
5 Boot Camp: Quantum Gauge Dynamics

Our ultimate aim in these lectures is to understand the quantum dynamics of supersym-

metric gauge theories. But before we can appreciate this, we really need to understand

something about the quantum dynamics of ordinary gauge theories. The purpose of

this section is to provide the necessary background.

I should warn you that, in contrast to the rest of these lecture notes, we won’t

attempt to prove any of the statements made in this section. Indeed, some of them –

like the phenomenon of confinement – can’t currently be proven, although we do have

overwhelming evidence that it takes place, both from numerics and from toy models,

not least supersymmetric theories. (Not to mention experimental results like the fact

that you are literally stuck together by confinement.) Other phenomena – like the

one-loop beta function and the anomaly – have some technical calculations underlying

them. Here we omit the technicalities and just state the relevant facts, meaning that

you can relax and enjoy this section as something akin to the middle eight in a song. If

you want to see the gory details that underlie these results then they can all be found

in the lectures on Gauge Theory.

5.1 Strong Coupling

Our interest throughout this section will be on non-Abelian gauge theories. We start

with Yang-Mills. The Lagrangian is

LYM =

Z
d4x �

1

2g2
TrFµ⌫F

µ⌫ (5.1)

Here the field strength is given by Fµ⌫ = @µA⌫ � @⌫Aµ � i[Aµ, A⌫ ]. As you can see,

we work with the convention in which the coupling constant sits in front of the kinetic

term.

5.1.1 The Beta Function

The key feature of Yang-Mills which makes it both subtle and hard is that the coupling

g2 runs under RG. At a scale µ the coupling is given by

1

g2(µ)
=

1

g20
�

b0
(4⇡)2

log
⇤2

UV

µ2
(5.2)

where g20 is the coupling constant evaluated at the cut-o↵ scale ⇤UV . Here b0 is the

coe�cient of the 1-loop beta function and, for pure Yang-Mills, is given by

b0 =
11

6
I(adj)

– 129 –



G SU(N) Sp(N) SO(N) E6 E7 E8 F4 G2

I(adj) 2N 2(N + 1) N � 2 4 3 1 3 4

Table 1. The quadratic Casimir I(adj) for all compact Lie groups.

This depends on a group theoretic factor I(adj), known as the quadratic Casimir. It

has another avatar as the Dynkin index in the adjoint representation. (Note that we’ve

defined I(R) with a factor of 2 di↵erence from the Gauge Theory lecture notes.) The

quadratic Casimirs for the various compact Lie groups are shown in Table 1. In these

lectures, we will focus almost exclusively on gauge group G = SU(N).

The running of the coupling constant is often summarised in terms of the one-loop

beta function

�(g) ⌘ µ
dg

dµ
= �

b0
(4⇡)2

g3 (5.3)

whose solution gives the logarithmic behaviour (5.2).

The all-important feature of the beta function is the overall minus sign. This means

that the theory is weakly coupled at high energies, a phenomenon known as asymptotic

freedom. Conversely, it means that the theory is strongly coupled at low energies. It is

this low-energy physics that we would like to understand.

What do we mean by low and high energy here? Where’s the dividing line? The

answer to this can be found within the formula (5.2). This is because we can construct

a strong coupling scale

⇤ = µ exp

✓
�

8⇡2

b0g2(µ)

◆
(5.4)

This has the property that d⇤/dµ = 0. In other words, it is an RG invariant. This is

the scale at which the Yang-Mills theory becomes strong.

There’s already something remarkable about the existence of the scale ⇤. Classically,

the Yang-Mills theory (5.1) has no dimensionful parameter. That means that there is

nothing to set a scale. Instead, there is just a dimensionless coupling constant g2. But

the logarithmic running succeeds in turning this into a dimensionful parameter ⇤! One

way to see this is to note that to define the quantum theory, we necessarily had a
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dimensionful parameter lurking all along. This is the UV cut-o↵ of the theory, ⇤UV .

The strong coupling scale (5.4) is related to the UV cut-o↵ by

⇤ = ⇤UV e�8⇡2
/b0g

2
0

This means that if the bare coupling is small, g0 ⌧ 1, as it should be then the physical

scale ⇤ is exponentially suppressed relative to the UV cut-o↵: ⇤ ⌧ ⇤UV .

5.1.2 Confinement and the Mass Gap

When the coupling is small, quantum field theories look similar to their classical coun-

terparts. For example, classical Maxwell theory provides a decent guide to what you

might expect from QED. In contrast, when the coupling is large, all bets are o↵. The

quantum theory and classical theory may be completely di↵erent. Yang-Mills provides

the archetypal example.

If you solve the classical Yang-Mills equations, you will find waves that propagate at

the speed of light. This suggests that the quantum theory will give rise to a massless

particle called a gluon, similar to the photon. Indeed, if you stare at the action there

is no A2
µ
term that might suggest a mass.

Nonetheless, we now know that quantum Yang-Mills contains no massless particles.

We say that the theory is gapped which means that the first excited state has a finite

energy above the ground state. This additional energy is, of course, just E = mc2

where m is the mass of the lightest particle in the theory. The gap is of order the

strong coupling scale, m ⇠ ⇤.

We don’t currently have the technology to prove the Yang-Mills mass gap. Indeed,

it is generally considered one of the most important and challenging open problems in

mathematical physics. We do, however, have very compelling numerical evidence that

this occurs, together with some intuition built from various toy models and heuristic

explanations for why it occurs. You can read about some of these in the lectures on

Gauge Theory. We’ll meet others later in these lectures.

In our world, the strong force is governed by an SU(3) gauge theory known as QCD.

The associated strong coupling scale is ⇤ ⇡ 300 MeV and is usually referred to as

⇤QCD. No massless gluons are seen in Nature, but there is good evidence for states

known as glueballs with masses around the scale ⇤.
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The existence of a mass gap goes hand in hand with another phenomenon: this

is confinement. To explain this, consider placing two charged test particles in the

Yang-Mills field. To be specific, we’ll consider G = SU(N) and take a quark in the

fundamental representation N and an anti-quark in N̄. We simply ask: what force do

they feel?

It’s best to compute the potential energy between the two particles. You can first

do this in the classical theory. There’s a little bit of group theoretic fiddliness but the

final result is very intuitive: the potential energy scales with the separation r between

particles as

V (r) ⇠
g2

r
(5.5)

This, of course, is the same scaling that we see in the Coulomb force of electromag-

netism.

What about the quantum theory? If the separation between particles is small, mean-

ing r ⌧ 1/⇤, you don’t notice much di↵erence. At these short distances the theory is

weakly coupled and we again see the Coulomb-like potential (5.5) between test parti-

cles. We should replace the coupling constant in (5.5) with g2(µ) = g2(1/r) so it’s more

accurate to say that the potential scales as V (r) ⇠ log r/r but this is a mild correction

to the physics.

In contrast, at large separation things are radically di↵erent. For distances r � 1/⇤,

the potential between test particles takes the form

V (r) ⇠ �r (5.6)

The coe�cient � necessarily has dimension [�] = 2 and this scale, like everything else

in Yang-Mills, is set by � ⇠ ⇤2. For reasons that we will explain shortly, � is called

the string tension. The force law (5.6) is, to put it mildly, a dramatic departure from

what we’re used to. The potential energy now increases with separation. Indeed, it

costs an infinite amount of energy to pull the quark anti-quark pair to infinity. This

kind of potential energy is said to be confining.

The phenomenon of confinement is, like the mass gap, something that we can’t prove

from first principles. Once again, however, there is clear numerical evidence together

with a plethora of heuristic explanations.
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Figure 6. A rough sketch of the non-Abelian field lines in the Coulomb phase, on the left,

and in the confining phase, on the right.

To get some very rough intuition for what’s going on, we can repeat Faraday’s old

experiment (now in thought only!) and try to understand what the field lines look

like. At short separation, in the Coulomb-like phase (5.5), the field lines form the

familiar pattern, first spreading out radially before they bend over to combine with

those emitted by the anti-particle. This is shown on the left-hand side of Figure 6.

However, as the particles are separated to larger distances, the fact that the gauge field

is massive makes itself known. The field lines no longer spread out, but instead lie

closely together to form a collimated flux tube. This flux tube acts very much like a

string, connecting the two quarks. If its tension, or energy per unit length, is � then it

gives rise to a confining force law like (5.6).

The above description of confinement should be taken with something of a pinch

of salt. After all, we are in a strongly interacting quantum field theory and there is

no single field configuration that governs the physics. Instead, there are many fields

configurations that we should sum over that contribute to the path integral. The

discussion above should be understood to mean that those field configurations that

resemble the flux tube dominate.

The story above was told in terms of test particles. When we introduce dynamical

matter fields into the theory, one would naively expect the associated particles to bind

together like the test particles above. And, roughly speaking, this is indeed what

happens, at least if the number of light species is small enough. (We’ll flesh out this

statement shortly.) For example, in QCD the quarks bind together into mesons and

baryons. Mesons contain a quark anti-quark pair while baryons contain three quarks

and are a colour singlet by dint of the ✏abc invariant tensor. For G = SU(N) we would

get mesons which again contain a quark anti-quark pair and baryons containing N

quarks.
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There is much more to say about confinement. In particular, the correct, mathemat-

ical description of the confining phase lies involves a non-local operator known as the

Wilson loop

W [C] = TrP exp

✓
i

I

C

A

◆

Here C is a closed curve in spacetime, while P stands for “path ordering”. In a

Coulomb-like phase, the expectation value scales as hW [C]i ⇠ exp(�L[C]) where L[C]

is the length of the perimeter of C. Meanwhile, in the confining phase the expectation

value scales as hW [C]i ⇠ exp(�A[C]) where A[C] is the area spanned by the curve C.

An explanation of why this is the right diagnostic, together with its significance, can

be found in the lectures on Gauge Theory.

5.1.3 Adding Matter

Until now, we’ve considered pure Yang-Mills and its response to test particles. Now

we wish to add dynamical matter. The first thing that this does is change the beta

function.

Suppose that we have a bunch of Weyl fermions transforming in some representations

Rf and a bunch of scalars transforming in some representation Rs. Then the one-loop

beta function (5.2) becomes

b0 =
11

6
I(adj)�

2

6

X

fermions

I(Rf )�
1

6

X

scalars

I(Rs) (5.7)

Here the group theoretical factors are Dynkin indices. For the representation R, the

Dynkin index I(R) is defined by the normalisation of the trace

Tr TA

R
TB

R
=

1

2
I(R) �AB (5.8)

Our previous normalisation (4.17) means that we’re taking the fundamental represen-

tation to have I(fund) = 1. Some examples of I(R) for SU(N) representations are

collected in Table 2.

Strictly speaking, the beta function takes the form (5.7) only if the matter is massless.

If the matter has some massm, then the beta function runs like (5.7) for energies µ > m,

but as we drop below the mass scale m the matter decouples and its contribution to

the one-loop beta function is removed.
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Irrep ⇤ adj

dim N N2
� 1 1

2N(N + 1) 1
2N(N � 1)

I(R) 1 2N N + 2 N � 2

A(R) 1 0 N + 4 N � 4

Table 2. Some group theoretic properties of SU(N) representations. Here is the symmet-

ric representation and the anti-symmetric. Conjugate representations have I(R̄) = I(R)

and A(R̄) = �A(R).

Again, the first thing to notice is the signs. Both fermions and scalars give a con-

tribution to the beta function that has the opposite sign to the gauge bosons. This

means that if we have too much matter then we will have b0 < 0 and, correspondingly,

�(g) > 0 and the theory will be weakly coupled in the infra-red. In this case, the quan-

tum theory looks very much like classical Yang-Mills at low energies, with massless

gauge bosons. Here we would like to understand what happens when b0 > 0 and the

theory is strongly coupled.

To illustrate this, we will consider a specific set of matter particles. We take

G = SU(Nc)

with Nf flavours of quarks in the fundamental representation. This means that we have

a collection of left-handed Weyl spinors  a

↵i
and  ̃i

↵a
. Here a = 1, . . . , Nc is the gauge

index and i = 1, . . . , Nf the flavour index. We take  to transform in the fundamental

Nc representation and  ̃ in anti-fundamental representation N̄c representation. (If we

take the complex conjugate of  ̃, we get a Dirac spinor in the Nc representation.) The

action is

LQCD = �
1

2g2
TrFµ⌫F

µ⌫
�

NfX

i=1

h
i ̄i�̄

µ
Dµ i + i ¯̃ i�̄µ

Dµ ̃
i

i
(5.9)

with

Dµ = @µ � iAµ and Dµ ̃ = @µ ̃ + i ̃Aµ

We could add a mass for the quarks by introducing terms like

Lmass =

NfX

i=1

mi ̃
i i + h.c.

However, our interest will be on the case with massless quarks, with mi = 0.
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You might wonder why this is interesting. After all, the quarks in our world aren’t

massless. But they are almost massless! The up and down quarks have masses of a

few MeV, much less than the relevant scale ⇤QCD ⇡ 300 MeV. Meanwhile, the strange

quark has a mass mstrange ⇡ 95 MeV, still smaller than ⇤QCD although not by much.

This means that understanding the behaviour of massless QCD is not a bad starting

point for understanding the full theory.

5.1.4 Chiral Symmetry Breaking

The important observation is that massless QCD (5.9) has an extra symmetry that the

massive theory doesn’t have, under which the  and  ̃ fermions rotate independently.

The global symmetry includes

GF = SU(Nf )L ⇥ SU(Nf )R (5.10)

Here SU(Nf )L acts on the  while SU(Nf )R acts on the  ̃,

 i ! (L?) j

i
 j and  ̃i

! Ri

j
 ̃j (5.11)

with L 2 SU(Nf )L and R 2 SU(Nf )R. (In fact, the full symmetry of the classical

theory is U(Nf )L ⇥U(Nf )R; we’ll discuss these additional U(1) factors in Section 5.2.)

The group GF is known as the chiral symmetry, chiral because it acts on Weyl spinors

rather than Dirac spinors. This kind of symmetry only exists when the masses mi = 0.

The question that we want to ask is: what becomes of this chiral symmetry? The

answer to this depends on the number of flavours Nf in a way that is not fully un-

derstand. However, for suitably small Nf the theory develops a vacuum expectation

value

h ̃i ji ⇠ ⇤3�i
j

The formation of this condensate is a strong coupling e↵ect and, like confinement,

poorly understood. In contrast, the consequence of the condensate is both well un-

derstood and dramatic. First, note that the condensate does not preserve the chiral

symmetry (5.11). Indeed, it transforms as

h ̃i ji ! ⇤3 Ri

k
(L†)k

j
(5.12)

This is the phenomenon of chiral symmetry breaking, sometimes shortened to �SB. The

surviving subgroup requires us to set L = R in (5.11), meaning

SU(Nf )L ⇥ SU(Nf )R ! SU(Nf )diag
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The spontaneous breaking of chiral symmetry means that massless QCD actually has

a moduli space of vacua, since each choice of L 6= R in (5.12) gives a di↵erent, equally

valid, ground state, albeit one that is entirely equivalent to the original because they

are related by a global symmetry. The vacuum moduli space is the coset

M = [SU(Nf )L ⇥ SU(Nf )R] /SU(Nf )diag (5.13)

with dimension

dimM = N2
f
� 1

There is an important di↵erence between this vacuum moduli space and those that

arise in supersymmetric theories. All points on M in QCD are equivalent because any

point is related to any other by the action of a symmetry. This is not the case for the

supersymmetric moduli space.

Nonetheless, there is one important feature that is common whenever we have flat

directions and this is the importance of massless particles, corresponding to fluctuations

along M. When the flat directions arise from broken symmetries, as in the present

case, these massless particles are Goldstone bosons.

We learn something interesting. Yang-Mills theory has a mass gap. But massless

QCD, at least for Nf > 1, does not. Even if the theory confines, giving massive

baryons and glueballs, chiral symmetry breaking means that there are massless Gold-

stone bosons. These can be identified with certain meson states called pions.

Of course, in our world the pions are not massless. But this is because the constituent

quarks are not exactly massless so the chiral symmetry is not exact. Nonetheless, the

chiral symmetry is an approximate symmetry which, in turn, means that the would-be

Goldstone bosons are light, but not exactly massless. Indeed, the pions are notably

lighter than all other hadrons in QCD.

5.1.5 Phases of Massless QCD

We’re now in a position to describe the di↵erent phases of massless QCD as we vary

Nc and Nf . There is much that we don’t yet understand (here “we” means everyone,

not just those following these lectures!) and there are a few subtleties that I will sweep

under the carpet. But, with broad brush, we we can sketch the di↵erent phases of the

theory.
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We start with low Nf :

• When Nf = 0, we have pure Yang-Mills. The theory sits in the confining phase,

with a mass gap.

• WhenNf = 1, there is no chiral symmetry group (5.10) and so no chiral symmetry

breaking. The theory is again thought to have a mass gap, with quarks bound in

mesons and baryons.

• When 2  Nf  N? the theory confines and exhibits chiral symmetry breaking.

This means that the low energy theory consists of freely interacting Goldstone

bosons, parameterising the moduli space (5.13).

The big question here is: what is the maximum value N? for which chiral sym-

metry breaking occurs? We don’t know the answer to this. Various approaches,

including numerics, suggest that it is somewhere around

N?
⇡ 4Nc

Our lack of knowledge of this simple question highlights just how poorly we

understand strongly interacting field theories.

Now let’s jump to high values of Nf and we’ll then try to fill in the details in the

middle.

• When Nf �
11
2 Nc, the beta function is positive. You can see this from the general

expression (5.7) which, for massless QCD, becomes

b0 =
11

3
Nc �

2

3
Nf (5.14)

This means that theory is weakly coupled in the infra-red: the low-energy physics

consists of massless gluons, weakly interacting with massless quarks. As we go to

smaller and smaller energies, the interactions become weaker and weaker. Strictly

speaking, in the far IR, the physics is free.

On the flip side, these become arbitrarily strongly coupled in the UV, with the

gauge coupling diverging at some very high scale. This doesn’t mean that we

should discard them, but they don’t make sense at arbitrarily high energies scales.

Said another way, we can’t take the UV cut-o↵ ⇤UV to infinity while keeping any

low-energy interactions. Nonetheless, it’s quite possible that these theories may

arise as the low-energy limit of some other theory. We will see examples in Section

6 when we discuss supersymmetric extensions of QCD.
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Figure 7. The beta function for Nf slightly below the asymptotic freedom bound has a zero

which indicates the existence of an interacting conformal field theory.

That leaves us with the physics in the middle region. We’ll keep working down

from the asymptotic freedom bound 11Nc/2.

• When N?? < Nf < 11
2 Nc, things are more interesting. To see what happens, we

need the two-loop beta function

�(g) = �
b0

(4⇡)2
g3 �

b1
(4⇡)4

g5 + . . .

with the one-loop coe�cient b0 given in (5.14) and the two-loop coe�cient

b1 =
34N2

c

3
�

Nf (N2
c
� 1)

Nc

�
10NfNc

3

In the window of interest, b0 > 0 and b1 < 0, so we can play the one-loop

contribution against the two-loop contribution to find a zero of the beta function

g2
?
= �(4⇡)2

b0
b1

with �(g?) = 0. The beta function is shown in Figure 7. The existence of such a

fixed point is telling us that we have an interacting conformal field theory: there

are massless modes, but they are no longer free in the infra-red. This is known

as the Banks-Zaks fixed point.

Importantly, when Nf lies just below the asymptotic freedom bound, so Nf

Nc
=

11
2 � ✏, this fixed point lies at g? ⌧ 1 which means that we can trust the analysis

without having to worry about higher order corrections. Moreover, because g? is

small we can use perturbation theory to calculate anything that we want.
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Figure 8. The expected phases of massless QCD. The asymptotic freedom bound is Nf =
11
2 Nc. The lower edge of the conformal window is not known but is expected to be somewhere

around Nf ⇡ 4Nc.

However, as Nf decreases, the value of the fixed point g? increases until we can

no longer trust the analysis above. The expectation is that we get a conformal

field theory only for some range of Nf , lying within N?? < Nf < 11
2 Nc. This is

known as the conformal window. We don’t currently know the value of N??.

That leaves us with understanding what happens in the middle when N? < Nf 

N??. Our best guess is that there is no such regime, and the upper edge of the chiral

symmetry breaking phase coincides with the lower edge of the conformal window,

N?? = N?

This guess is motivated partly by numerics and partly by a lack of any compelling

alternative. For us, the lesson to take away is that strongly interacting quantum field

theories are hard and even the most basic questions are beyond our current abilities.

A summary of the expected behaviour of massless QCD is shown in Figure 8.

5.2 Anomalies

The next topic that we need to cover is anomalies. This is a beautiful subject and, in

many ways, the place in which quantum field theory intersects most cleanly with topics

in mathematics. Here we won’t describe any of these mathematical underpinnings, but

instead just cover the minimum material necessary for our later applications.

The main idea is to understand how certain symmetries manifest themselves in quan-

tum field theory. To this, end consider a single left-handed Weyl fermion in d = 3 + 1

dimensions. The action is

S =

Z
d4x i ̄�̄µ@µ 
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This action is clearly invariant under the U(1) global symmetry  ! ei↵ , with the

corresponding current jµ =  ̄�µ . To illustrate the anomaly, we will couple this current

to a gauge field Aµ with charge q 2 Z. The action is now

S =

Z
d4x i ̄�̄µ

Dµ 

where the covariant derivative contains the new coupling Dµ = @µ � iqAµ . This is

action is now invariant under the gauge symmetry

 ! eiq↵(x) and Aµ ! Aµ + @µ↵ (5.15)

Before we proceed, I should mention that there are two distinct ways to think about

the gauge field Aµ and this distinction will be important when we come to look at the

various implications of anomalies. They are:

• Aµ could be a dynamical gauge field. In the classical theory, this means that we

treat it as a dynamical variable, with its own equation of motion, typically after

adding a Maxwell term to the action. In the quantum theory, it means that we

integrate over Aµ in the path integral.

• Aµ could be a background gauge field. This means that it is something fixed,

under our control, and should be viewed as a parameter of the theory. Turning

it on typically breaks Lorentz symmetry, but could be useful to explore how our

system responds to the presence of an electric or magnetic field. In the quantum

theory, Aµ appears as a source on which the partition function depends.

We will consider gauge fields of both types in what follows. However, for now, we will

consider Aµ to be a background gauge field, something that is under our control.

While the classical theory is clearly invariant under the gauge transformation (5.15),

the question that we really want to ask is: what about the quantum theory? For this,

we should turn to the path integral, with the partition function in Euclidean space

defined as

Z[A] =

Z
D D ̄ exp

✓
�

Z
d4x i ̄�̄µ

Dµ 

◆

Clearly the action in the exponent remains invariant under gauge transformations. But

now we must also worry about the measure in the path integral, and this takes some

care to define. The statement of the anomaly is that the measure is not invariant under
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gauge transformations. Instead, it turns out that the measure, and hence the partition

function, changes by a phase

Z[A] ! exp

✓
iq3

32⇡2

Z
d4x ↵Fµ⌫

?F µ⌫

◆
Z[A] (5.16)

with ?F µ⌫ = 1
2✏

µ⌫⇢�F⇢�.

This subtlety only happens for fermions. If we have scalar fields charged under a

symmetry, then the measure is perfectly invariant. At heart, this is related to the fact

that there is no di�culty in giving masses to scalar fields while preserving symmetries,

but giving masses for fermions necessarily breaks certain symmetries.

The purpose of this section is to understand the implication of this calculation and a

number of variants. As we now explain, there are three di↵erent avatars of the anomaly.

We deal with them each in turn.

5.2.1 Gauge Anomalies

The first implication of the anomaly (5.16) is that it is an obstruction to gauging.

Although the action is invariant under the gauge symmetry, the measure is not and

neither is the partition function. That means that we cannot promote the gauge field

Aµ to a dynamical field, where we integrate over it in the path integral. If we attempted

to do this, we would get a sick theory.

There are a number of ways to see why the theory is sick but here is a simple one.

Recall that when we first attempted to quantise the gauge field Aµ in the lectures on

Quantum Field Theory we had some work to do to decouple the negative norm states

that arise from quantising A0. That work ultimately boiled down to using the gauge

invariance to remove these states. But in an anomalous theory, we no longer have

that gauge invariance at our disposal and the Hilbert space will involve negative norm

states. That’s bad.

The upshot is that a U(1) gauge theory, coupled to a single Weyl fermion, is not

consistent. To proceed, we must have multiple, left-handed Weyl fermions  i, each

with some charge qi. (If we have right-handed fermions, simply conjugate them to

make them left-handed.) The phase in (5.16) is then proportional to the sum of q3
i
.

The gauge theory is consistent only if

X

i

q3
i
= 0 (5.17)
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This was one of the conditions that we met previously in (4.14). This condition is

sometimes written in a di↵erent way. One, very simple way to solve this constraint is

to take pairs of Weyl fermions with charges ±q. If we conjugate one of them to become

a right-handed Weyl fermion, we then have a single Dirac fermion with charge q. These

are called vector-like theories and QED is the most familiar example.

There are, however, more interesting solutions to (5.17) that do involve ± pairs.

These are known as chiral gauge theories.

The discussion above holds for an Abelian gauge symmetry. There is a similar story

for a non-Abelian gauge symmetry G. For a single Weyl fermion, transforming in the

representation R of G, the anomaly is proportional to the group theoretic factor A(R).

For the fundamental representation, A(R) = 1. For other representations, it is given

by

TrTA

R
{TB

R
, TC

R
} = A(R) TrTA

{TB, TC
}

Some examples of A(R) for SU(N) representations are collected in Table 2. To be

consistent, a non-Abelian gauge theory coupled to a bunch of left-handed Weyl fermions

must obey

X

i

A(Ri) = 0 (5.18)

which is the non-Abelian version of (5.17). If R is a complex representation, then it’s

simple to show that A(R̄) = �A(R). This means that we can again always satisfy (5.18)

by taking Dirac fermions, rather than Weyl fermions, since these have a left-handed

fermion in a representation R and another in R̄.

One consequence of the relation A(R̄) = �A(R) is that A(R) = 0 for any real

representation. This means that there is no obstacle to coupling a single Weyl fermion

in a real representation to a non-Abelian gauge group. Indeed, we’ve seen this already

in these lectures: pure super-Yang-Mills has a single adjoint Weyl fermion, but the

adjoint representation is real so there is no problem.

Relatedly, here’s a comment that will prove useful shortly: only massless fermions

contribute to the anomaly. If you have a Weyl fermion  in a complex representation

R of a group G, then to give it a mass preserving G you need a second Weyl fermion  ̃

in representation R̄. You can then write down a Dirac mass term m ̃ . But the two

Weyl fermions  ̃ and  cancel in their contribution to the anomaly. Alternatively, you

can write down as Majorana mass m  for any fermion in a real representation of G
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but, as we have seen, there is no contribution to the anomaly from fermions in a real

representation. This means that only fermions that cannot get a mass preserving G

contribute to the anomaly for G.

When we previously discussed the requirements of anomaly cancellation in (4.14),

we gave a further condition on U(1) gauge theories. We asked that they also satisfy
X

i

qi = 0 (5.19)

This, it turns out, is a little more subtle and it follows from the requirement that the

theory can be consistently coupled to gravity. There is no corresponding requirement

for non-Abelian gauge theories (essentially because TrTA = 0 for any generator of a

simply connected Lie algebra).

The upshot is that if you want to have a theory with a dynamical gauge field, them

you better make sure that the anomaly (5.17) or (5.18) cancels. Furthermore, if you

want your theory to be compatible with gravity, then you have one further hoop (5.19)

to jump through.

5.2.2 Chiral (or ABJ) Anomalies

Here is a slight variant on the same calculation that leads to a physically very di↵erent

conclusion. Again, consider a single Weyl fermion, now coupled to a background non-

Abelian gauge field A in some representation R of the global symmetry G. It’s useful

to think of G = SU(N), and R either the fundamental or adjoint representation. We

can construct the partition function

Z[A] =

Z
D D ̄ exp

✓
�

Z
d4x i ̄�̄µ

Dµ 

◆

now with Dµ = @µ � iAA

µ
TA

R
 . We know that the partition function isn’t invariant

under gauge transformations of G. But here we instead ask a di↵erent question: is it

invariant under U(1) rotations of the fermion?

 ! eiq↵ (5.20)

The answer is again no, with the partition function transforming as

Z[A] ! exp

✓
iqI(R)

16⇡2

Z
d4x ↵TrFµ⌫

?F µ⌫

◆
Z[A] (5.21)

with I(R) the Dynkin index defined previously in (5.8). This looks very similar to our

previous result, but it should now be thought of a mixed anomaly between the U(1)

symmetry (5.20) and the non-Abelian symmetry G. This can be seen in the coe�cient

qI(R) which is still cubic but now a mix of Abelian and non-Abelian generators.
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An interesting consequence of this is that, in the presence of background gauge fields

for G, the U(1) symmetry is no longer conserved. If we repeat Noether’s theorem,

including the anomaly (5.21), we find that the U(1) current associated to the symmetry

(5.20) now obeys

@µj
µ =

qI(R)

32⇡2
TrFµ⌫

?F µ⌫ (5.22)

When the right-hand side is non-zero, the current is no longer conserved.

An important example of this occurs in the theory of massless QCD that we intro-

duced in the last section. The gauge group is G = SU(Nc) and the Lagrangian is

(5.9),

LQCD = �
1

2g2
TrFµ⌫F

µ⌫
�

NfX

i=1

h
i ̄i�̄

µ
Dµ i + i ¯̃ i�̄µ

Dµ ̃
i

i
(5.23)

We have added extra fermions to cancel the gauge anomaly in G, as we should. But,

as we will see, a mixed anomaly of the type (5.21) remains.

Classically, the theory (5.23) has a U(Nf )L ⇥ U(Nf )R global symmetry, with each

factor rotating  and  ̃ independently. We studied the SU(Nf )L⇥SU(Nf )R subgroup

in some detail in the previous section, but didn’t mention the two U(1) factors. These

are usually written as

U(1)B :  i ! ei� i and  ̃i
! e�i� ̃i

U(1)A :  i ! ei↵ i and  ̃i
! ei↵ ̃i (5.24)

The subscript B stands for “baryon” since this is the vector-like symmetry under which

baryons are charged. Since  and  ̃ have opposite charges under U(1)B, there is no

obstacle to gauging it should we wish. Moreover, the ± charges also cancel on the

right-hand side of (5.22), and the U(1)B current is conserved in the quantum theory.

In contrast, the axial symmetry U(1)A has the same charges for  and  ̃. This means

that the associated current is, following (5.22), no longer conserved. Instead, it obeys

@µj
µ

A
=

Nf

16⇡2
TrFµ⌫

?F µ⌫ (5.25)

Note that the gauge fields on the right-hand side are now dynamical SU(Nc) gauge

fields that fluctuate. There is now no way to set them to zero. There is no axial U(1)A
symmetry in the quantum theory.
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This also explains why we didn’t include U(1)A when discussing chiral symmetry

breaking in the previous section. Since it is not a symmetry, there is no corresponding

Goldstone boson. (In the real world, the meson associated to U(1)A is called the ⌘0 and

is significantly heavier than the pion Goldstone bosons.)

This, then, is the second avatar of the anomaly. It manifests itself as a symmetry of

the classical theory that does not survive the quantisation procedure. In fact, this is

how the anomaly was first discovered. In this context, it usually goes by the name of the

chiral anomaly, or the ABJ anomaly after Adler, Bell and Jackiw who first uncovered

this subtle e↵ect of quantum field theory. (Yes, that Bell.)

There is one further way to think about the chiral anomaly. Non-Abelian gauge

theories have an additional, topological term

S# =
#

16⇡2

Z
d4x TrFµ⌫

?F µ⌫

This is the theta term. We already met it when constructing super Yang-Mills theory

in (4.19). Comparing with the form of the mixed anomaly (5.21), we see that axial

transformation (5.24) can be thought of as shifting the theta angle

U(1)A : #! #+ 2↵ (5.26)

We’ve met this kind of idea previously in Section 3.3, where we found it useful to think

of parameters – supurions – transforming under symmetries (which, of course, means

that the symmetries aren’t actually symmetries). In Section 6, we’ll learn how we can

combine the shift of the # angle with holomorphy in supersymmetric theories.

5.2.3 ’t Hooft Anomalies

So far we have discussed two manifestations of the anomaly:

• For a gauge symmetry, the anomaly better cancel. Or else.

• A mixed anomaly between a global symmetry and gauge symmetry means that

the global symmetry isn’t.

But what if we have an anomaly just for a global symmetry? What are the conse-

quences? From what we’ve discussed above, we know that the symmetry isn’t conserved

if we couple it to background gauge fields. But nothing compels us to do so. So what

else can we learn from this?
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The answer is both subtle and powerful. An anomaly for a purely global symmetry

puts strong constraints on the low-energy dynamics of the theory. The anomaly should

be thought of as a robust way of characterising the theory, and this characterisation

cannot change under RG flow, now under any other deformation of the theory, provid-

ing that the symmetry remains unchanged. Such anomalies in global symmetries are

referred to as ’t Hooft anomaly.

We will first explain the basic idea and then give a concrete example. Suppose that

we have some quantum field theory – typically a non-Abelian gauge theory – that is

weakly coupled in the UV, but flows to strong coupling in the IR. We will abstractly

call the UV theory TUV . We assume that it has some global symmetry GF . This should

be a true symmetry of the quantum theory, meaning that it has no mixed anomalies

with the gauge symmetry.

This UV theory may have an anomaly for GF . If GF is Abelian, anomaly is simplyP
q3 as in (5.17); if it is non-Abelian the anomaly is

P
A(R) as in (5.18). Either way,

we will denote this anomaly as AUV and assume AUV 6= 0,

The theory now flows under RG to a theory TIR in the IR which, as we’ve seen, will

typically be very di↵erent. We have the following result:

Claim: Either the symmetry GF is spontaneously broken, or the anomalies match

meaning

AUV = AIR

This is a wonderfully powerful result. If GF is spontaneously broken then we necessarily

have massless Goldstone bosons. But if GF is unbroken then we must have massless

fermions that reproduce the anomaly. This is known as ’t Hooft anomaly matching.

Proof: The argument for ’t Hooft anomaly matching is very slick. Suppose that

AUV 6= 0 then we know from the discussion above that we’re not allowed to couple GF

to dynamical gauge fields. That would lead to a sick theory.

To proceed, we introduce a bunch of extra massless Weyl fermions transforming

under GF . We call these spectator fermions. These won’t interact directly with our

original fields in TUV , but they are designed so that the total anomaly of the original

fields and these new fermions vanishes:

AUV +Aspectator = 0
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Now there’s nothing to stop us introducing dynamical gauge fields for GF . We do so,

but with a very very small coupling constant. We’ll see the importance of this shortly.

Now let’s go back to our original theory TUV . It will flow to strong coupling at some

scale ⇤ and we’d like to understand the physics TIR below this scale. If the gauge

coupling for GF is small enough, then this RG flow takes place entirely una↵ected by

the presence of the GF gauge fields. This means that one of two things could have

happened. It may be that the strong coupling dynamics of TUV spontaneously breaks

the symmetry GF . (For example, as we’ve seen, this is expected to happen if we take

GF to be the chiral symmetry of QCD.) This was the first possibility of our claim.

Alternatively, GF may be unbroken at low-energies. In this case, we’re left with TIR,

together with the spectator fermions, all coupled to the GF gauge fields. But this can

only be consistent if

AIR +Aspectator = 0

Clearly, this is only consistent if AIR = AUV . ⇤

Triangle Diagrams

Until now, we’ve explained the anomaly as a transformation of the fermion measure in

the path integral. However, the anomalies also show up in perturbation theory when

computing corrections to Ward identities like (5.25). In this way of looking at things,

one has to compute so called triangle diagrams. Schematically, these take the form

Anomaly =
X

fermions

where you sum over all Weyl fermions running in loops. The outer legs are currents,

either gauge or global. The fact that there are three legs reflects the fact that the anoma-

lies are always proportional to the cube of generators. Our three kinds of anomalies

are related to the di↵erent types of currents on the legs

• Gauge3: This is a gauge anomaly.

• Global ⇥ Gauge2: This is the chiral anomaly.

• Global3: This is the ’t Hooft anomaly.
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An Application: Confinement Implies Chiral Symmetry Breaking

We saw in the last section that massless QCD exhibits two, distinct strong coupling

phenomena: confinement and chiral symmetry breaking. We will now show that they’re

not quite as unrelated as they first appear.

As we’ve seen, the U(1)A symmetry of massless QCD is anomalous. The true sym-

metry group is therefore

GF = U(1)B ⇥ SU(Nf )L ⇥ SU(Nf )R

Let’s first compute the ’t Hooft anomalies in the ultra-violet, where the quarks con-

tribute. There is no ’t Hooft anomaly for U(1)3
B
because this is a vector-like symmetry.

In contrast, there is a ’t Hooft anomaly associated to the chiral, SU(Nf ) factors. In

fact, there are two. The first is the purely non-Abelian anomaly

[SU(Nf )L]
3 : A =

X
A(⇤) = �Nc

Here the anomaly A arises because each quark  carries a colour index a = 1, . . . , Nc.

The  fermions transform in the ⇤ of SU(Nf )L and A(⇤) = �1. But there are Nc such

fermions. Hence the result NcA(⇤) = �1. There is a similar anomaly for SU(Nf )R.

In addition, there is a mixed ’t Hooft anomaly between U(1)B and SU(Nf ). This is

[SU(Nf )L]
2
⇥ U(1)B : A

0 =
X

qI(⇤) = Nc

which again simply counts the number of quarks.

Now the question is: what happens in the infra-red? For suitably low Nf , we’ve

already explained the chiral symmetry GF is expected to be broken down to U(1)B ⇥

SU(Nf )diag, but we didn’t give any justification for this. The idea of ’t Hooft anomaly

matching goes some way to help.

Here is the idea. We will assume that the theory confines and, moreover, that in the

infra-red, the physics is described by weakly interacting mesons and baryons. (This is

in contrast to the conformal field theories that we see at larger Nf .) In such a situation,

’t Hooft anomaly matching shows that the chiral symmetry must be broken.

Here is the argument. Suppose that GF is unbroken in the infra-red. Then they must

be massless fermions around that can reproduce the anomalies A and A
0. Moreover,

by assumption, these massless fermions must be bound states of quarks, either mesons

or baryons.
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Mesons certainly can’t do the job because these are bosons. Baryons, meanwhile,

contain Nc quarks so these too are bosons when Nc is even. This is telling us that when

Nc is even, a confining theory contains no fermions at low-energies and so certainly can’t

reproduce the anomalies. We learn that chiral symmetry breaking must occur when

Nc is even.

What about Nc odd? Now baryons are fermions. Is it possible that some of these

baryons could be massless and reproduce the ’t Hooft anomalies? This time we have

something of a calculation to do. First, you have to figure out what representations

of GF the baryons sit in. Then you have to figure out what combination of massless

baryons could match the anomalies A and A
0. It takes some work, but the answer is

that the baryons can never reproduce the anomalies. (You can find the calculation in

Section 5.6 of the lectures on Gauge Theory.) This means that if QCD confines into

weakly interacting colour singlets, then chiral symmetry is necessarily broken.

5.3 Instantons

One of the new ingredients in these lectures is the Yang-Mills theta angle

S# =
#

16⇡2

Z
d4x TrFµ⌫

?F µ⌫

This deserves some explanation.

First, the theta term is a total derivative,

S# =
✓

8⇡2

Z
d4x @µK

µ with Kµ = ✏µ⌫⇢�Tr

✓
A⌫@⇢A� �

2i

3
A⌫A⇢A�

◆

This means that it does not a↵ect the classical equations of motion. Nonetheless,

it can a↵ect the quantum dynamics of gauge theories. This arises because the path

integral receives contributions from field configurations that have something interesting

going on at infinity so that the boundary term S# is non-vanishing. This something

interesting can be found in the topology of the gauge group.

To explain this, we first Wick rotate so that we work in Euclidean spacetime R4.

Configurations that have a finite action from the Yang-Mills term must asymptote to

pure gauge,

Aµ ! i⌦@µ⌦
�1 as x ! 1 (5.27)

with ⌦ 2 G. This means that finite action, Euclidean field configurations involve a

map

⌦(x) : S3
1 7! G
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with S3
1 = @R4. Maps of this kind fall into disjoint classes. This arises because

the gauge transformations can “wind” around the spatial S3 in such a way that one

gauge transformation cannot be continuously transformed into another. Such winding

is characterised by homotopy theory. In the present case, the maps are labelled by an

element of the homotopy group which is

⇧3(G) = Z

for all simple, compact Lie groups G. In words, this means that the winding of gauge

transformations (5.27) at infinity is classified by an integer n.

This statement is most intuitive for G = SU(2) since SU(2) ⇠= S3 and the homotopy

group counts the winding from one S3 to another. For higher dimensional G, it turns

out that it’s su�cient to pick an SU(2) subgroup of G and consider maps which wind

within that. You then need to check that these maps cannot be unwound within the

larger G.

It can be shown that, in general, the winding n 2 Z is computed by

n(⌦) =
1

24⇡2

Z

S3
1

d3S ✏ijkTr (⌦@i⌦
�1)(⌦@j⌦

�1)(⌦@k⌦
�1) (5.28)

Evaluated on any configuration, the theta term becomes (5.27)

S# = #n (5.29)

It is the contribution from configurations with n 6= 0 in the path integral that means

that observables in quantum gauge theories can depend on #.

We can say more if we work in a regime in which the theory is weakly coupled.

Here the path integral is dominated by the saddle points, which are solutions to the

classical equations of motion. This means that any # dependence should come from

field equations that wind at infinity, so n 6= 0, and solve the classical equations of

motion,

DµF
µ⌫ = 0 (5.30)

There is a cute way of finding solutions to this equation. The Yang-Mills action is

SYM =
1

2g2

Z
d4x trFµ⌫F

µ⌫
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Note that in Euclidean space, the action comes with a + sign. This is to be contrasted

with the Minkowski space action (5.1) which comes with a minus sign. We can write

this as

SYM =
1

4g2

Z
d4x tr (Fµ⌫ ⌥

?Fµ⌫)
2
±

1

2g2

Z
d4x trFµ⌫

?F µ⌫
�

8⇡2

g2
|n|

where, in the last line, we’ve used the result (5.29). We learn that in the sector with

winding n, the Yang-Mills action is bounded by 8⇡2n/g2. The action is minimised when

the bound is saturated. This occurs when

Fµ⌫ = ±
? Fµ⌫ (5.31)

These are the (anti) self-dual Yang-Mills equations. The argument above shows that

solutions to these first order equations necessarily minimise the action is a given topo-

logical sector and so must solve the equations of motion (5.30). In fact, it’s straightfor-

ward to see that this is the case since it follows immediately from the Bianchi identity

Dµ
?F µ⌫ = 0.

Solutions to the (anti) self-dual Yang-Mills equations (5.31) have finite action, which

means that any deviation from the vacuum must occur localised in Euclidean spacetime.

In other words, they are point-like objects in R4. Because they occur for just an “instant

of time” they are known as instantons.

There is much to say about instantons. You can read about the role they play in

quantum Yang-Mills in the lectures on Gauge Theory and more about the structure

of the solutions to (5.31) in the lectures on Solitons. For our purposes, it will suf-

fice to point out that the contributions of instantons to any quantity comes with the

characteristic factor

e�Sinstanton = e�8⇡2|n|/g2ei#n (5.32)

Famously, the function e�8⇡2
/g

2
has vanishing Taylor expansion about the origin g2 = 0.

This is telling us that e↵ects due to instantons are smaller than any perturbative contri-

bution, which takes the form g2n. Nonetheless, that doesn’t mean that instantons are

useless since they can contribute to quantities that apparently vanish in perturbation

theory.

The theta dependence ei#n associated to an instanton is also interesting. It is a

complex phase. The fact that it is complex can be traced to the ✏µ⌫⇢� tensor in S#.

This means that S✓ contains a single time derivative and so, upon Wick rotation, still
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sits in the path integral with a factor of i. The fact that n 2 Z means that # is a

periodic variable, with

# 2 [0, 2⇡)

Instantons are usually referred to as non-perturbative e↵ects. This is a little bit of a

misnomer. The use of instantons requires weak coupling g2 ⌧ 1, so in this sense they

are just as perturbative as usual perturbation theory. The name non-perturbative really

means “not perturbative around the vacuum”. Instead, the perturbation theory occurs

around the instanton solution.

This also means that the theta dependence (5.32) is only expected at weak coupling

g2 ⌧ 1. As we’ve seen, in the far infra-red non-Abelian gauge theories are typically

strongly coupled and the theta dependence of quantities can take a di↵erent form. We’ll

see examples in what follows.

An Example: An Instanton in SU(2)

It is fairly straightforward to write down the instanton solutions with winding n = 1.

For SU(2), such a configuration is given by

Aµ =
1

x2 + ⇢2
⌘a
µ⌫
x⌫�a (5.33)

Here ⇢ is a parameter whose role we will describe shortly. The ⌘a
µ⌫

are usually referred

to as ’t Hooft matrices. They are three 4 ⇥ 4 matrices which provide an irreducible

representation of the su(2) Lie algebra. They are given by

⌘1
µ⌫

=

0

B@
0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

1

CA , ⌘2
µ⌫

=

0

B@
0 0 1 0

0 0 0 �1

�1 0 0 0

0 1 0 0

1

CA , ⌘3
µ⌫

=

0

B@
0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

1

CA

These matrices are self-dual: they obey 1
2✏µ⌫⇢�⌘

i

⇢�
= ⌘i

µ⌫
. (Note that we’re not being

careful about indices up vs down as we are in Euclidean space with no troublesome

minus signs.) In the solution (5.33), the ’t Hooft matrices intertwine the su(2) group

index a = 1, 2, 3 with the spacetime index µ and this implements the asymptotic

winding of the gauge fields.

The associated field strength is given by

Fµ⌫ = �
2⇢2

(x2 + ⇢2)2
⌘a
µ⌫
�a

This inherits its self-duality from the ’t Hooft matrices: Fµ⌫ = ?Fµ⌫ and therefore solves

the Yang-Mills equations of motion, DµFµ⌫ = 0.
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We can get some sense of the form of this solution. First, the non-zero field strength

is localised around the origin x = 0. (By translational invariance, we can shift xµ
!

xµ
�Xµ to construct a solution localised at any other point Xµ.) The solution depends

on a parameter ⇢ which can be thought of as the size of the instanton lump. The fact

that the instanton has an arbitrary size follows from the classical conformal invariance

of the Yang-Mills action.
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