the

constraint (4.26) is

� = vei↵ei� and �̃ = vei↵e�i�

with v > 0. The e±i� has been taken to coincide with the gauge action (4.27), so that

v and ↵ provide the coordinates on the moduli space M.

At this point, there’s an important factor of 2 that we have to take care of. The

parameter � corresponding to the U(1) gauge transformation has range � 2 [0, 2⇡).

In contrast, we have ↵ 2 [0, ⇡). This follows because we can always implement a

gauge transformation with � = ⇡ which flips the sign of � and �̃ or, equivalently, takes

↵ ! ↵ + ⇡.
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The metric on M is inherited from the kinetic terms for the scalar fields. To this

end, we promote v, ↵ and � to fields that vary slowly over spacetime. The covariant

derivatives are

Dµ� = (@µv + iv(@µ↵ + @µ� � Aµ)) e
i(↵+�)

Dµ�̃ = (@µv + iv(@µ↵� @µ� + Aµ)) e
i(↵��)

We now choose Aµ = @µ� to absorb the variation of �. This how the quotient in (4.23)

manifests itself in this calculation. The kinetic terms for the scalar fields, restricted to

the vacuum moduli space, then become

Le↵ = |D�|2 + |D�̃|2 = 2
h
@v2 + v2 @↵2

i
(4.33)

which we interpret as a metric like the non-linear sigma models (3.25) we discussed

earlier. It’s straightforward to check that this coincides with the metric (4.32) written

in terms of the meson field.

At first glance, (4.33) looks like a flat metric. And, indeed, it is. But it’s not the flat

metric on C because the angular coordinate ↵ doesn’t have periodicity 2⇡. Instead, it’s

the flat metric on C/Z2 and has a conical singularity at the origin v = 0. This how we

see the emergence of the massless photon at this point.

Turning on the FI Parameter

A small variation on this calculation provides yet another perspective on the importance

of singularities in the low-energy e↵ective action. We again consider SQED with N = 1

flavour, but this time turn on a FI parameter. The D-term constraint now reads

|�|2 � |�̃|2 = ⇣ (4.34)

We assume that ⇣ � 0. In the ground state, we necessarily have |�|2 6= 0 meaning that

the photon now gets a mass on all points of the moduli space.

We can see how this manifests itself in the moduli space metric. The condition (4.34)

is solved by

� =
p

v2 + ⇣ ei↵ei� and �̃ = vei↵e�i�

Our previous calculation to compute the metric on M is now a little more involved.

The subtlety lies in figuring out what expression we should take for the gauge field Aµ.

The answer can be found in its equation of motion. Or, more precisely, the equation of
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Figure 5. The moduli space of SQED. When ⇣ = 0, the moduli space is the singular cone

C/Z2 shown on the left. The singularity at the origin reflects the existence of the massless

photon. When ⇣ 6= 0 the singularity is resolved and the moduli space is the smooth cone

shown on the right. Now the photon is Higgsed everywhere on the moduli space.

motion in the limit e2 ! 1 where we neglect the Maxwell term. This is the appropriate

limit when the gauge field responds immediately to fluctuations in the scalar and gives

Aµ =
⇣

2v2 + ⇣
@µ↵ + @µ�

It reduces to our previous, pure gauge, choice when ⇣ = 0. Inserting this expression

into the kinetic terms for � and �̃, we compute the metric on the vacuum moduli space

Le↵ = |D�|2 + |D�̃|2 =
2v2 + ⇣

v2 + ⇣


@v2 +

4v2(v2 + ⇣)2

(2v2 + ⇣)2
@↵2

�
(4.35)

Importantly, as we approach the origin, v2 ! 0, the metric is well approximated by

ds2 ⇡ dv2 + 4v2d↵2 = dv2 + v2d(2↵)2

That extra factor of 2 makes all the di↵erence! We now get the flat metric with the

angular coordinate 2↵ 2 [0, 2⇡) which means that close to v = 0 the metric really does

look like flat space. The resulting moduli space is sketched in Figure 5.

4.3.2 The Moduli Space of SQCD

We now play the same game for SQCD. We will take gauge group

G = SU(Nc)

coupled to Nf fundamental flavours, �i

a
in the fundamental representation and �̃a

i
in the

anti-fundamental. Here a = 1, . . . , Nc labels is the gauge group index while i = 1, . . . Nf

is the flavour index.
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The generators (TA)a
b
in the fundamental representation are the set of Hermitian,

traceless, complex Nc⇥Nc matrices. Meanwhile, the generators in the anti-fundamental

representation are simply T̄A = �TA. The N2
c
� 1 D-term conditions (4.22) are then

�†
i
TA�i

� �̃iT
A�̃† i = 0 A = 1, . . . N2

c
� 1

where there is an implicit sum over i = 1, . . . , Nf . To get a better sense of these

constraints, let us first relax the requirement that TA is traceless. (This is what we

would get if the gauge group was U(Nc) rather than SU(Nc).) In this case, the TA

provide a basis for all Hermitian matrices and the D-term condition is N2
c
constraints

�† a
i
�i

b
� �̃a

i
�̃† i
b
= 0 a, b = 1, . . . Nc for U(Nc)

But the fact that we’re working with SU(Nc) rather than U(Nc) means that there’s no

reason to set the trace to zero. So our true D-term constraint is

�† a
i
�i

b
� �̃a

i
�̃† i
b
=

1

Nc

⇣
�† c
i
�i

c
� �̃c

i
�̃† i
c

⌘
�a

b
(4.36)

At first glance, this looks like it’s still N2
c
conditions. But if you take the trace then

you find that both sides are trivially equal. This means that, in fact, it’s only N2
c
� 1

conditions, with no condition on the trace. This is what we wanted.

To understand the vacuum moduli space, we must first solve the equations (4.36).

As we will now see, the nature of the solutions is di↵erent for Nf < Nc and Nf � Nc.

We deal with each in turn.

Nf < Nc

We’d like to count the dimension of the moduli space M, defined by (4.36) modulo

gauge transformations. It’s tempting to think that there are just N2
c
� 1 constraints

in (4.36) but how do we know that they are all independent? In fact, it’s simple to

see that these constraints cannot all be independent when Nf < Nc because then we

would have more constraints than degrees of freedom. Yet solutions to (4.36) certainly

exist! To proceed, we use the fact that the D-terms and gauge symmetry are closely

entwined. The D-terms only bite when the gauge symmetry does.

When Nf < Nc, we can always use an SU(Nc) gauge transformations and SU(Nf )

flavour rotations to put the matrix � in the block-diagonal form

�i

a
=

0

BBBBB@

v1 . . . 0
. . .

0 . . . vNf

0 . . . 0

1

CCCCCA
(4.37)
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Here the columns have length Nc and the rows length Nf . We can then use the other

SU(Nf ) to rotate �̃ to be in upper-diagonal form. (We can’t make it fully diagonal

because we’ve already used up the SU(Nc) to diagonalise �). However, now we invoke

the D-term conditions (4.36). The only solutions to these conditions require that the

o↵-diagonal terms in �̃ vanish. (You could check this for a simple case, say Nc = 3 and

Nf = 2 to get a feel for why this is the case.) We’re left with

�̃† i
a
= �i

a

As before, points on the moduli space related by a gauge transformation are to be

physically identified. On a generic point on the moduli space (with vi 6= vj 6= 0 when

i 6= j) the gauge group is broken to

SU(Nc) ! SU(Nc �Nf )

The number of broken gauge generators is then

# broken generators = (N2
c
� 1)� ((Nc �Nf )

2
� 1)

Each of these is eaten by one of the original 2NcNf bosons � and �̃. This means that

the resulting vacuum moduli space has complex dimension

dimM = 2NcNf � [# broken generators] = N2
f

Note that we only divide out by the points on the moduli space related by the SU(Nc)

gauge symmetry. There will still be points on the moduli space related by the flavour

symmetry SU(Nf ) but these are physically distinct vacua.

We can also view the moduli space as an algebraic variety. Once again, the holomor-

phic monomials are the meson fields

M i

j
= �̃a

j
�i

a
(4.38)

This time the name “meson” is more appropriate: we have contracted the gauge indices

of � and �̃ to form a gauge invariant composite. The mesons form N2
f
fields but, in

contrast to SQED, there is no constraint on M . The contracted gauge indices in (4.38)

run over a = 1, . . . , Nc > Nf so there is no obstacle to M being maximal rank. We see

immediately that dimM = N2
f
, in agreement with our result above.
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We can compute the metric on M along the same lines as we saw for SQED. The

Kähler potential is

K = �† a
i
�i

a
+ �̃a

i
�̃† i
a

We want to write this in terms of the meson field (4.38). To do this, first note that

for Nf < Nc the trace term on the right-hand side of the D-term (4.36) vanishes when

restricted to the moduli space and we have

�† a
i
�i

b
= �̃a

i
�̃† i
b

(4.39)

From this, we have

(M †M) i

j
= �̃† i

a
�† a
k
�k

b
�̃b

j
= (�̃† i

a
�̃a

k
)(�̃† k

b
�̃b

j
)

where, in the last equality, we’ve used (4.39). Taking the square root of this matrix

equation tells us that (�̃†�̃)i
j
= (

p

M †M)i
j
, and so the Kähler potential is

K = 2Tr
p

M †M (4.40)

Just like the Kähler potential for SQED (4.31), the resulting metric will have singulari-

ties whenever M�1 ceases to exist. Again, these singularities correspond to new degrees

of freedom becoming massless. At a generic point on the moduli space, there will be

massless gauge bosons associated to the unbroken SU(Nc �Nf ) gauge symmetry. But

along the loci on which M is not invertible we have an enhancement of the gauge group

and new massless gauge bosons.

Nf � Nc

For Nf � Nc, the story is di↵erent. First, we can now use SU(Nc) and SU(Nf ) trans-

formations to find solutions to the D-term equations (4.36), again in block-diagonal

form

�i

a
=

0

BB@

v1 . . . 0 0
. . .

...

0 . . . vNc 0

1

CCA and �̃† i
a
=

0

BB@

ṽ1 . . . 0 0
. . .

...

0 . . . ṽNc 0

1

CCA

with

|va|
2 = |ṽa|

2 + ⇢ a = 1, . . . , Nc

where ⇢ must be independent of a. This reflects the fact that the trace term on the

right-hand side of (4.36) can now be non-zero.
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At a generic point on M, the SU(Nc) gauge symmetry is completely broken. The

complex dimension of the moduli space is therefore

dimM = 2NcNf � (N2
c
� 1) (4.41)

How can we describe this moduli space as an algebraic variety? The meson fields (4.38)

provide N2
f
degrees of freedom, but now there are constraints of the kind we met for

SQED since M is at most rank Nc. In addition, there are also new gauge invariant

fields. These are baryons, built from the totally anti-symmetric invariant tensor of

SU(Nc),

Bi1...iNc = �i1
a1
. . .�iNc

aNc
✏a1...aNc

B̃i1...iNc
= �̃a1

i1
. . . �̃

aNc
iNc
✏a1...aNc

Each of these is anti-symmetric in the Nc di↵erent flavour indices i1, . . . , iNc . There are

then a bunch of further constraints between these baryons and mesons. Rather than

doing this in full generality, we’ll instead just describe how this works for the two cases

that will prove most interesting in Section 6.

• Nf = Nc: In this case, anti-symmetry properties mean that there is just a single

baryon of each type

B = �1
a1
. . .�Nc

aNc
✏a1...aNc and B̃ = �̃a1

1 . . . �̃
aNc
Nc
✏a1...aNc

The meson M can have rank Nf , so there are no constraints there. But there is

a single relation between the mesons and baryons, given by

B̃B = detM (4.42)

This means that there are N2
f
+2 degrees of freedom in M , B and B̃ and a single

relation, giving a moduli space of dimension dimM = N2
f
+ 1 in agreement with

(4.41). The relation (4.42) will play a starring role when we come to consider the

quantum theory in Section 6.3.

• Nf = Nc + 1: Now there are Nf baryons of each type,

Bj = ✏ji1...iNc
Bi1...iNc and B̃j = ✏ji1...iNc B̃i1...iNc

This time the constraints are less obvious, but they turn out to be

Adj(M) j

i
= BiB̃

j and M i

j
Bi = M i

j
B̃j = 0 (4.43)

where Adj(M) is the adjugate matrix, which is the transpose of the matrix of

cofactors. The adjugate matrix is most familiar when M is invertible, in which

case Adj(M) = (detM)M�1. However, the conditions BM = MB̃ = 0 tell us

that M has a zero eigenvalue and so is not invertible.
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At this point, things start to get a little messy! It turns out that not all the

relations (4.43) are independent, but there’s no way to write them as a smaller set.

Mathematicians say that the resulting variety is not a complete intersection. We’ll

simply duck the issue which, it turns out, will not hinder us from understanding

the physics.

There is one sense in which the use of the words “mesons” and “baryons” might be

misleading. In QCD, mesons and baryons are bound states of quarks, stuck together

because of confinement. But confinement is a surprising and poorly understood prop-

erty of the quantum theory. Here we are not invoking anything so dramatic. Indeed,

we haven’t yet discussed any quantum e↵ects and what we’ve call SQCD might better

be called SCCD for our current purposes. Instead, we’re using meson and baryon fields

simply because they are gauge invariant and so free of any gauge redundancy. We’ll

turn on the Q in SQCD in Section 6 where we’ll see how this tallies with ideas of

confinement.

4.3.3 Briefly, Gauged Linear Sigma Models in 2d

We’ve learned that we can construct interesting geometric spaces as the moduli spaces

of vacua of supersymmetric gauge theories. This kind of construction goes by the name

of gauged linear sigma models. It turns out that it’s a particularly useful method when

wielded in quantum field theories in d = 1 + 1 dimensions.

To see why, first consider the action for a non-linear sigma model in general d-

dimensional spacetime

S =

Z
ddx gij(⇡) @µ⇡

i@µ⇡j (4.44)

Here ⇡i are coordinates on a manifold M with metric gij.

When d = 0 + 1, we’re dealing with the quantum mechanics of particle moving on

M. But we know what happens in this case: the wavefunction will spread over M and

there will typically be a unique ground state.

This is conceptually very di↵erent from what happens in d = 3 + 1 dimensions.

There, each point on M defines a di↵erent ground state of the system. There is no

spread of the wavefunction.

The reason for this di↵erent behaviour can be traced to the long-distance property

of the propagator. The propagator grows in d = 0 + 1 and d = 1 + 1 dimensions

(logarithmically in the latter case) while it decays in d = 2 + 1 and higher. This fact
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is closely related to the Mermin-Wagner theorem which says that global symmetries

cannot be spontaneously broken in d = 0 + 1 and d = 1 + 1 dimensions. (We met this

theorem in the lectures on Statistical Field Theory and Gauge Theory.)

In the context of non-linear sigma models of the type (4.44), this long-distance be-

haviour of the propagator is telling us that d = 0+1 and d = 1+1 dimensions are special

because the wavefunction spreads over the manifold M. This means that the ground

state of the system has a chance of knowing something about the global structure of

the manifold M, like its topology. Indeed, studying the dynamics of low-dimensional

quantum systems on M has been a very fruitful source of developments in mathemat-

ics. This beginnings of this story are told in the lectures on Supersymmetric Quantum

Mechanics.

The story is particularly rich for theories in d = 1+ 1 dimensions where, in addition

to the wavefunction spreading over M, the UV divergences of the quantum field theory

mean that the metric on M is renormalised. At one-loop, the running is captured by

the beautifully geometric RG equation

µ
@gij
@µ

= Rij (4.45)

where µ is the RG scale and Rij the Ricci tensor. This formula is known as Ricci

flow. It plays an important role in String Theory and has a number of applications in

pure mathematics. Note that the flow stops only if the metric becomes Ricci flat, with

Rij = 0. At this point we have a 2d conformal field theory. However, not all manifolds

admit such a Ricci flat metric.

Things become even more interesting when we throw supersymmetry into the mix.

This is what we called N = (2, 2) supersymmetry in Section 2.4.3. It not only gives

us an important level of control over the dynamics but, as we’ve seen already in these

lectures, dovetails nicely with some interesting mathematical structures. It turns out

that the gauge theory approach to realising non-linear sigma models as the vacuum

moduli space is particularly powerful in this context. Here we just give a hint of how

this works

First, the anomaly cancellation conditions (4.14) are for 4d quantum field theories

and are not needed in two dimensions. (A 4d Weyl fermion reduces to a 2d Dirac

fermion and so the theories we construct are not chiral in 2d.) This means that there

is nothing to stop us considering U(1) coupled to N chiral multiplets of charge +1 in
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d = 1 + 1 dimensions. The D-term condition is

NX

i=1

|�i|
2 = ⇣

where we turn on a FI parameter ⇣ > 0. Taken on its own, this condition defines a

sphere S2N�1. But we still have to quotient by the U(1) action to get the vacuum

moduli space and this gives

M = S2N�1/U(1) = CPN�1

Here CPN�1 is complex projective space, defined as the space of complex lines in CN .

This can also be seen in the definition (4.24) of the moduli space.

Things get more interesting if we add, in addition, a chiral superfield P with charge

�q. The D-term condition is now

D =
NX

i=1

|�i|
2
� q|p|2 � ⇣ = 0

After quotienting by the U(1) action, the vacuum moduli space is a non-compact man-

ifold. But we now have the option of introducing a gauge invariant superpotential

W (P,�) = PG(�1, . . . ,�N)

with G a homogeneous polynomial of degree q. The potential energy now also includes

contributions from the F-terms

VF = |p|2
NX

i=1

����
@G

@�i

����
2

+ |G|
2

If we choose G to be transverse, meaning

@G

@�i

= 0 8i , �i = 0

then VF = 0 only if p = 0 which means that we’re back onto the CPN�1 vacuum

manifold. But now, in addition, we must satisfy G(�) = 0. The resulting vacuum

moduli space is now a compact manifold given by a degree q hypersurface, M ⇢ CPN�1.
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To give a sense of why the gauge theory description is useful in understanding the

geometric properties of the vacuum manifold, here’s a short anecdote. It turns out that

the gauge theory flows to a conformal field theory only when q = N . (Only then does

the FI parameter not run.) In this case, the vacuum moduli space X is a degree N

hypersurface CPN�1. But it is known that such spaces defines what mathematicians

call a Calabi-Yau manifold. One of the key properties of these spaces (conjectured by

Calab and proven by Yau) is that they admit a Ricci flat metric. This ties in nicely

with the gauge theory expectation because, as we have seen in (4.45), such a Ricci flat

metric is necessary for conformal symmetry.

There are many more geometrical properties that can be extracted from a study of

gauge theories in 2d dimensions, including mirror symmetry of Calabi-Yau manifolds3.

4.4 Extended Supersymmetry

We discussed the representations of extended supersymmetry algebras in Section 2.4.

For theories with N = 2 supersymmetry (or eight supercharges) there are two di↵erent

multiplets:

N = 2 vector multiplet = N = 1 vector multiplet (Aµ,�↵, D)

+ N = 1 chiral multiplet (�,�↵, F )

Here the chiral multiplet necessarily sits in the adjoint representation of the gauge

group. There is also the N = 2 matter multiplet

N = 2 hypermultiplet = N = 1 chiral multiplet (q, ↵, F )

+ N = 1 chiral multiplet (q̃, �̃↵, F̃ )

If the first of these transforms in the representation R of the gauge group then the

second transforms in the conjugate representation R̄. We can tune the matter content

and interactions of N = 1 theories to give theories with extended supersymmetry.

With N = 4 there is just a single multiplet (at least restricting to non-gravitational

theories) with content

N = 4 vector multiplet = N = 1 vector multiplet (Aµ,�
1
↵
, D)

+ 3⇥N = 1 chiral multiplets (�i,�i+1
↵

, F i) i =, 1, 2, 3

In addition to the gauge field, we have three complex scalars and four Weyl fermions,

all sitting in the adjoint representation of the gauge group.

3The use of gauge theories as a method to understand geometry was pioneered by Edward Witten
in the paper Phases of N = 2 Theories. You can read more in Kentaro Hori’s lecture notes which
comprise Part 2 and Part 3 of the book Mirror Symmetry.
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To construct theories with N = 2 and N = 4 supersymmetry, we could try to build

an extended superspace. It turns out that there is a superspace for N = 2 theories,

known as harmonic superspace, but it’s rather cumbersome to work with. In contrast,

there is no superspace for N = 4 theories. Instead, we will build Lagrangians for both

by tuning the interactions of N = 1 theories. The key is to get Lagrangians that exhibit

larger R-symmetries.

4.4.1 N = 2 Theories

N = 2 super Yang-Mills comprises of a vector multiplet V and an adjoint chiral multi-

plet �. The N = 2 Lagrangian is constructed by simply turning o↵ any superpotential

for �. It is

L = �Tr

Z
d2✓

i⌧

8⇡
W↵W↵ + h.c.

�
+

1

g2

Z
d4✓ �†e2V�

=
2

g2
Tr


�
1

4
Fµ⌫F

µ⌫
� i��µ

Dµ�̄� i��µ
Dµ�+Dµ�

†
D

µ�

�
+

#

16⇡2
TrFµ⌫

?F µ⌫

+
2

g2
Tr
hp

2i�[�†,�] +
p
2i�̄[�, �̄]�

1

2
[�†,�]2

i
(4.46)

The potential term comes from integrating out the D-term from the N = 1 vector

multiplet: we’ll look more closely at the moduli space of vacua below.

Of more immediate importance are the fermion terms: the two Weyl fermions �

and � sit on the same footing in the final Lagrangian, despite their origins in di↵erent

N = 1 multiplets. This means that there is an SU(2) symmetry that rotates them,

under which they sit in a doublet 2. The bosonic field � does not transform under

this symmetry, which tells us that this must be an SU(2)R R-symmetry. This is the

smoking gun for N = 2 supersymmetry. There is also a U(1)R symmetry, under which

R[�] = 2 and R[�] = R[�] = 1.

There is another way to derive theN = 2 Lagrangian. You can write down a minimal

super Yang-Mills theory in d = 5+1 dimensions, consisting of a gauge field coupled to

a Weyl fermion. Upon dimensional reduction, this gives the Lagrangian (4.46).

We can couple matter to (4.46) in the form of hypermultiplets. These comprise of

two chiral multiplet, Q and Q̃. (Note: until now the letter Q has always meant a

supercharge, but it’s not unusual to also use it to denote a chiral multiplet, with Q

standing for “quark”.) As we mentioned above, if Q sits in the representation R then

Q̃ necessarily sits in the conjugate representation R̄. This su�ces to determine the
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interaction with the vector multiplet V ,

Lvector =

Z
d4✓

h
Q†e2VQ+ Q̃†e�2V Q̃

i

But in addition we should couple Q and Q̃ to the N = 2 vector multiplet field � in

such a way that the SU(2)R symmetry between � and � remains. This is achieved by

the superpotential term

Lchiral =
p
2

Z
d2✓ Q̃�Q+ h.c.

The interactions between Q̃ and Q themselves are greatly limited by the extended

supersymmetry: we can add only mass terms

W =
p
2mQ̃Q

A general N = 2 theory is specified by the gauge group G and the representations Ri of

any matter multiplets, together with their masses. (If G contains Abelian factors, we

can also add FI terms. We will not include these in the following.) The scalar potential

comes, as always, from integrating out D and F-terms. After some rearranging, the

potential can be expressed as the sum of positive definite terms. For SU(Nc), it is

V (�, q, q̃) =
1

g2
Tr[�†,�]2 +

g2

2

dimGX

A=1

 
X

i

q†
i
TA

R
qi � q̃iT

A

R
q̃†
i

!2

+ g2
dimGX

A=1

�����
X

i

q̃iT
A

R
qi

�����

2

+
X

i

q†
i
{�†

�m†
i
,��mi}qi + q̃i{�

†
�m†

i
,��mi}q̃

†
i

(4.47)

(Initially, the D-term contains both � and the q’s and q̃’s. The first two terms on the

first line both arise from this D-term, but the cross-term has sneaked into the third

line, where it turns �†� into the anti-commutator {�†,�}.)

The hypermultiplet scalars q and q̃† transform as a doublet 2 under the SU(2)R sym-

metry. Conversely, their fermionic superpartners  and  ̃ are singlets under SU(2)R.

The second and third terms in the potential (4.47) can be rewritten in way that makes

the SU(2)R symmetry manifest. We introduce the doublet

!i =

 
qi

q̃†
i

!
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The second term in (4.47) is a real D-term while the third is a complex F-term. But,

with N = 2 supersymmetry they are better viewed as a potential V = 1
g2
~D2 arising

from triplet of D-terms

~DA = g2
X

i

!†
i
TA

R
~�!i

where ~� are the Pauli matrices. The triplet ~D transforms in the 3 of SU(2)R.

The potential (4.47) has some interesting properties. Let’s take the masses to vanish:

mi = 0. In this case, the second line takes the schematic form |�|2(|q|2 + |q̃|2). That

means that if we’re looking for vacuum states with V (�, q, q̃) = 0 then there are two

possibilities: either � = 0 and the hypermultiplet scalars q, q̃ are turned on; or q̃ = q = 0

and the vector multiplet scalar � is turned on. Geometrically, this means that the

vacuum moduli space factorises as

M = MC ⇥MH

There are defined as follows:

• MC is called the Coulomb branch. It is defined as the space q̃ = q = 0 with �

restricted to obey

[�†,�] = 0

This is solved by � sitting in the Cartan sub-algebra. For G = SU(Nc). this

means that � = diag(�1, . . . ,�Nc) with
P

a
�a = 0. At a typical point, the gauge

group is broken to the Cartan subalgebra with a bunch of surviving, massless

photons. For example, for G = SU(Nc), this means G ! U(1)Nc�1. At some

special points, the surviving gauge group will be enhanced further.

When the gauge group is broken to U(1)’s, all charged matter experiences a

Coulomb force, hence the name of this branch of vacua.

• MH is called the Higgs branch. It is defined as the space � = 0 with q̃ and q

constrained to obey the conditions

~DA = 0

In addition, we should quotient by the action of G. At a general point, the gauge

group is completely Higgsed, hence the name of this branch of vacua.
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The Higgs branch has real dimension that is a multiple of four and is a special

case of a Kähler manifold, known as a hyperKähler manifold. (For what it’s

worth, a hyperKähler manifold has three independent complex structures while a

Kähler manifold has just one.) The definition of the Higgs branch is an extension

of the idea of symplectic reduction that gives a hyperKähler metric and is known

as the hyperKähler quotient construction.

4.4.2 N = 4 Theories

The more supersymmetry we have, the more restrictive the theory.

With N = 1 supersymmetry, we are free to specify the gauge group and (chiral) mat-

ter content. In addition to the gauge coupling and masses, both suitably complexified,

we can also introduce any superpotential interactions that we wish.

With N = 2 supersymmetry, we are again free to specify the gauge group and (now

non-chiral) matter content. But we have no freedom in the choice of interactions: the

only arbitrary parameters are the gauge coupling and masses.

With N = 4 supersymmetry, we get to specify only the gauge group and gauge

coupling. All other terms in the Lagrangian are then dictated by supersymmetry.

There are a number of di↵erent ways to construct N = 4 super Yang-Mills. It can

be viewed as minimal super Yang-Mills in d = 9+1 dimensions, dimensionally reduced

to d = 3 + 1. Alternatively, it can be viewed as an N = 2 theory with a single adjoint

hypermultiplet. The theory contains four adjoint Weyl fermions, transforming in the

4 of SU(4)R R-symmetry and six real scalars 'i with i = 1, . . . , 6, transforming in the

6. The scalar potential is

V (') = �g2
X

i<j

['i,'j]2

There is now just a Coulomb branch, with G broken to the Cartan subalgebra at a

generic point.
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