
6 Supersymmetric QCD

We now turn our attention to the quantum dynamics of supersymmetric gauge theories.

Our focus will be on understanding the physics of super Yang-Mills and super QCD.

There is, as we shall see, a wonderfully rich array of behaviour on display.

First, some basics. There are a number of facts that we’ve seen already in these

lectures that we can combine to great e↵ect in supersymmetric theories. First, we

know that the gauge coupling runs
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where g20 is the coupling constant evaluated at the cut-o↵ scale ⇤UV . The general

expression for the 1-loop beta function in non-supersymmetric theories is (5.7)
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In supersymmetric theories this simplifies. Gauge bosons are necessarily accompanied

by an adjoint Weyl fermion and chiral multiplets come in fermion/boson pairs. The

upshot is that
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In the quantum theory, the running gauge coupling is replaced by the dynamical scale

⇤, below which the non-Abelian gauge theory is strongly coupled. For reasons that will

become clear shortly, we will refer to this as |⇤|. (It was always a real, positive energy

scale so there’s nothing lost in doing this.) This was defined in (5.4) as

|⇤| = µ exp

✓
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It is RG invariant, meaning that ⇤ is independent of the scale µ.

Importantly, something novel happens in supersymmetric theories. This is because,

as we have seen, the gauge coupling constant sits as the imaginary part of a complex

coupling (4.18)
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The theta angle does not run, essentially because it is a periodic variable # 2 [0, 2⇡)

and so has nowhere to go. This motivates us to define the complexified strong coupling

scale

⇤ = µ exp

✓
2⇡i⌧(µ)

b0

◆
= |⇤|ei#/b0 (6.3)

Recall from Section 3.3 that superpotentials are holomorphic in both fields and pa-

rameters. The complexified scale ⇤ is therefore crying out to sit in the superpotential.

We’ll see many examples of this as we proceed.

The complexified scale also ties together two other ideas that we’ve encountered

previously. First, when discussing what kinds of superpotentials can arise in a quantum

theory in Section 3.3, we found it useful to think of a larger class of symmetries under

which parameters also transform as so-called “spurions”. Of course, if a symmetry

changes a parameter then it’s not a true symmetry of the theory but nonetheless we

saw that these spurious symmetries can prove useful in restricting the kind of behaviour

that can occur in supersymmetric theories.

Second, when discussing chiral anomalies in Section 5.2, we saw that a symmetry

of the classical theory can fail to be a symmetry of the quantum theory by shifting

the theta angle (5.26). In the supersymmetric context, a transformation of theta angle

manifests itself as a complex rotation of ⇤. This means that ⇤ acts as a spurion for

anomalous U(1) symmetries. It also means that we can use anomalous symmetries

to restrict the form of quantum corrections to a theory, just as we used other broken

symmetries in Section 3.3. Again, we’ll see many examples of this as we proceed.

A Comment on Exact Beta Functions

There is an interesting, and somewhat subtle, story about higher order corrections to

the beta function. We can write the one-loop correction in a more revealing way by

inverting (6.3),

⌧(⇤;µ) =
b0
2⇡i

log

✓
⇤

µ

◆
(6.4)

Importantly, the periodicity of # 2 [0, 2⇡) is manifest on both sides of this equation

through

#! #+ 2⇡ , ⌧ ! ⌧ + 1 , ⇤ ! ⇤e2⇡i/b0
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Any corrections to (6.4) should retain this property. But that’s tricky to achieve while

retaining the holomorphy implied by supersymmetry. The most general form of holo-

morphic corrections, consistent with the periodicity of #, is

⌧(⇤;µ) =
b0
2⇡i

log

✓
⇤

µ

◆
+

1X

n=1

an

✓
⇤

µ

◆b0n

(6.5)

for some unknown coe�cients an. (The restriction to n > 0 comes from requiring that

this is a weak coupling expansion and should not diverge as ⇤ ! 0.) But these addi-

tional terms are proportional to e�8⇡2
n/g

2
and are identified as instanton e↵ects (5.32).

We see that all higher perturbative contributions vanish and, as far as perturbation

theory is concerned, the beta function is one-loop exact.

The fact that the beta function is one-loop exact in supersymmetric theories is a

striking statement. It appears to be even more striking when you actually compute the

two-loop contribution and find that it doesn’t vanish! What’s going on?

The resolution is that one should be careful about what quantity is actually being

computed. The holomorphic gauge coupling ⌧ originates in a superpotential termR
d2✓ ⌧W↵W↵ such that 1/g2 sits in front of the Yang-Mills action. The story that we

told above assumes a renormalisation scheme in which this holomorphy is protected.

Meanwhile, the physical gauge coupling is computed after a rescaling Aµ ! gAµ, so

that the coupling now appears in vertices. But absorbing the gauge coupling into the

gauge field in this way is not an entirely innocent thing to do and there is a price to pay

in the form a Jacobian in the path integral. This means that while the holomorphic

gauge coupling is one-loop exaxt, the physical gauge coupling can, and does, receive

contributions at all loops4. (It’s not dissimilar to our discussion in Section 3.3 where

we saw that the physical parameters are renormalised even though the superpotential

is not.)

Nonetheless, it turns out that the one-loop exactness of the holomorphic gauge cou-

pling puts strong constraints on the beta function for the physical gauge coupling

which is known as the NSVZ beta function (after Novikov, Shifman, Vainshtein, and

Zakharov).

4You can read more about these issues in the paper by Nima Arkani-Hamed and Hitoshi Muryama.
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6.1 Super Yang-Mills

We will start our study of quantum dynamics with pure super Yang-Mills. The theory

consists of a non-Abelian gauge field coupled to a single, adjoint Weyl fermion,

SSYM =

Z
d4x Tr
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We will work with gauge group G = SU(Nc).

The one-loop beta function (6.1) is b0 = 3Nc and the theory flows to strong coupling

at the scale |⇤|. The question that we want to answer is: what happens?

6.1.1 Confinement and Chiral Symmetry Breaking

Our first port of call is to understand the global symmetries of the theory. Classically

the theory has a U(1)R symmetry, under which

U(1)R : �! ei↵�

This symmetry does not survive quantisation: it su↵ers an anomaly which can be

viewed as a transformation of the theta angle

U(1)R : #! #+ I(adj)↵ = #+ 2Nc↵ (6.6)

Equivalently, we can think of the strong coupling scale (6.3) transforming as

U(1)R : ⇤ ! e2i↵/3⇤

We say that ⇤ has R-charge R[⇤] = 2
3 . As we’ve stressed repeatedly, the shift of #

means that U(1)R is not a symmetry of the quantum theory.

However, all is not lost. We can see from (6.6) that a shift by ↵ = 2⇡/2Nc transforms

# ! # + 2⇡. This means that a discrete Z2Nc subgroup of the R-symmetry survives,

rotating the fermion as

�! !� with !2Nc = 1

We learn that SU(Nc) super Yang-Mills has a discrete Z2Nc R-symmetry.

Next we should start to understand the quantum dynamics. We don’t have enough

control over the strong coupling physics of N = 1 supersymmetric theories to show

from first principles that theory confines. (It turns out that we do have such control in

theories with N = 2 supersymmetry.) We assume that, as with pure Yang-Mills, the

theory confines with a mass gap. There is little doubt that this is correct.
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Furthermore, as in non-supersymmetric QCD, a fermion bilinear forms

hTr�� i ⇠ ⇤3 (6.7)

This time supersymmetry does help us get a handle on this. We’ll see how as we proceed

through this section and, in particular, will be able to pin down the dimensionless

coe�cient that sits in front of the right-hand side. But first let us understand the

consequences of the condensate.

As in non-supersymmetric QCD, this condensate spontaneously breaks a symmetry.

The di↵erence is that it in super Yang-Mills the condensate breaks our discrete R-

symmetry,

hTr�� i ! !2
hTr�� i

This, however, is a spontaneous breaking rather than an explicit breaking: the theory

is invariant under Z2Nc but the ground state is not. The discrete R-symmetry is broken

to

Z2Nc ! Z2

where the surviving Z2 acts as fermion parity � ! ��. This is subgroup of the

Spin(1, 3) Lorentz group and, as such, cannot be spontaneously broken.

When a continuous symmetry is spontaneously broken, we get massless Goldstone

modes. When a discrete symmetry is spontaneously broken, we get multiple ground

states. These ground states are characterised by the phase of the gluino condensate

(6.7) which, in general, can take the form

hTr�� i = a!2k⇤3 k = 0, 1, . . . , Nc � 1 (6.8)

with ! = e⇡i/Nc and a 2 R an undetermined coe�cient. The upshot is that SU(Nc)

super Yang-Mills hasNc distinct ground states that di↵er by the phase of the condensate

(6.8)

Before we go on, it’s worth pointing out that the condensate takes the form

⇤3
⇠ e�8⇡2

/g
2
Ncei✓/Nc

This isn’t of the form (5.32) expected from an instanton contribution. Roughly, it looks

like the contribution from 1/Nc of an instanton! But we should acknowledge that the

condensate arises in the strongly coupled regime of the theory and instantons are not

a good guide to what’s going on.
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So far we haven’t managed to figure out the overall constant a in front of the conden-

sate. In non-supersymmetric theories, the equivalent calculation is not possible. But

in supersymmetric theories it can be done, albeit with a fairly technical computation.

Conceptually the idea is to deform the theory so that it is weakly coupled. We then

compute the gluino condensate in that regime and argue, using holomorphy, that it

remains unchanged as we move back. The end result is

a = 16⇡2 (6.9)

There are (at least) two methods to get this result. One is to study the theory on

R3
⇥ S1 rather than R4. It turns out that the theory can be made weakly coupled

when the S1 has radius R ⌧ 1/|⇤|. Moreover, rather wonderfully, when placed on a

circle instantons actually do fractionalise into Nc smaller objects and can be shown to

generate the gluino condensate5. We’ll see another method to determine a = 16⇡2 later

in these lectures.

6.1.2 The Witten Index

There is another way to see the existence of Nc supersymmetric ground states. This is

to compute the Witten index, defined in Section 3.4.2 as

Tr (�1)F e��H

This counts the number of supersymmetric ground states of the theory, weighted with

a sign.

The beauty of the Witten index is that it stays the same no matter what you do to

the theory as long as you preserve supersymmetry. This means that if we can deform

super Yang-Mills in some way so that the theory becomes weakly coupled, then we

can just compute the Witten index using standard perturbative quantum field theory,

safe in the knowledge that it can’t then change as we deform back to the strongly

coupled regime that we care about. So the question becomes: how can we make super

Yang-Mills weakly coupled?

The way to do this is fairly dramatic. We consider the theory on a spatial torus T3

and take the radius of each circle to be R, so that the volume is V = (2⇡R)3. We know

5This calculation can be found in the paper by Davies, Hollowood, Khoze and Mattis . Be warned:
the computation of background determinants in this paper is incorrect, although the final answer is
right.

– 160 –



that super Yang-Mills is weakly coupled in the UV, but flows to strong coupling at a

scale |⇤|. If we take the spatial torus to be very small, so that

R ⌧
1

|⇤|

then the RG flow never reaches strong coupling. Of course, the physics of the theory

on such a tiny spatial torus is very di↵erent from the physics that we might care about.

In particular, the size of space is now much smaller than the Compton wavelength of

any massive particle so this is not going to be any good to compute, say, the S-matrix.

But there’s one thing that we can compute and that’s the Witten index.

When we compactify space in this way, nearly all states will have an energy set by

E ⇠ 1/R. We can ignore these if we want to compute the number of ground states and

focus only on those modes that, classically, have zero energy. These degrees of freedom

come from both the gauge field and the fermions and we deal with each in turn.

On a torus T3, there are gauge configurations Ai that have vanishing field strength

Fij = 0, but are nonetheless not gauge equivalent to the vacuum. These are parame-

terised by mutually commuting holonomies around each of the three di↵erent cycles

Ui = TrP exp

✓
i

I
Ai

◆
i = 1, 2, 3

where P is path ordering. We can use an SU(Nc) gauge transformation to diagonalise

each of these, so that they read

Ui = diag(ei✓
i
1 , . . . , ei✓

i
Nc )

The zero energy modes are the coordinates ✓i
a
, with i = 1, 2, 3 labelling the spatial

directions and a = 1, . . . , Nc the gauge indices. Because Ui 2 SU(Nc), these coordinates

are not all independent but are constrained to obey

NcX

a=1

✓a
i
= 0 mod 2⇡ (6.10)

We should quantise each of these periodic rotors ✓a
i
, subject to this constraint. But

this is essentially the same as the quantisation of a particle on a circle and we know

that there is a unique ground state in which the wavefunction is independent of the ✓’s.

Physically, this can be understood because a non-zero momentum for ✓ corresponds to

non-Abelian electric field F0i 6= 0. This means that there’s no subtlety in quantising

the gauge field and we get a unique ground state6.

6A di↵erent way to count ground states can be found in Witten’s original paper “Constraints on
Supersymmetry Breaking”.
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We’re left with the adjoint fermion. We impose periodic boundary conditions and

the zero modes are simply the constant modes over the torus. We can again diagonalise

the fermions by an SU(Nc) gauge transformation and write

�↵ = diag(�1
↵
, . . . ,�Nc

↵
)

with ↵ = 1, 2 the spinor index. Each of these is a complex Grassmann mode. Because

� sits in the algebra su(Nc), these are constrained to obey

NcX

a=1

�a
↵
= 0 (6.11)

Let’s first recall what usually happens with such modes in quantum mechanics. A

single Grassmann mode  has anti-commutation relations { , †
} = 1 and gives rise

to a qubit. This arises by first defining a fiducial state |0i that obeys  |0i = 0. The

Hilbert space then consists of two states |0i and  †
|0i.

We can quantise the zero modes �a
↵
in the same way, except we have to make sure

that the end result is gauge invariant. Diagonalising � has already exhausted much of

the gauge symmetry, but we’re still left with the Weyl group which permutes the �a
↵
.

This means that any wavefunction must be invariant such permutations.

We begin by again introducing a fiducial state that obeys �a
↵
|0i = 0 for all ↵ = 1, 2

and a = 1, . . . , Nc. We can build zero energy excited states by acting with (�a
↵
)†,

subject to the requirement of gauge invariance and (6.11). It’s straightforward to see

that there is no such state where we excite just a single (�a
↵
)†: the requirement that

it is invariant under permutations means that it has to take the form
P

a
(�a

↵
)†|0i but

this vanishes by virtue of (6.10).

There is a single state with two (�a
↵
)† excited. We first construct the gauge invariant

combination

S = Tr�� =
NcX

a=1

✏↵��a
↵
�a
�

and then build a ground state S†
|0i. All gauge invariant states with more �† excitations

then arise by acting with further copies of S†. The end result is that there areNc ground

states, given by

|ki = (S†)k|0i k = 0, . . . , Nc � 1

The series ends at |Nc � 1i because the Grassmann nature of �a
↵
, together with the

constraint (6.10), means that (S†)Nc = 0.
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G SU(N) Sp(N) Spin(2N + 1) Spin(4N) Spin(4N + 2) E6 E7 E8 F4 G2

h N N + 1 2N � 1 4N � 2 4N 12 18 30 9 4

Table 3. The dual Coxeter number h for all simply connected gauge groups.

Each of the states |ki contains an even number of Grassmann operators and so

contributes to the Witten index with the same sign. We learn that in the regime

R ⌧ 1/|⇤|, where the theory is weakly coupled, the Witten index of SU(Nc) super

Yang Mills is given by

Tr (�1)F e��H = Nc

But now we are at liberty to take R as large as we like, safe in the knowledge that the

Witten index does not change. Indeed, the counting above agrees with the expectations

from discrete chiral symmetry breaking (6.8), although the physics underlying these Nc

states looks very di↵erent in the two regimes.

Other Gauge Groups

There is a similar story for other gauge groups G. The R-symmetry group of super

Yang-Mills Z2h where h is a group theoretic quantity known as the dual Coxeter number.

The value of h is shown for various groups G in Table 3. The fermionic condensate

(6.7) then spontaneously breaks

Z2h ! Z2

giving h distinct vacua. Similarly, one can compute the Witten index on T3 to find the

same result7

Tr (�1)F e��H = h

In fact, there is a further subtlety in the computation on T3. It turns out that the

Witten index depends on the global structure of the gauge group meaning that, for

example, the number of supersymmetric ground states for G = Spin(N) and G =

SO(N) are di↵erent. You can read more about this in Yuji Tachikawa’s lecture notes.

6.1.3 A Superpotential

Later in this section we will derive Wilsonian e↵ective actions for light degrees of

freedom. But for super Yang-Mills there are no light degrees of freedom. The theory

has mass gap, with the lightest states having mass around ⇠ |⇤|.

7The original Witten index paper contains a subtle mistake for Spin(N) gauge groups that was
corrected by Witten in a subsequent appendix, with further elaborations in this paper.
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Nonetheless, there is an interesting e↵ective action that we can write down. It doesn’t

involve any dynamical degrees of freedom and instead depends only the parameter

⇤. We’ve already seen that the R-charge of this parameter is R[⇤] = 2/3 and the

superpotential must have R-charge 2, which means that the only thing we can write

down is

We↵ = c⇤3 (6.12)

for some, as yet, undetermined constant c.

What’s the meaning of such an e↵ective action when it doesn’t contain any dynamical

fields? In fact, it’s just another way of capturing the gluino condensate (6.7). Here we

explain why.

First, recall how we compute expectation values in the path integral. We add a

source J(x) for the operator of interest. We then compute the path integral in the

presence of the source

Z[J ] =

Z
D(fields) eiSSY M exp

✓
i

Z
d4x J Tr��+ h.c.

◆
(6.13)

The expectation value is then given by

hTr�� i =
@ logZ

@J

����
J=0

Now let’s go back to the original action for super Yang-Mills, written in terms of

superfields (4.19)

SSYM = �

Z
d4x

Z
d2✓

i⌧

8⇡
TrW↵W↵ + h.c.

�

The lowest component of the chiral superfields is W ↵W↵ = �↵�↵+ . . .. But this means

that a source for the gluino bilinear naturally arises if we promote the parameter ⌧ to

be a chiral superfield with its full complement of components

⌧ = ⌧ +
p
2✓ ⌧ + ✓2F⌧

The source appears as the F-term: J = F⌧/8⇡.
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The low-energy e↵ective action is what we get when we do the path integral, so

Z[J ] = eiSe↵

To write the e↵ective action we again promote ⌧ to a chiral superfield. There can be

a complicated Kähler potential for ⌧ but this doesn’t concern us. (It will give terms

proportional to F⌧F †
⌧
but these will vanish when we set J = 0 in (6.13).) All we need

for our purposes is the contribution to Se↵ from an e↵ective superpotential

Se↵ �

Z
d4x d2✓ We↵ + h.c. =

Z
d4x

@We↵

@⌧
F⌧ + h.c.

The goal is to write down a We↵ that captures the right physics. Repeating the steps

above, we have

hTr�� i = 8⇡i
@Se↵

@F⌧

= 8⇡i
@We↵

@⌧

In this way, the e↵ective superpotential is simply a device to encode the value of the

gluino condensate.

With these path integral gymnastics under our belt, let’s now turn to the superpo-

tential (6.12). As we’ve seen, it’s the only thing that we can write down consistent

with the (anomalous) R-symmetry. In terms of ⌧ is is

We↵ = cµ3e2⇡i⌧/Nc ) hTr�� i =
16⇡2c

Nc

⇤3

in agreement with our previous result (6.8). To match the normalisation (6.9), the

coe�cient c should be

c = Nc (6.14)

Note that We↵ hasn’t taught us anything new about the theory. In particular, there’s

nothing to fix the coe�cient c and we will have some work to do to make sure that

it’s non-vanishing. However, it will turn out that We↵ will be useful in making contact

with the results that we will derive from SQCD.

6.2 A First Look at SQCD

Now we add matter. We will consider supersymmetric QCD: SU(Nc) gauge theory

coupled to Nf massless flavours. In superspace, the Lagrangian is

LSQCD = Tr

Z
d2✓

i⌧

8⇡
W ↵W↵ + h.c.

�
+

Z
d4✓

NfX

i=1

h
�†

i
e2V�i + �̃i †e�2V �̃i

i

The action written in component fields can be found in (4.21) .
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Each flavour consists of two chiral multiplets, � in the fundamental representation

Nc and �̃ in the conjugate representation N̄c. The one-loop beta function (6.1) is

b0 = 3Nc �Nf

For Nf � 3Nc, the theory is non-renormalisable and infra-red free. Here the low-energy

physics is easy. We want to understand what happens when Nf < 3Nc.

6.2.1 Symmetries

The first step in understanding any quantum field theory is to get the symmetries nailed

down. Let’s start with the classical symmetries. These are:

SU(Nc) SU(Nf )L SU(Nf )R U(1)B U(1)A U(1)R0

� ⇤ ⇤ 1 1 1 0

�̃ ⇤ 1 ⇤ �1 1 0

 ⇤ ⇤ 1 1 1 �1

 ̃ ⇤ 1 ⇤ �1 1 �1

� adj 1 1 0 0 1

Some obvious comments to make sure that we’re all on the same page. The first column

denotes the SU(Nc) gauge symmetry; all others are flavour symmetries. For the non-

Abelian symmetries, ⇤ denotes the fundamental, ⇤ denotes the anti-fundamental, and

1 means that it is a singlet.

(As an aside: the symmetries above are actually incomplete for Nc = 2 because

the fundamental 2 is pseudoreal and so equivalent to the 2̄. This gives an enhanced

SU(2Nf ) symmetry. We won’t need this subtlety in what follows.)

Both U(1)B and U(1)A are flavour symmetries, as evidenced by the fact that the

scalars and fermions in the same multiplet transform the same way. Meanwhile, U(1)R0

is an R-symmetry, meaning that the component fields in a chiral multiplet transform

as

R[fermion] = R[boson]� 1 (6.15)

We’ve called this symmetry U(1)R0 rather than U(1)R for a reason that will become

clear shortly. The choice of R[�] = 0 is somewhat arbitrary since we could always

define a new R-symmetry by combing it with any amount of the global A-symmetry.

The important point is that the R-charge of the scalars � and fermions  di↵er by 1.

Note that the gluino � always has charge +1 under the R-symmetry.
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Not all the classical symmetries survive quantisation. U(1)B is left unscathed as it

is vector-like, but both U(1)A and U(1)R0 su↵er chiral anomalies. As we saw in (5.22),

the current conservation equation becomes

@µj
µ =

A

32⇡2
TrFµ⌫

?F µ⌫ with A =
X

fermions

qI(R)

where q is the charge and R the representation under SU(Nc). Again, it’s worth

stressing that the complex scalars � and �̃ do not contribute to the anomaly. It is just

the fermions that have this subtlety. For the two symmetries U(1)A and U(1)R0 , we

have

AA = Nf ⇥ 1 +Nf ⇥ 1 = 2Nf (6.16)

and

AR0 = Nf ⇥ (�1) +Nf ⇥ (�1) + 2Nc ⇥ 1 = 2(Nc �Nf )

However, we can form a linear combination of these currents that remains conserved.

This is given by

R = R0 +
Nf �Nc

Nf

A

This is an R-symmetry, rather than a flavour symmetry, because the chiral multiplet

components still obey (6.15) and R[�] = 1. (The convention of fixing the normalisation

by insisting that R[�] = 1 comes with the unhappy side e↵ect that other charges are

fractional.) We can now draw up a table of the true quantum symmetries of the theory:

SU(Nc) SU(Nf )L SU(Nf )R U(1)B U(1)R

� ⇤ ⇤ 1 1 Nf�Nc

Nf

�̃ ⇤ 1 ⇤ �1 Nf�Nc

Nf

 ⇤ ⇤ 1 1 �
Nc
Nf

 ̃ ⇤ 1 ⇤ �1 �
Nc
Nf

� adj 1 1 0 1

However, this misses some crucial information. This is because, as we’ve seen previ-

ously, it’s useful to keep the anomalous symmetry as a spurious symmetry. The full

symmetry structure of the theory should be thought of as reinstating the anomalous

U(1)A, but with a transformation on ⇤ showing that it’s not a true symmetry of the

theory:
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SU(Nc) SU(Nf )L SU(Nf )R U(1)B U(1)A U(1)R

� ⇤ ⇤ 1 1 1 Nf�Nc

Nf

�̃ ⇤ 1 ⇤ �1 1 Nf�Nc

Nf

⇤b0 1 1 1 0 2Nf 0

Some of the previous information is hidden in this table. In particular, the R-symmetry

charge is that of the scalar component of the chiral multiplet and you have to remember

that R[fermion] = R[boson] � 1, together with the fact that R[�] = 1. The final row

shows how the anomalous symmetries act on ⇤b0 ⇠ ei#. We see that ⇤ transforms

only under the anomalous U(1)A, with the charge given by (6.16). We’ll have cause to

return to this table a number of times in what follows.

6.2.2 Runaway for Nf < Nc

The dynamics of SQCD will depend crucially on the ratio Nf/Nc. We start with small

number of colours

Nf < Nc

We already discussed the classical theory back in Section 4.3. The theory has a moduli

space of vacua M parameterised by the N2
f
gauge invariant, massless meson fields

M i

j
= �̃j�

i

At a generic point on the moduli space M, the gauge group is spontaneously broken

to

SU(Nc) ! SU(Nc �Nf ) (6.17)

The mesons are neutral under SU(Nc�Nf ) (otherwise they would break it further) so,

at the classical level, we have massless SU(Nc�Nf ) gauge bosons essentially decoupled

from the massless mesons. We want to know what happens in the quantum theory.

We already know what will happen to the SU(Nf � Nc) gauge bosons: they will

confine and get a mass. That leaves us with the mesons. It’s useful to start by asking:

what could possibly happen? At the crudest level, the massless fields could remain

massless, or they too could get a mass. If the latter happens, it would manifest itself in

terms of a potential generated on the moduli space. And this potential would appear

in the form of a superpotential. So we should check if it’s possible that quantum

corrections generate a superpotential that lifts the moduli space.
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Such a superpotential should be written in the terms of the low-energy meson fields

and must respect the various symmetries of the problem. The meson field itself trans-

forms in the (⇤,⇤) of SU(Nf )L ⇥ SU(Nf )R, so to get something invariant we should

consider detM . Under the remaining U(1) symmetries, the relevant charges are then

U(1)B U(1)A U(1)R

detM 0 2Nf 2(Nf �Nc)

⇤3Nc�Nf 0 2Nf 0

Recall that the superpotential should have R-charge R[W ] = 2 and must be neutral

under U(1)A and U(1)B. There is a unique combination that is allowed by symmetries

We↵ = C

✓
⇤3Nc�Nf

detM

◆ 1
Nc�Nf

(6.18)

with some coe�cient underdetermined coe�cient C = C(Nc, Nf ).

We’ve learned that symmetries allow for a superpotential only of the specific form

(6.18). But is it actually generated? In other words, is C 6= 0? There is a general

rule of thumb in quantum field theory that anything that isn’t prohibited by some

symmetry or other principle always occurs. The superpotential (6.18) is constructed to

be invariant under all symmetries. It is also physically sensible, with a positive power

of ⇤ reflecting the fact that it could be generated by strong coupling e↵ects. Indeed, it

turns out that it is generated with the coe�cient C(Nc, Nf ) given by

C(Nc, Nf ) = Nc �Nf

The result (6.18) is known as the A✏eck-Dine-Seiberg, or ADS, superpotential. We’ll

give an incomplete explanation of how to determine C(Nc, Nf ) in Section 6.2.4.

Note that if we set Nf = 0, then the ADS superpotential agrees with our previ-

ous result (6.12) that captures the gluino condensate. However, when Nf � 1, the

superpotential We↵ is a function of dynamical fields M and tells us the fate of those

fields.

First, let’s understand the physics of the superpotential We↵ . The moduli space of

vacua is a large dimensional space but we can get a sense for what happens if we think

of detM ⇠ MNf . The superpotential is then We↵ ⇠ M�Nf/(Nf�Nc). If we ignore the

Kähler potential, then the scalar potential takes the form

V (M,M †) ⇠

����
@We↵

@M

����
2

! 0 as |M | ! 1
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Figure 9. The runaway potential on the moduli space for Nf < Nc massless flavours.

This is rather striking behaviour. Classically we had an infinite number of vacua,

forming the moduli space M. Quantum mechanically we have none! The potential is

non-zero everywhere, asymptoting to V ! 0 only as M ! 1 as shown schematically

in Figure 9. This is known as a runaway potential. We have a quantum theory with no

ground state. This is not something that we saw in non-supersymmetric QCD. Indeed,

it should be clear that it arises in SQCD only because of the existence of massless

scalars and their moduli space.

There are a number of caveats regarding the form of the potential, all deriving from

the fact that we don’t have good control over the Kähler potential which, as we know

from (3.29), a↵ects the actual potential V (M). In some circumstances, it may well be

possible that V (M) does not increase monotonically towards the interior of the moduli

space but has some local, non-supersymmetric, minima at V (M) 6= 0. If so, these

would be metastable ground states, with some finite lifetime before tunnelling out and

rolling down to infinity.

6.2.3 Adding Masses

The runaway behaviour arises for massless matter. What happens if we add a mass

term? This arises from the addition of a superpotential to the our original theory,

Wmass = mj

i
Q̃jQ

i

with mi

j
the mass matrix. (Sorry for the proliferation of “M” variables. To remind

you, M is the meson, m is the mass, and M is the moduli space!) We can always use

the SU(Nf ) symmetries to diagonalise the mass matrix

m = diag(m1, . . . ,mNf
)
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However, in what follows we won’t lose anything by considering a general m.

We care about the low-energy physics. We can again play the same game to determine

the superpotential using symmetries and holomorphy. In addition to M and ⇤, we

now also have the mass matrix m. The transformation properties of the fields and

parameters are

SU(Nf )L SU(Nf )R U(1)B U(1)A U(1)R

M ⇤ ⇤ 0 2 2(Nf�Nc)
Nf

⇤3Nc�Nf 1 1 0 2Nf 0

m ⇤ ⇤ 0 �2 2Nc
Nf

Again, we can ask: what possible superpotentials are consistent with the symmetry?

The answer is that we can have any function

We↵ =

✓
⇤3Nc�Nf

detM

◆ 1
Nc�Nf

f(x)

where f(x) is any holomorphic function of the unique holomorphic variable x that is

invariant under all symmetries

x = Tr(mM)

✓
detM

⇤3Nc�Nf

◆ 1
Nc�Nf

We can pin down the function f(x) by taking various limits. In the limit m ! 0 and

⇤ ! 0, we must have f(x) = C + x so the superpotential is just the sum of the mass

term and the dynamically generated superpotential (6.18),

We↵ = (Nc �Nf )

✓
⇤3Nc�Nf

detM

◆ 1
Nc�Nf

+ Tr(mM) (6.19)

But this limit encompasses all possible values of x, meaning that this is the exact

superpotential.

What is the physics now? We can start by looking at the case Nf = 1 where there is

a just a single complex meson M = �̃�. The superpotential now has a critical point,

@We↵

@M
= 0 ) MNc =

⇤3Nc�1

mNc�1
(6.20)

This is an interesting result. First, there is now a supersymmetric minimum, with the

potential sketched in Figure 10. Moreover, there are actually Nc such minima coming
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Figure 10. The rescued runaway, with a supersymmetric minimum when mass is added.

from taking the N th
c

root in (6.20). This is to be expected since it coincides with the

Witten index for super-Yang Mills. As the mass m ! 0, the minima move o↵ to infinity

in field space. In the opposite regime, |m| � |⇤|, the flavour decouples and the theory

reduces to super Yang-Mills.

Decoupling

We can look more closely at what happens in the limit |m| � |⇤|. For simplicity, we’ll

take m real in what follows. Clearly this theory should reduce to super Yang-Mills but,

to make this precise, we need to be more careful about the strong coupling scales. In

particular, when we try to decouple some heavy degrees of freedom like this, there are

two strong coupling scales at play. This is because the running of the gauge coupling

happens in two steps:

• E > m: Here the gauge coupling runs with the beta function b0 = 3Nc � 1 that

is appropriate for Nf = 1 flavours. We have

1

g2(µ)
=

1

g20
�

b0
(4⇡)2

log

✓
⇤2

UV

µ2

◆

If we continued this running to energies lower than m then we would hit strong

coupling at a scale that we will call

⇤old = ⇤UV e
�8⇡2

/b0g
2
0 = me�8⇡2

/b0g
2(m)

where, in the second equality, we’ve used the fact that ⇤ is an RG invariant. This

⇤old is the scale ⇤ that appears in the formulae (6.19) and (6.20) above. However,

when the chiral multiplets have a mass, it is better thought of as something of

a counterfactual scale. The RG running never gets as low as ⇤old < m because

something changes along the way . . .
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• E < m: Now the massive chiral multiplets decouple and no longer contribute to

the beta function which becomes that of pure super Yang-Mills, with b00 = 3Nc.

We can continue the running of the gauge coupling with this new beta function,

now starting at the scale m

1

g2(µ)
=

1

g2(m)
�

b00
(4⇡)2

log

✓
m2

µ2

◆

Now it hits strong coupling at a scale that we will call

⇤new = me�8⇡2
/b

0
0g

2(m)

This is the actual scale at which the gauge coupling becomes strong.

Comparing the two results above, we have the matching condition

✓
⇤old

m

◆b0

=

✓
⇤new

m

◆b
0
0

(6.21)

In principle there can be additional multiplicative factors that arise from the matching

at scale m at higher loops. These go by the name of threshold e↵ects. One can always

choose a regularisation scheme in which they vanish.

The result (6.21) can be used generally. For our specific purposes, we decouple from

the theory with Nf = 1 to pure super Yang-Mills, and this equation reads

⇤3Nc�1
old m = ⇤3Nc

new

In this case, ⇤new > ⇤old. This is because the presence of matter slows the running of

the coupling. When that matter is removed, the running speeds up and so raises the

strong coupling scale.

We can now evaluate the formulae (6.19) and (6.20) in terms of the true, low-energy

scale ⇤new. First we determine the expectation value M in the vacuum (6.20). Then

we substitute this into the superpotential (6.19) at the vacuum. A short calculation

shows that

We↵ = Nc ⇤
3
new

This, of course, we’ve seen before. It is precisely the superpotential (6.12) for super

Yang-Mills, now with the strong coupling scale ⇤new. Even the coe�cient (6.14) comes

out correctly. In this way, the A✏eck-Dine-Seiberg superpotential correctly predicts

the value of the gluino condensate in super Yang-Mills.
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A General Mass Matrix

We can repeat the calculation above for Nf flavours and a general mass matrix mij.

We just need to find the critical point

@We↵

@M ij
= 0

of the superpotential (6.19). To do so, we should Jacobi’s formula

�(detM) = tr(Adj(M) �M) (6.22)

with Adj(M) the adjugate matrix. If M is invertible then this coincides with the more

familiar �(detM) = (detM) tr(M�1�M). Assuming that M is indeed invertible, we

find that the critical point obeys

M i

j
= (m�1) i

j

✓
⇤3Nc�Nf

detM

◆ 1
Nc�Nf

(6.23)

We take the determinant of both sides to find

detM =
1

detm

✓
⇤3Nc�Nf

detM

◆ Nf
Nc�Nf

) M i

j
= (m�1) i

j

�
detm⇤3Nc�Nf

�1/Nc

Again, we see that the vacua sit at a position inversely proportional to the mass,

ensuring that they move o↵ to infinity as m ! 0. The N th
c

root on the right-hand side

provides the phase ambiguity that gives rise to the Nc ground states expected from the

Witten index.

6.2.4 The Potential at Weak Coupling

There is something special that happens when Nf = Nc � 1. This is because, with

this number of flavours, at a generic point on the moduli space M the gauge group is

generically completely broken.

This is important. For any Nf < Nc � 1, there is always a residual unbroken

SU(Nc � Nf ) non-Abelian gauge group which means that the theory is necessarily

strongly coupled. However, for Nf = Nc � 1 the theory can be weakly coupled.

However, weak coupling isn’t guaranteed. For simplicity, let’s consider the point on

the moduli space where all scalars have the same expectation value (4.37),

�i

a
= �̃† i

a
=

0

BB@

v . . . 0 0
. . .

...

0 . . . v 0

1

CCA (6.24)
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The Higgs mechanism halts the running of the gauge coupling at the scale v of breaking,

so in the infra-red g2 = g2(v). This is small provided that

v � ⇤

In other words, we can trust our weakly coupled intuition when we are far out on the

Nf = Nc � 1 moduli space, with |M | ⇠ v2 � ⇤. This means that, in this regime,

we should be able to compute the A↵eck-Dine-Seiberg superpotenial in some more

traditional manner.

The form of the superpotential itself tells us where to look. When Nf = Nc � 1,

(6.18) becomes

We↵ = C?

⇤2Nc+1

detM
(6.25)

with C? = C(Nc, Nc � 1). This is proportional to ⇤b0 ⇠ e�8⇡2
/g

2+i#, which, as we saw

in (5.32), is the characteristic signature of an instanton .

This gives a window of opportunity. Until now, our results for the quantum dynam-

ics have relied on symmetries and, crucially, holomorphy. Supersymmetry, of course,

bought us the latter. But this approach can only get us so far and, as we have stressed,

there is nothing to fix the overall constant C. In particular, we need to check that it

doesn’t vanish. This requires us to roll up our sleeves and do a weak coupling, instanton

computation. And the theory with Nf = Nc � 1 is the place to do it. The calculation

is rather technical and we won’t describe it here8. But the result is

C? = 1

Decoupling: From Weak to Strong Coupling

The single coe�cient C? = 1 for Nf = Nc�1 is su�cient for us to derive the coe�cient

C(Nc, Nf ) for all other values of Nf < Nc. We do this by decoupling arguments.

Let’s start with the theory with Nf = Nc � 1 flavours. We will give a large mass m

to k of these flavours. We then expect to flow down to the theory with

N 0
f
= Nc � (k + 1) (6.26)

We want to derive the e↵ective superpotential for this new theory.

8The instanton calculation was first done by A✏eck, Dine and Seiberg who showed that C? 6= 0.
The exact result C? = 1 was first derived by Finnell and Pouliot.
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Our starting point is the superpotential (6.19) for Nf = Nc � 1

W =
⇤2Nc+1

old

detM
+ Tr(mM) (6.27)

where now the coe�cient C? = 1 in front of the first term should be viewed as fixed by

the weak-coupling instanton calculation. Note that we’ve added the subscript “old” to

the strong coupling scale in anticipation of the fact that we will integrate out matter

to flow to a new theory with N 0
f
flavours. We give a mass matrix of the form

m = m

 
0 0

0 1k

!

The critical point @W/@M i

j
= 0 solves, from (6.23),

mM =
⇤2Nc+1

old

detM
1Nf

(6.28)

We should pause to understand what this is telling us. The meson matrix M takes the

form

M =

 
M̃ 0

0 Z

!

where Z is a k ⇥ k matrix and M̃ is a (Nf � k) ⇥ (Nf � k) matrix. Note that the

o↵-diagonal terms in M must vanish by the equation of motion (6.28).

At first glance, it looks tricky to solve the matrix equation (6.28) because of all those

zeroes in the upper left corner of m make it di�cult for the left-hand side to be equal

to the identity matrix 1Nf
. But the physics is actually clear. The massive k flavours

in the matrix Z have an expectation value that’s stabilised as Z ⇠ 1/m. Meanwhile,

the remaining massless flavours in the matrix M̃ have a runaway behaviour M̃ ! 1

as we’ve seen before.

Here our interest is subtly di↵erent. We will integrate out the heavy degree of

freedom Z. This means that we solve (6.28) only for Z and substitute it back in to

get an e↵ective action for M̃ . This e↵ective action will then tell us that M̃ su↵ers a

runaway, which we knew anyway. But our goal is only to find the overall coe�cient

C(Nc, Nf ) in front of this runaway superpotential.
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Focussing on the k ⇥ k part of (6.28) gives the matrix equation

mZ =
⇤2Nc+1

old

det M̃ detZ
1k

Taking traces and determinants gives

mTrZ =
k⇤2Nc+1

old

det M̃ detZ
and (detZ)k+1 =

✓
⇤2Nc+1

old

m det M̃

◆k

If we substitute this back into the original superpotential (6.27), then we get a super-

potential purely for the M̃ mesons. It is

W = (k + 1)

✓
⇤2Nc+1

old mk

det M̃

◆ 1
k+1

From (6.26), we know that k + 1 = Nc � N 0
f
. Meanwhile, the kind of RG matching

arguments that led us to (6.21) reveal that the numerator is the strong coupling scale

associated to SU(Nc) with N 0
f
massless flavours

⇤
3Nc�N

0
f

new = ⇤2Nc+1
old mk

The upshot is that we reproduce the A✏eck-Dine-Seiberg superpotential for the light

meson fields as expected,

W = (Nc �N 0
f
)

 
⇤

3Nc�N
0
f

new

det M̃

! 1
Nc�N0

f

But with the added bonus that we’ve derived the long-promised coe�cient C(Nc, Nf ) =

Nc �Nf .

6.3 A Second Look at SQCD

We’ve seen that the moduli space of vacua is lifted for Nf < Nc. Now we look at what

happens for higher Nf .

Our first observation is that the superpotential (6.18)

We↵ = C

✓
⇤3Nc�Nf

detM

◆ 1
Nc�Nf

is the only one allowed by the symmetries, regardless of Nf . But it makes no sense for

Nf � Nc. First, it clearly diverges when Nf = Nc. Moreover, for Nf < Nc < 3Nc it

has negative powers of ⇤, which means that the superpotential scales as e+1/g2 (with

some coe�cient). But this diverges as g2 ! 0 and so isn’t compatible with the weak

coupling limit. In particular, we know that if we set g2 = 0 then the theory is simply

free and nothing can be going on. This rules out the possibility of a superpotential.
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When Nf < 3Nc, the superpotential does have a positive power of ⇤. But this

corresponds to the situation where b0 < 0 and the theory is infra-red free and no

superpotential can be generated. (Another way of saying this is that the putative

strong coupling scale scale ⇤ is actually bigger than the UV cut-o↵ and shouldn’t be

trusted.) We’ll look at this theory in more detail below.

All of this means that for Nf � Nc there is no possible superpotential that can arise.

The moduli space of vacua survives and, correspondingly, there are necessarily massless

degrees of freedom. Our goal is to understand them.

We will start in this section by looking at two special cases: Nf = Nc andNf = Nc+1.

Both exhibit interesting phenomena9. In later sections we’ll then look at higher Nf .

6.3.1 A Deformed Moduli Space for Nf = Nc

Recall that for Nf = Nc, the moduli space is parameterised by mesons M i

j
= �̃j�i and

baryons

B = �1
a1
. . .�Nc

aNc
✏a1...aNc and B̃ = �̃a1

1 . . . �̃
aNc
Nc
✏a1...aNc

These fields, gauge invariant composites, and parameters transform under the following

symmetries:

SU(Nf )L SU(Nf )R U(1)B U(1)A U(1)R

� ⇤ 1 1 1 0

�̃ 1 ⇤ �1 1 0

M ⇤ ⇤ 0 2 0

B 1 1 Nc Nc 0

B̃ 1 1 �Nc Nc 0

⇤2Nc 1 1 0 2Nc 0

The classical moduli space is defined as an algebraic variety, with a single constraint

(4.42) between the fields

detM � B̃B = 0 (6.29)

9The original paper is by Nati Seiberg, “Exact Results on the Space of Vacua of Four Dimensional
SUSY Gauge Theories”.
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Figure 11. The singular space xy = 0 on the left and the smooth space xy = ✏2 on the right.

This is a cartoon for the moduli space of SQCD when Nf = Nc. On the left the classical,

singular modular space; on the right, the smooth quantum moduli space.

We know that this can’t be lifted by a superpotential. But it turns out that the space

is deformed. The quantum moduli space satisfies the constraint

detM � B̃B = ⇤2Nc (6.30)

There are a number of questions that spring to mind. First, what is the meaning of

this deformation? And second, how do we know that it happens?

Let’s start by answering the first of these. The mathematics is all about of the

singularities of the space, the physics all about their meaning. We can start by looking

at a much simpler example. Consider the algebraic variety defined by

xy = 0

with x, y 2 C. This is obviously the intersection of two complex lines. (The complex

line, or often just “line” is the name given by algebraic geometers to what you used to

think of as a plane.) The space is obviously singular at the origin x = y = 0. The way

to see this mathematically is to look a the tangent vectors, �x and �y. These obey

�x y + x�y = 0 (6.31)

For any point other than the origin, there is a unique complex tangent vector. For

example, if x 6= 0 then the tangent vector is �x since we necessarily have �y = 0. But

at the origin there is no constraint on �x and �y which is telling us that tangent vector

is ill-defined and, correspondingly, the space is singular.
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We can compare this to the deformed variety

xy = ✏2

Again, this is a space with one complex dimension and, far from the origin, looks much

like xy = 0. But the origin x = y = 0 is no longer part of this space and this means

that the singularity has now been removed. Tangent vectors must still obey (6.31) but

now there is a unique tangent vector for each point obeying xy = ✏2. The singular and

deformed spaces are shown in Figure 11.

This simple example captures the key features of the moduli space M. The classical

moduli space (6.29) is singular. This is obviously true at the origin M = B̃ = B = 0,

but more generally it is singular on any submanifold where B̃ = B = 0 and the meson

matrix has rank(M)  Nc�2. In contrast, the quantum moduli space (6.30) is smooth.

All singularities have been removed. What is this telling us?

As we’ve seen in numerous examples in Section 4.3, singularities in the moduli space

signify the existence of new massless degrees of freedom. In the present case, there is no

mystery to this: the new massless degrees of freedom are gauge bosons. In particular,

when rank(M) = k  Nc � 2, an SU(k) gauge group is unbroken.

But these singularities are removed in the quantum theory. This tells us that the

additional particles at the origin of moduli space that were classically massless have

now gained a mass. This is the famous mass gap problem! Here we see that the a

complicated quantum e↵ect – namely the fact that gauge bosons get a mass through

strong coupling – arises in a surprising geometric manner.

Now for the second question: how do we know that the quantum deformation of

the moduli space takes place? The first thing to note is that it’s consistent with the

symmetries and, as we’ve noted before, anything that isn’t prohibited typically occurs.

Of course, you might be forgiven for not being aware that deforming the constraint

through quantum e↵ects was even something that could happen, but the discussion

above about the meaning of removing singularities will hopefully serve to allay such

doubts. However, we should strive to find more convincing evidence than this. And,

indeed, there are two very compelling reasons to believe that the deformation happens.

6.3.2 ’t Hooft Anomaly Matching

Our picture of physics described by the quantum modified constraint assumes that the

only massless degrees of freedom are the mesons and baryons. There are a number

of interesting constraints that this picture must satisfy. These come from ’t Hooft

anomalies.
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The original global symmetry of the theory is

GF = SU(Nf )L ⇥ SU(Nf )R ⇥ U(1)B ⇥ U(1)R

The ’t Hooft anomalies must be matched at each point on the quantum moduli space.

At di↵erent points, the global symmetry is broken to some subgroup, GF ! HF and

this surviving subgroup changes as we move around M. But importantly, the point

M = B = B̃ = 0 where the full global symmetry GF would be completely unbroken

has been removed by the quantum deformation (6.30). There are, however, two points

where the surviving symmetry HF is maximal and anomaly matching is most stringent.

These are

• B = B̃ = 0 with M = ⇤21Nc . At this point, the surviving global symmetry group

is

HF = SU(Nf )diag ⇥ U(1)B ⇥ U(1)R (6.32)

This is not dissimilar to the chiral symmetry breaking pattern in non-supersymmetric

QCD

• M = 0 with B̃ = B = ⇤Nc . At this point, the surviving global symmetry group

is

HF = SU(Nf )⇥ SU(Nf )⇥ U(1)R (6.33)

This is a symmetry breaking pattern that doesn’t (we think!) occur in non-

supersymmetric QCD. The non-Abelian chiral symmetry is unbroken but, in

contrast, baryon number is broken.

We do anomaly matching at each of these points in turn. For what follows, we will need

to frequently turn to the table of symmetries that we constructed at the beginning of

this subsection.

The Point with B̃ = B = 0

We need to match anomalies for symmetries, and any mixed anomalies between sym-

metries, for HF given in (6.32). We’ll do each in turn, starting with the non-Abelian

SU(Nf )diag symmetry.

SU(Nf )3diag: In the UV, we have the quarks  and  ̃. But these cancel in their con-

tribution to the anomaly, giving AUV = 0. In the infra-red, only the meson carries

non-Abelian charge. Under the diagonal SU(Nf )diag it transforms in ⇤⌦⇤ = adj� 1.
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But the adjoint is a real representation and doesn’t contribute to the anomaly, so we

have AIR = 0.

SU(Nf )2diag · U(1)B: In the UV, the quarks  and  ̃ carry opposite U(1)B charge and

so cancel in their contribution, giving AUV = 0. In the IR, the mesonic fermions are

uncharged under U(1)B so also give AIR = 0.

SU(Nf )2diag · U(1)R: This is more interesting. We need to remember that the charges

listed in the table are for bosons in the chiral multiplet, with R[fermion] = R[boson]�1.

In the UV, we have

AUV = Nc ⇥ I(⇤)⇥ (�1) +Nc ⇥ I(⇤)⇥ (�1) = �2Nc

where the factors of Nc are because each quark has Nc colours. Meanwhile, in the IR,

the contribution from the fermionic mesons is

AIR = I(adj)⇥ (�1) = �2Nf

Now there is no contribution from colour degrees of freedom because the mesons are

confined. Instead there is only the SU(Nf )diag group theory factor I(adj). Nonetheless,

we have AUV = AIR because we are working in the theory with Nf = Nc.

U(1)2
B
· U(1)R: In the UV, the quarks contribute

AUV = NcNf ⇥ (+1)2 ⇥ (�1) +NcNf ⇥ (�1)2 ⇥ (�1) = �2NcNf

In the IR, only the fermionic baryons contribute. These give

AIR = (Nc)
2
⇥ (�1) + (�Nc)

2
⇥ (�1) = �2N2

c

Again, AUV = AIR.

U(1)3
R
: This time we have to remember that there are N2

c
� 1 gluinos with charge

R[�] = +1 in the UV. These didn’t contribute to any of the anomalies above, but they

do now. Including both gluinos and quarks, we have

AUV = (N2
c
� 1)⇥ (+1)3 +NcNf ⇥ (�1)3 +NcNf ⇥ (�1)3 = N2

c
� 2NfNc � 1

In the IR, both mesons and baryons contribute to the anomaly, all with R-charge �1.

This is the first time that all the IR fields contributed and this means that it’s the first

time we need to take into account the constraint (6.30). This is a constraint not just
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on the expectation values, but also on the fluctuations of the fields. This means that

the number of massless IR fields is dimM = N2
f
+ 2 � 1 with the +2 the baryons B

and B̃ and the �1 coming from the constraint. The upshot is that the IR anomaly is

AIR = dimM⇥ (�1)3 = �N2
f
� 1

Again, we see the anomaly matches with the UV.

There are two remaining anomalies, U(1)3
B
and U(1)2

R
· U(1)B. You can check that

both have AUV = AIR = 0 because U(1)B is vector-like.

In addition, we can match mixed U(1)-gravitational anomalies. This simply means

that the sum of U(1) charges must be the same in the UV and IR. However, in the

present case these don’t really give anything new. For U(1)B, we have
P

qB = 0 in both

UV and IR. For U(1)R all charges are qR = ±1 so
P

qR =
P

q3
R
and this reduces the

U(1)3
R
calculation that we did above. When we consider other theories the matching

of mixed gauge-gravitational anomalies will give more compelling results.

The Point with M = 0

We now need to match anomalies for HF given in (6.33). The only real di↵erence from

the calculation above lies in the SU(Nf )3L anomaly. In the UV. In the UV, just the

quarks  contribute and give

AUV = Nc ⇥ A(⇤) = Nc

In the IR, the N2
f
mesons contribute. We have

AIR = Nf ⇥ A(⇤) = Nf

Again, AUV = AIR because we’re working in the theory with Nf = Nc. The anomaly

matching for SU(Nf )2L ·U(1)R works in much the same way, giving AUV = AIR = �Nc.

The anomaly matching for U(1)3
R
works in the same way as we saw above.

The calculations of anomaly matching are straightforward. But the agreement is

not entirely trivial. In particular, it’s clear that it works only when Nf = Nc. As we

proceed, we’ll see anomaly matching working in more intricate ways.

Decoupling

There is a second way to see the need for the quantum deformation of the moduli space.

This uses a trick that we’ve seen before: we look at the fate of the theory when we give

one flavour a mass and decouple it.
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It’s not immediately obvious how to do this since, as we saw above, we don’t have

a superpotential to start with! The trick is to view the constraint (6.30) itself as a

superpotential

W = X
⇣
detM � B̃B � ⇤2Nc

⌘

where we’ve introduced a new chiral superfield X whose sole role is to act as a Lagrange

multiplier, imposing the constraint. We now add a mass for just one flavour. The

superpotential is

W = X
⇣
detM � B̃B � ⇤2Nc

old

⌘
+ Tr(mM) (6.34)

We’ve added the superscript “old” appears because we’re playing an integrating out

game. We’re going to look at what happens when |m| � |⇤old| so that we have one

massive flavour and Nf = Nc � 1 massless flavours. In this case, we should be able to

re-derive the appropriate A✏eck-Dine-Seiberg superpotential. Let’s see how it works.

The rest of the calculation is very similar to the decoupling that we saw in previous

sections. The critical point for the mesons sits at @W/@M i

j
= 0, or

mM = �X detM 1Nf
(6.35)

If we turn on a mass term for just the final N th
f

flavour, with m = diag(0, . . . , 0,m).

The meson fields take the form

M =

 
M̃ 0

0 Z

!

with Z = M
Nf

Nf
the final flavour and the o↵-diagonal terms set to zero at the critical

point (6.35). The equation arising from @W/@Z in (6.35) tells us that

X = �
m

det M̃

Meanwhile, the critical points for B and B̃ are

@W

@B
= �XB̃ = 0 and

@W

@B̃
= �BX = 0

which, since X 6= 0, means that we must have B̃ = B = 0. So far Z is undetermined,

but this is fixed by the equation of motion for X which, of course, is simply the

constraint itself. It now reads

Z det M̃ = ⇤2Nc
old
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We now substitute this back into the superpotential (6.34). Only the final Tr(mM) =

mZ term contributes and gives

W =
⇤2Nc

old m

det M̃
=

⇤2Nc+1
new

det M̃

with the now familiar RG matching giving ⇤2Nc+1
new = ⇤2Nc

old m. This we recognise as

the A✏eck-Dine-Seiberg superpotential (6.25) in the case Nf = Nc � 1 (with even

the coe�cient correct). Notice that the quantum deformation of the constraint was

necessary for us to reproduce the known physics when we integrate out massive flavours.

This is our first piece of evidence (beyond the symmetries) that the deformation actually

occurs.

6.3.3 Confinement Without �SB for Nf = Nc + 1

The case of Nf = Nc + 1 also exhibits some rather startling behaviour and is worth

exploring in some detail. Recall from Section 4.3 that, in addition to the mesons M i

j
,

we now have Nf baryons of each type

Bj = ✏ji1...iNc
Bi1...iNc and B̃j = ✏ji1...iNc B̃i1...iNc

This satisfy the constraints (4.43)

Adj(M)i
j
= BiB̃j and M i

j
Bj = M i

j
B̃i = 0 (6.36)

Recall that if the adjugate matrix Adj(M) is invertible then it is given by Adj(M) =

(detM)M�1. We can gather the various gauge fields together to list their symmetries

in a now-familiar table

SU(Nf )L SU(Nf )R U(1)B U(1)A U(1)R

� ⇤ 1 1 1 1
Nf

�̃ 1 ⇤ �1 1 1
Nf

M ⇤ ⇤ 0 2 2
Nf

B ⇤ 1 Nc Nc
Nc
Nf

B̃ 1 ⇤ �Nc Nc
Nc
Nf

⇤2Nc�1 1 1 0 2Nf 0

As we’ve already seen, there can be no superpotential generated on the moduli space.

But, this time, there can be no quantum deformation of the constraints either! There

is no possibility consistent with the symmetries and various weakly coupled limits. Our

quantum moduli space has singularities.
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What are we to make of this? As we’ve seen in several examples, the singularities

signify new massless degrees of freedom. Classically, these degrees of freedom are gauge

bosons. It’s tempting to conclude that the singularities in the quantum theory are

telling us that the gauge bosons are free at the origin of the moduli space. However,

it turns out that this is not the case. Instead, the quantum interpretation of the

singularities is rather di↵erent.

In fact an obvious quantum interpretation suggests itself if we assume that the theory

confines. This means that the low-energy fields are necessarily mesons and baryons

which, in general, are constrained by (6.36). Geometrically, the singularities of M

arise when the fluctuations of M , B and B̃ are no longer restricted to lie on M.

Physically, this translates into the suggestion that the singularities of M might be due

to unconstrained mesons and baryons. In particular, it would suggest that at the origin

of moduli space M = B = B̃, we should think of the physics as described by free,

massless mesons and baryons.

This interpretation of the singularity is rather remarkable, not least because we would

have confinement without the accompanying chiral symmetry breaking. At the origin

of moduli space, the full chiral symmetry

GF = SU(Nf )L ⇥ SU(Nf )R ⇥ U(1)B ⇥ U(1)R

is unbroken. Famously, confinement without chiral symmetry breaking is not possible

in QCD. (We sketched the argument in Section 5.2.3.) The suggestion is that this does

happen in SQCD with Nf = Nc + 1.

The phenomenon of confinement without chiral symmetry breaking in SQCD some-

times goes by the name of s-confinement. It’s a rubbish name. Here “s” can stand for

“smooth” or perhaps “screening” depending on taste.

More ’t Hooft Anomaly Matching

There is a fairly stringent test that any proposal for confinement without chiral sym-

metry breaking must pass. This is ’t Hooft anomaly matching. Let’s see how we do.

SU(Nf )3L: In the UV, we have the quarks contributing to give AUV = Nc. In the

IR, we have both mesons M , which contribute Nf and the baryons B which contribute

�1 as they sit ⇤. Together they give AIR = Nf � 1 = Nc.

SU(Nf )2L · U(1)B: The quarks give AUV = Nc. In the infra-red, the mesons don’t

contribute while the baryon B gives AIR = Nc.
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SU(Nf )2L · U(1)R: Now things get more fiddly, largely because of the fractional R-

charges. In the UV, the quarks give

AUV = Nc

✓
1

Nf

� 1

◆
= �

N2
c

Nc + 1

In the IR, both the meson and baryon contribute:

AIR = Nf

✓
2

Nf

� 1

◆
+

✓
Nc

Nf

� 1

◆

A little algebra reassuringly shows that AUV = AIR.

The remaining anomaly matching involving U(1)R gets a little messy. For example,

we have

U(1)R: The mixed U(1)R gravitational anomaly simply requires that we add up the

R-charges. Including the gluinos, we have

AUV = (N2
c
� 1) + 2NcNf

✓
1

Nf

� 1

◆
= �N2

f
+ 2Nf � 2

Meanwhile,

AIR = N2
f

✓
2

Nf

� 1

◆
+ 2Nf

✓
Nc

Nf

� 1

◆
= AIR

U(1)3
R
: The calculation is the same as above, but with R3 instead of R. We have

AUV = (N2
c
� 1) + 2NcNf

✓
1

Nf

� 1

◆3

= �
N4

f
� 6N3

f
+ 12N2

f
� 8Nf + 2

N2
f

Meanwhile,

AIR = N2
f

✓
2

Nf

� 1

◆3

+ 2Nf

✓
Nc

Nf

� 1

◆3

Again, we find AUV = AIR.

By now, you won’t be surprised to hear that all other ’t Hooft anomalies also match.

The messier the computation, the more compelling the evidence. It certainly feels like

there is something deep going on when these complicated algebraic expressions are

found to agree.
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Decoupling

For Nf < Nc, we built up an impressive pattern of consistency, understanding how our

new results can be used to imply our earlier ones. We can do this again here. But

there’s a curious lesson awaiting us.

You might think that we should impose the constraints (6.36) by introducing a bunch

of Lagrange multipliers. This, it turns out, doesn’t work. Instead the constraints arise

in a slightly di↵erent way. To see this, note that the symmetries allow us to introduce

the superpotential

W = �
1

⇤2Nc�1

⇣
detM � BMB̃

⌘
(6.37)

Using Jacobi’s formula (6.22), equations of motion from this superpotential are (ignor-

ing the overall factor of ⇤2Nc�1 for now)

@W

@B
= MB̃ = 0 ,

@W

@B̃
= BM = 0 ,

@W

@M i

j

= �Adj(M)i
j
+BiB̃j = 0

The upshot is that the superpotential (6.37) gives the constraints (6.36) as the equations

of motion, rather than through a Lagrange multiplier. This, it turns out, is the way

the constraints should be imposed when Nf = Nc + 1.

This is a much softer way to implement constraints. A Lagrange multiplier imposes

a constraint absolutely in the path integral. In contrast, the classical equations of

motion are merely a gentle suggestion that, at weak coupling, certain configurations

carry more weight in the path integral. Presumably this is related to the fact that the

unconstrained mesons and baryons manifest themselves at the origin.

There is one further unusual aspect of (6.37) and that’s the negative power of ⇤.

In previous sections, we discarded some possible superpotentials on the grounds that

they scale as e+1/g2 (with some appropriate exponent) and so didn’t reproduce our

weak coupling needs. But in this case the constraints are classical constraints and the

classical limit g ! 0 simply imposes them more strenuously. So there’s nothing to be

concerned about.

We know the deal by now. We introduce a mass for the last flavour, so the superpo-

tential reads

W = �
1

⇤2Nc�1
old

⇣
detM � BMB̃

⌘
+ Tr(mM)
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with m = diag(0, . . . , 0,m). The critical point of the meson now sits at

detM � BMB̃ = ⇤2Nc�1
old mM (6.38)

The meson and baryon fields can be shown to take the form,

M =

 
M̃ 0

0 Z

!
, Bi =

 
0

B

!
, B̃j =

 
0

B̃

!

with Z = M
Nf

Nf
the final flavour. The constraints BM = MB̃ = 0 tell us that Z = 0

if B, B̃ 6= 0. But we should still impose the equation of motion. And, indeed, Z drops

out of the equation (6.38) which becomes

det M̃ � B̃B = m⇤2Nc�1
old = ⇤2Nc

new

This, of course, is the quantum modified constraint (6.30) of the theory with Nf = Nc.

6.4 A Peek in the Conformal Window

At this point, we will jump to the other end of the flavour spectrum. We know that

SQCD is no longer asymptotically free whenNf � 3Nc. In this situation, the low-energy

physics is easy: it is just weakly interacting gluons, gluinos and massless (s)quarks.

What if we now lower Nf slightly below the asymptotic freedom bound. Here, too,

the physics is well understood. This is for the same reason that we saw in non-

supersymmetric QCD: there is a zero of the beta function at weak coupling where

we trust the calculation. This is the Banks-Zaks fixed point. The argument holds for

SQCD just as it does for normal QCD.

Now let’s lower Nf still further. The expectation is that we will continue to flow to

an interacting conformal field theory for some range of Nf , presumably with a di↵erent

CFT for each Nc and Nf . The question is: how low can Nf go?

We don’t know the answer in the non-supersymmetric case. But it turns out, we do

know the answer for SQCD. We flow to an interacting conformal field theory in the

regime

3Nc

2
< Nf < 3Nc (6.39)

This is the conformal window.
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Obviously we should ask how we know the lower bound of the conformal window.

This, it turns out, follows from certain properties of supersymmetric conformal field

theories. In the rest of this section we will state these properties, although we won’t

derive them. Then, in Section 6.5, we’ll turn to the outstanding question of what

happens in the gap between Nf = Nc + 1 and the conformal window at Nf > 3Nc/2.

6.4.1 Facts About Conformal Field Theories

A conformal field theory (or CFT) describes the dynamics of interacting massless parti-

cles. Its defining feature is that it is invariant under scale transformations, also known

as dilatations,

xµ
! �xµ

Such a scaling would be broken by any dimensionful parameter, such as a mass, which

is one way of seeing that conformal field theories can only describe massless excitations.

Any relativistic, scale invariant theory appears to also enjoy a more dramatic addi-

tional symmetry known as special conformal transformations. This acts as

xµ
!

xµ
� aµx2

1� 2a · x+ a2x2

In d = 1 + 1 dimensions, there is a proof that scale invariance implies conformal

invariance. In higher dimensions, the proofs are not complete but, nonetheless, it is

thought to be true in any interacting conformal field theory.

The generators of dilatations D and of special conformal transformations Kµ take

the form

D = �ixµ@µ , Kµ = �i(2xµx
⌫@⌫ � x2@µ)

They combine with the usual generators of the Poincaré algebra to form the conformal

algebra, which has the additional commutation relations

[D,Kµ] = �iKµ , [D,P µ] = iP µ

[Kµ, P ⌫ ] = 2i(D⌘µ⌫ �Mµ⌫)

[Mµ⌫ , K�] = i (K⌫⌘µ� �Kµ⌘⌫�)

The kinds of questions that we want to ask about conformal field theories are somewhat

di↵erent from what we’re used to. We no longer care about the masses of particles

because they’re all zero. Nor do we usually care about the S-matrix which is challenging

to define in a theory of massless particles where there can be arbitrarily low energy

excitations of increasingly long wavelengths.
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Instead, in a CFT we care about correlation functions. In particular, we care about

scaling dimensions. This means that we want to find operators O(x) that have the nice

property

O(�x) = ���
O(x)

with � the scaling dimension. If we then look at the two-point function of these

operators, we necessarily have

hO
†(x)O(0) i ⇠

1

|x|2�

These scaling dimensions are closely related to the critical exponents that were the

focus in the lectures on Statistical Field Theory.

It’s useful to look to a free, massless scalar field as an example of a trivial CFT. Here

the theory is described by the action

S =

Z
ddx

1

2
@µ�@

µ�

The scaling dimension of � coincides with what we often call the “engineering dimen-

sion”, or sometimes just “dimension”. It is

�[�] =
d� 2

2
We don’t have Lagrangian descriptions for interacting CFTs. The closest we can get

is to write down the Lagrangian for a field theory in the UV that flows, in the IR, to

an interacting CFT. This, for example, is what happens in massless (S)QCD with a

suitable number of flavours. It may be that the resulting CFT is weakly coupled, such

as for a Banks-Zaks fixed point, in which case we can compute the scaling dimensions

� perturbatively. Or it may be that resulting CFT is strongly coupled, in which case

we need to turn to some other method. Other methods on the table include numerics,

the ✏ expansion that we met in Statistical Field Theory, an approach known as the

bootstrap and, as we will see, supersymmetry.

There is one important result that we will need. The interactions always serve to

increase the scaling dimension. Or, said more precisely, the dimension of any scalar

operator in a unitary, interacting CFT is bounded by

�[O] �
d� 2

2
This is known as the unitarity bound10. In the language of perturbative quantum field

theory, this is telling us that the anomalous dimensions of operators are always positive.
10It is not too di�cult to derive this bound. They key step is to quantise the theory on S3

⇥R where
we get to use the so-called state-operator map that relates local operators to states in the Hilbert space.
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In addition, any operator that saturates the bound corresponds to a free field. This

means that it must decouple from everything else that’s going on in the theory.

Conformal field theories are of interest in many dimensions d. But our interests lie

strictly in d = 3 + 1. The unitarity bound reads

�[O] � 1 (6.40)

Any operator with �[O] = 1 is free.

Perturbing Conformal Field Theories

Suppose that you sit at a conformal fixed point. As we mentioned above, typically

there’s no action that can describe these dynamics directly but, for the sake of discus-

sion, it will be useful to pretend. So lets call it SCFT. (If you’re worried about this, it’s

better to think in terms of a partition function in the presence of sources.)

Now we perturb the CFT. We do this by adding an extra term to the action. This

extra term is some operator O(x) which, if you’re in the setting of Lagrangian field

theory, would be some combination of fields. The new action is

S = SCFT + �

Z
ddx O(x)

with � the coe�cient that governs the perturbation. The question is: what happens

next?

The answer to this depends on the dimension �[O]. Roughly speaking, there are

three possibilities

• � < d: Such perturbations are called relevant. They change the dynamics in

the infra-red and should be thought of as initiating an RG flow from our original

CFT to somewhere else. An example is a mass term for a free, massless scalar

field. In this case, the end point is a gapped theory. However, it’s not true that a

relevant deformation always pushes us to a gapped phase. We may, instead, flow

to a di↵erent CFT.

• � > d: These perturbations are irrelevant. They don’t change the low-energy

dynamics of the CFT. An example is a �6 interaction in d = 3+ 1 dimensions: it

is important at high energies, but is insignificant at low energies.

Then you simply require the positivity of an arbitrary state |PµPµ
|�i|2 > 0 and the unitary bound

follows after a few commutation relations using the conformal algebra. What is more challenging is
to show that there is not a more stringent bound coming from some other requirement. You can find
details in the excellent Lectures on Conformal Field Theory by Joshua Qualls.
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• � = d: These perturbations are called marginal. This arises when the parameter

� is dimensionless.

Now things are a little more subtle. Typically, once you deform the theory by an

arbitrarily small, marginal perturbation then the dimension of � changes and runs

under RG. It may become smaller as you flow to the IR and such perturbations are

said to be marginally irrelevant. This happens, for example, for a �4 deformation

or Yukawa terms in d = 3+1. Alternatively, the perturbation may grow stronger

as you flow towards the IR as is the case for the coupling constant of Yang-Mills.

Such perturbations are said to be marginally irrelevant.

Alternatively, it may be that � doesn’t run at all under RG. In this case it is said

to be exactly marginal and it means that we have a line of di↵erent conformal field

theories, parameterised by �. This situation is rare, but does occur for certain

supersymmetric conformal field theories.

6.4.2 Facts About Superconformal Field Theories

When a theory with N = 1 supersymmetry flows to an interacting conformal fixed

point, it gives rise to a superconformal field theory (or SCFT). In addition to the

supercharges Q↵ and Q̄↵̇ there are now superconformal charges S↵ and S̄↵̇.

Importantly, SCFTs necessarily have a U(1)R symmetry. Recall that this was some-

what optional in ordinary quantum field theories. For example, U(1)R is anomalous in

super Yang-Mills and this is reflected in the transformation of the strong coupling scale

⇤. But in an SCFT U(1)R is not an option. These theories always have an R-symmetry.

The N = 1 superconformal algebra augments the conformal algebra with the Grass-

mann generators. There are commutators

[D,Q↵] =
1

2
Q↵ , [D,S↵] = �

1

2
S↵

[R,Q↵] = Q↵ , [R, S↵] = �S↵

[Kµ, Q↵] = i�µ

↵↵̇
S̄↵̇ , [P µ, S↵] = i�µ

↵↵̇
Q̄↵̇

and anti-commutators

{Q↵, Q̄↵̇} = �µ

↵↵̇
P µ , {S↵, S̄↵̇} = 2�µ

↵↵̇
Kµ

{Q↵, S�} = Mµ⌫�
µ

↵↵̇
(�⌫)↵̇

�
� i
�
D �

3
2R
�
✏↵�

Now there is a slight twist to the unitarity bound. The fact that the R-symmetry and

dilatation operator sit within the same algebra means that there is a rather remarkable
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relation between them. It can be shown that the dimension of any operator is bounded

by its R-charge

�[O] �
3

2

���R[O]
���

Furthermore, chiral operators necessarily saturate this bound. Any chiral superfield �

has

�[�] =
3

2
R[�] (6.41)

while any anti-chiral superfield �̄ has

�[�̄] = �
3

2
R[�̄]

This is an extraordinarily powerful result. Usually in conformal field theories (at least

in dimension d > 2) the scaling dimensions are extremely di�cult to compute. And

this remains true for most operators in a superconformal field theory. But there are

a special class of operators – those described by chiral superfields – where the scaling

dimension is trivial to compute. We just need to know its R-charge.

There is a way to get a feel for the factor of 3/2 in (6.41). Consider the Wess-Zumino

model with W (�) = ��3, which leads to a V (�) ⇠ |�|4 potential. This potential is

classically marginal but one can show that it is marginally irrelevant at one-loop. This

is the statement that � ! 0 in the infra-red, so that the theory becomes free at low

energies. Nonetheless, the classical potential fixes the R-charge to be R[�] = 2/3 so

that R[W ] = 2 as it should. Correspondingly, �[�] = 1 in the infra-red which is indeed

the right result for a free chiral multiplet.

The powerful result (6.41) also makes life easier in another way. If we have two chiral

superfields �1 and �2 then �1�2 is also a chiral superfield. Their R-charges simply add:

R[�1�2] = R[�1] + R[�2]. But so too do their dimensions: �[�1�2] = �[�1] +�[�2].

This is unusual in a conformal field theory. Typically if you multiply operators together

then you get divergences as their positions come close and regulating these divergences

changes the dimension of the composite. But for chiral superfields, things are much

easier. We say that the chiral operators form the chiral ring.

There is, however, a small fly in the ointment. You’ve got to be able to identify the

correct R-symmetry that appears in the superconformal algebra. For example, suppose

that your theory has an R-symmetry R and a global symmetry F . Then there’s nothing

to stop us from saying that R + ↵F is also a valid R-symmetry for any ↵ 2 R. How

do we know that this isn’t the thing that we should use when computing dimensions?!

This loophole threatens to make the wondrous relation (6.41) completely toothless.
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Happily, there is a procedure for figuring out what combination of symmetries forms

the correct R-symmetry. This procedure is known as a-maximization. This is important

for understanding many theories and we will describe the procedure in Section 7.2.4.

However, as we’ll now see, it is not needed for SQCD.

6.4.3 The Conformal Window for SQCD

We determined the symmetries of SQCD back in Section 6.2. The charges of the chiral

superfields under the non-anomalous R-symmetry are

R[�] = R[�̃] =
Nf �Nc

Nf

This means the R-charge of the meson M = �̃� is

R[M ] =
2(Nf �Nc)

Nf

(6.42)

Given the discussion above, one might wonder if we should worry about mixing of

U(1)R with U(1)B. Happily, the meson M is neutral under U(1)B so it’s not something

that we have to worry about. We can say immediately that the dimension of the meson

operator is

�[M ] =
3(Nf �Nc)

Nf

(6.43)

Let’s first test drive this formula by looking at what happens when Nf � 3Nc where

SQCD is infra-red free. At the edge, we have

Nf = 3Nc ) �[M ] = 2 (6.44)

But this is precisely what we expect. The theory is e↵ectively free in the infra-red, so

the fields � and �̃ both have their canonical dimension �[�] = �[�̃] = 1 which agrees

with the result (6.44). The result (6.44) is telling us that the scalar fields � and �̃

(together with their fermionic partners) are free at Nf = 3Nc.

Note that there’s already something a little surprising here. We knew that the theory

was infra-red free at Nf = 3Nc, but only by computing the beta function. In contrast,

the result above uses only the non-anomalous R-charge! Yet the two coincide. It’s a

sign that all these things are interconnected in SQCD in a way that doesn’t happen in

the absence of supersymmetry.
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What happens if we now change Nf? We can start by looking at Nf > 3Nc where,

at first glance it appears that we become a little unstuck. Here the theory remains

free and so we should still have �[M ] = 2. But that’s not what the formula (6.41)

seems to be telling us. However, since the theory is free in the IR, the anomalous U(1)A
symmetry is reincarnated and can now mix with the R-symmetry, changing the answer.

This is a salutary warning: there can be subtleties in blindly following (6.41).

Now let’s look at what happens as we decrease Nf below the asymptotic freedom

bound of Nf = 3Nc. We know that when Nf = 3Nc � ✏, for some small ✏, we’re sitting

in a weakly coupled Banks-Zaksesque superconformal field theory. The formula (6.43)

tells us that the meson has dimension

�[M ] = 2�
1

3

✏

Nc

+ . . .

In other words, it’s slightly less than two. You should think of the meson as describing

a loosely bound state of � and �̃. But as Nf decreases, so too does the dimension

�[M ]. This is telling us that the state is becoming more and more tightly bound. At

some point, the Banks-Zaks superconformal field theory becomes strongly coupled and

we lose control over its dynamics. But, by the magic of supersymmetry, we remarkably

keep control over the dimension of the chiral meson field! Eventually, the dimension of

the meson his the bound (6.40). This occurs when

Nf =
3

2
Nc ) �[M ] = 1

But, as we mentioned above, any scalar operator that has dimension 1 is necessarily

a free scalar field. This equation is telling us that the binding between � and �̃ has

become so strong that the composite meson operatorM is actually no longer composite!

It is acting just like a fundamental scalar field. Moreover, it is now decoupled and is

free.

How should we think of this? The proposal is that the meson becoming free signifies

the end of the conformal window (6.39). In fact, we will argue shortly that the theory

at Nf = 3Nc/2 is a completely free theory in the IR with a whole bunch of other fields

joining M in the sense that they become non-interacting at low energies.

To argue this, we will turn to a new description of the physics that holds throughout

the conformal window and, also, for Nf < 3Nc/2. This is known as the dual description.
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6.5 Seiberg Duality

Throughout this section, our interest has been in massless SQCD, defined as

SU(Nc) gauge theory to coupled to Nf flavours � and �̃

We’ve found a plethora of interesting physics as Nf is varied. But we haven’t yet

understood what happens when Nf + 2  Nc  3Nc/2. Moreover, at the lower end of

conformal window, where we might expect a strongly interacting CFT, we’ve seen that

the meson becomes free. It would certainly be good to understand this better.

Some light comes from a rather remarkable direction. Consider the following theory

SU(Ñc) gauge theory to coupled to Nf flavours q and q̃ and N2
f
singlets M

In the absence of the singlets, this clearly coincides with our earlier theory just with the

number of colours renamed as Ñc. However, we arrange the singlets as a matrix M i

j

with i, j = 1, . . . , Nf which is subsequently coupled to the squark superfields through

the superpotential

W = �q̃Mq (6.45)

with � a dimensionless coupling. This is now a slight twist on our original SQCD and

its dynamics may di↵er. We’ll see how below. Note that we’ve given the singlets the

name M . You may recall that this is the also the name that we gave to the meson in

our original theory. This is what writers call foreshadowing.

For our purposes, it’s particularly interesting to consider the case where the number

of colours in the two theories are related by

Ñc = Nf �Nc (6.46)

This second theory is known asmagnetic SQCD (or mSQCD). We’ll also at time refer to

the original SU(Nc) SQCD as the electric theory and we’ll elucidate the reasons behind

these names as we go along. We now make the following, somewhat astonishing, claim:

SU(Nc) SQCD and SU(Nf �Nc) mSQCD have the same low-energy physics

This relationship is known as Seiberg duality11. The purpose of this section is to give

evidence for the claim and to understand its consequences.

11This was first proposed by Seiberg in the paper “Electric-Magnetic Duality in Supersymmetric
Non-Abelian Gauge Theories”.
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6.5.1 Matching Symmetries

First let’s look at some evidence. Given that the one of the two theories is always

strongly coupled, it is challenging to do any direct calculations. The simplest thing

that we can check is agreement of the symmetries.

Gauge Symmetries are Redundancies

First, the elephant in the room. The gauge symmetries are not the same! Should we

care? The answer is no. Gauge symmetries are not true symmetries of a theory: they

are merely a redundancy in the way we choose to describe the theory.

These are easy words to wheel out, but they also grate with other things we know

about physics. The theory of electromagnetism is synonymous with U(1) gauge theory.

The Standard Model of particle physics is defined as having gauge group SU(3) ⇥

SU(2) ⇥ U(1). If the gauge symmetry is something that isn’t actually inherent to a

theory, but just a redundancy in our choice of description, why do we hang so much on

it elsewhere?

The reason is that gauge symmetry is an extraordinarily useful redundancy when

theories are weakly coupled. In that situation, attempting to describe the physics

in terms of anything other than the gauge field, with particular gauge group, is so

ridiculously complicated that it borders on the absurd. You could, for example, choose

to describe quantum Maxwell theory in terms of the field strengths Fµ⌫ and all possible

Wilson line operators exp
�
i
H
A
�
which carry the gauge invariant information. But

that’s certainly not easier than our usual gauge dependent description in terms of Aµ.

This means that when gauge theories are weakly coupled, the description in terms

of the gauge symmetry G is indispensable. But when things become strongly coupled,

the story is very di↵erent. In this case, the gauge symmetry reveals itself for what it

is: a redundancy. Seiberg duality makes this stark. You can describe the same physics

using two very di↵erent gauge theories. Sometimes one formulation is best suited to the

problem at hand because the physics is weakly coupled in those variables. Sometimes

the other formulation is easiest. But neither formulation is ever wrong and the fact

that the gauge symmetries don’t match in the two dual theories is a feature, not a bug.

Global Symmetries

The story is di↵erent for global symmetries. These must match. Moreover, as both

theories are claimed to flow to the same infra-red physics, their UV ’t Hooft anomalies

must match as well. Let’s see how we do.
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It’s useful to list, one last time, how the various fields transform. In the electric

theory, we have

SU(Nc) SU(Nf )L SU(Nf )R U(1)B U(1)A U(1)R

� ⇤ ⇤ 1 1 1 Nf�Nc

Nf

�̃ ⇤ 1 ⇤ �1 1 Nf�Nc

Nf

⇤b0 1 1 1 0 2Nf 0

with b0 = 3Nc �Nf . For the magnetic theory, we have

SU(Nf �Nc) SU(Nf )L SU(Nf )R U(1)B U(1)A U(1)R

q ⇤ ⇤ 1 Nc
Nf�Nc

�1 Nc
Nf

q̃ ⇤ 1 ⇤ �
Nc

Nf�Nc
�1 Nc

Nf

M 1 ⇤ ⇤ 0 2 2(Nf�Nc)
Nf

⇤̃b̃0 1 1 1 0 �2Nf 0

Here ⇤̃ is the strong coupling scale of the magnetic theory with b̃0 = 3(Nf �Nc)�Nf =

2Nf � 3Nc the 1-loop beta function.

The normalisation of the non-anomalous U(1)R charge is fixed, as usual, by the

requirement that the (magnetic) gluinos have charge +1. (This, in turn, follows from

the fact that the superspace coordinate has R[✓] = �1.) This, in turn, fixes the

R-charge for the dual squarks which came be written as R[q] = R[q̃] = Nc/Nf =

(Nf � Ñc)/Nf , where we see that it mimics the form in the original theory. The

requirement that the superpotential has R[W ] = 2 then fixes the R-charge of the

singlet M .

R[M ] =
2(Nf �Nc)

Nf

But this is the same as the R-charge as the meson �̃� in the original electric theory.

Moreover, because these are chiral fields, if their R-charges match then so too do

their dimensions. This provides our first, and most important, entry in the dictionary

relating the electric and magnetic theories: the singlet fields M in the magnetic theory

correspond to the meson in the electric theory.

M ⇠ �̃�

This matching provides an opportunity to reiterate a lesson from above. We have

not attempted to match individual quarks and gluons on the two sides of the duality.
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This is because these are not gauge invariant objects and so have no physical meaning

on their own. However, gauge invariant observables or fields should match across the

duality.

Next the U(1)B charges. We want to identify U(1)B in the two theories but there’s

an ambiguity in the normalisation. We’ve fixed this ambiguity in the table above by

ensuring that the dual baryons b ⇠ qNf�Nc and b̃ ⇠ q̃Nf�Nc have the same U(1)B charges

as their electric counterparts B and B̃. Crucially, their R-charges also match. This

then provides the second entry in our dictionary between the two theories: B ⇠ b and

B̃ ⇠ b̃. We will look a little closer at the identification of these operators shortly.

’t Hooft Anomaly Matching

Now we can play the increasingly familiar ’t Hooft anomaly game. We denote the ’t

Hooft anomalies in the original theory as Ael and those in the dual as Amag. We have

SU(Nf )3L: The quarks contribute Ael = Nc while the dual quarks and mesons give

Amag = �(Nf �Nc) +Nf . Note that it was important that the dual quarks sit in the

⇤ of SU(Nf )L while the quarks sit in the ⇤. This was also need to ensure that the

meson fields M have the same quantum numbers.

SU(Nf )2L · U(1)B: We have Ael = Amag = Nc.

SU(Nf )2L · U(1)R: We have Ael = �N2
c
/Nf and Amag = (Nf�Nc)⇥

Nc�Nf

Nf
+Nf⇥

Nf�2Nc

Nf

which agree. This same counting essentially ensures that the mixed U(1)R-gravitational

anomaly also matches.

The ’t Hooft anomalies for U(1)B and ‘U(1)3
B
trivially vanish in both the electric and

magnetic theories because U(1)B is a vector-like symmetry. However, we do have the

mixed anomaly

U(1)2
B
· U(1)R: Ael = 2NfNc ⇥

⇣
�

Nc
Nf

⌘
= �2N2

c
. The magnetic theory has Amag =

2(Nf �Nc)Nf

⇣
Nc

Nf�Nc

⌘2
⇥

⇣
Nc�Nf

Nf

⌘
= �2N2

c

For the final matchings involving just U(1)R, we need to remember the existence of

the gluinos.
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U(1)R: We have Ael = (N2
c
� 1) + 2NcNf (�Nc/Nf ) = �(N2

c
+ 1). And

Amag = ((Nf �Nc)
2
� 1) + 2(Nf �Nc)Nf

✓
Nc �Nf

Nf

◆
+N2

f

✓
Nf � 2Nc

Nf

◆
= �(N2

c
+ 1)

U(1)3
R
: Now

Ael = (N2
c
� 1) + 2NcNf

✓
�
Nc

Nf

◆3

and

Amag = ((Nf �Nc)
2
� 1) + 2(Nf �Nc)Nf

✓
Nc �Nf

Nf

◆3

+N2
f

✓
Nf � 2Nc

Nf

◆3

Both are equal. We see that all the anomalies do indeed match and seemingly in a

non-trivial fashion.

6.5.2 Completing the Phase Diagram for SQCD

Next, let’s look at some of the more immediate consequences of the duality. Clearly

magnetic SQCD, as defined in (6.46), only makes sense when Nf � Nc+2 so the claim

of Seiberg duality is that it has something to tell us about the original theory in this

regime. Moreover, we know that mSQCD is no longer asymptotically free when

Nf � 3Ñc ) Nf 
3

2
Nc

But this is precisely the regime Nc + 2  Nf  3Nc/2 that was left unresolved by our

previous methods.

If Seiberg duality is correct (and we have every reason to believe that it is!) then it

gives a very surprising answer for what happens in this regime: the original SU(Nc)

gauge theory becomes strongly coupled and flows, in the infra-red, to an entirely di↵er-

ent SU(Nf �Nc) gauge theory, coupled to the the matter q, q̃ and M . This is known

as the free magnetic phase.

Note that there is no suggestion that SU(Nf � Nc) is a subgroup of SU(Nc), one

that perhaps arises through a Higgs mechanism. The gluons of SU(Nf � Nc) are not

the gluons of SU(Nc)! Instead they are new, composite spin 1 particles that emerge

at strong coupling, presumably some complicated bound states of all the degrees of

freedom of the original electric theory. . We will have more to say about how the two

gauge groups are related in Section 6.5.4.
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Let’s now increase Nf for fixed Nc. When the electric theory sits in the conformal

window, so too does the magnetic dual

3

2
Nc < Nf < 3Nc , 3Ñc > Nf >

3

2
Ñc

However, crucially, when one theory is weakly coupled, the other is necessarily strongly

coupled. For example, at the far end of the conformal window, Nf = 3Nc � ✏, the

original electric theory is at a Banks-Zaks fixed point and under control, while the

magnetic theory is something strongly coupled. In contrast, at the lower end of the

conformal window, Nf = 3
2Nc+ ✏, it is the other way around: the dual magnetic theory

sits at (something like) a Banks-Zaks fixed point, while the electric theory is strongly

coupled.

To understand the fate of the magnetic theory, we also need to take into account the

e↵ect of the superpotential

W ⇠ q̃Mq

Viewed from the perspective of the UV, this superpotential gives Yukawa terms between

various fermions and scalars in the magnetic theory. The parameter � is dimensionless,

so this appears to be a marginal operator. But, a one-loop calculation shows that �

initially decreases as we flow towards the infra-red. The superpotential is a marginally

irrelevant operator of the free, UV fixed point.

However, this story is di↵erent when viewed from the infra-red. Suppose that we

first flow to the fixed point within the conformal window of mSQCD and then add the

superpotential (6.45). What now happens? To understand this, we need to compute

the dimension of the superpotential W at the IR fixed point.

Happily, supersymmetry gives us a handle on this because W is a chiral and so its

dimension is related to its R-charge. As we’ve seen above, the R-charges of the dual

squarks are R[q] = R[q̃] = Nc/Nf . That leaves us with the meson field M . And here

there’s something of a subtlety.

We already listed the R-charge of M in the table above but we need to revisit this.

That R-charge was determined by assuming that R[W ] = 2 which is pre-judging the

answer! This is not what we want for the present calculation. Instead, we need to

remember that before we add the superpotential, M is just a free field, decoupled from

everything else. This means that it has dimension �[M ] = 1 and, correspondingly,
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Figure 12. The RG flow in mSQCD The free fixed point and the fixed point in the conformal

window are shown as black points. The superpotential induces a further flow to the red point.

This is conjectured to coincide with the fixed point of SQCD.

R[M ] = 2/3. This means that, from the perspective of the IR, the superpotential

W = q̃Mq has dimension

�[W ] =
3

2
R[W ] =

3

2

✓
2

3
+

2Nc

Nf

◆
= 1 +

3Nc

Nf

When we first enter the lower bound of the conformal window, we have

Nf >
3

2
Nc ) �[W ] < 3

But this means that the superpotential is always a relevant deformation in the conformal

window! (The measure in the action is
R
d4x d2✓ and [d4x] = �4 while [d2✓] = +1 which

is the why the the bound for a relevant superpotential is �[W ] < 3.)

The RG flows are shown in Figure 12. There are three fixed points in the magnetic

theory: the free theory at g = � = 0 that can be thought of as the starting point in

the UV; the fixed point without a superpotential in the conformal window with � = 0

and g 6= 0; and the final fixed point with g,� 6= 0. The claim of Seiberg duality is that

this final fixed point of the dual theory, shown as the red dot, coincides with the fixed

point in the conformal window of the electric theory.

By the time we reach our final fixed point, shown by the red dot in the figure, we

should now take R[W ] = 2. This gives us the R-charge R[M ] that we listed in the table

with the corresponding dimension

R[M ] =
2(Nf �Nc)

Nf

) �[M ] =
3(Nf �Nc)

Nf

It’s only when we reach this fixed point that the R-charge and dimension of M in the

magnetic theory coincides with those of the meson in the original theory.
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Figure 13. Seiberg duality is a statement about RG flows, although the precise statement

changes as we vary Nf/Nc.

As we increase Nf � 3Nc, there is no mystery about our electric theory: it is free

in the infra-red. In contrast, the magnetic theory flows to strong coupling but now

becomes the weakly interacting SU(Nc) theory in the infra-red. We see again that

Seiberg duality is an example of a strong-weak coupling duality. When one theory is

strongly coupled, the other may be weakly coupled and vice versa. This makes it useful.

Of course there are also regimes – notably in the middle of the conformal window –

when both theories are strongly coupled. So the duality isn’t a magic bullet, solving

all our woes. But it is a dramatic and unexpected step forward.

All of this means that the exact interpretation of Seiberg duality depends on the

value of Nf/Nc. For small Nf , the electric theory flows to the weakly coupled magnetic

theory. For large Nf , the opposite happens: the magnetic theory flows to a weakly

coupled electric theory. While for Nf in the conformal window, both theories flow

to the same infra-red fixed point. This is summarised in Figure 13. However, in all

cases Seiberg duality is a statement about RG flows. This should be distinguished

from other “exact dualities” of quantum field theories or many body systems, where

there are two very di↵erent descriptions that hold at any energy scale. Examples

of exact dualities includes the high/low temperature duality of the Ising model, or

electromagnetic dualities of N = 2 and N = 4 supersymmetric theories.

6.5.3 Deformations of the Theories

So far we’ve focussed on the fixed point. But both theories also have a moduli space of

vacua, and this too should match. However, showing this isn’t straightforward because,
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Figure 14. The phases of massless SQCD. For the values of Nf shown in red, we have a dual

description in terms of mSQCD. This dual description is weakly coupled from Nf = Nc + 2

to Nf = 3Nc/2 + ✏.

as we saw in Section 4.3, there are some non-trivial constraints between the mesons

and baryons.

Nonetheless, we can see roughly how things work. We’ve already seen that the

singlets M are dual to the mesons in the electric theory

�̃� ⇠ M (6.47)

The symmetries also allow us to match the baryon degrees of freedom

Bi1...iNc ⇠ ✏i1...iNcj1...jÑc bj1...jÑc

B̃i1...iNc
⇠ ✏i1...iNcj1...jÑc

bj1...jÑc

Each transforms in the
�
Nc

Nf

�
-antisymmetric representation of SU(Nf ) which, of course,

is equivalent to the
�
Nf�Nc

Nf

�
-antisymmetric representation.

The magnetic theory also has its own meson fields m̃ = q̃q and you might wonder

what becomes of these. But the equation of motion for the singlets M is simply m̃ = 0

so these dual mesons don’t give us any further light degrees of freedom.

Masses and Expectation Values

We can now perform some simple tests of the duality. Suppose that we turn on the

electric meson fields to move out on the moduli space. To start we just turn on a single
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entry

�̃� =

0

BBBBB@

v

0
. . .

0

1

CCCCCA

This breaks the gauge symmetry SU(Nc) ! SU(Nc � 1), now with Nf � 1 flavours.

We would like to see this behaviour in the dual theory. In fact, this is straightforward.

Giving the singlet M the same expectation value, we have

Wmag ⇠ q̃Mq = vq̃1q1

This is just a mass term for the dual squark and we can integrate it out, giving us

SU(Ñc) with Nf � 1 flavours. This is the expected dual.

Alternatively, we could give a mass to one of the quarks in the electric theory by

adding the superpotential

Wel = m�̃1�1

After integrating out this massive flavour, we’re left with SU(Nc) with Nf �1 flavours.

In the magnetic theory, this same mass deformation gives

Wmag = q̃Mq +mM11

The equation of motion for the singlet M then induces an expectation value for the

dual squark

q̃1q1 = �m

This, in turn, breaks the dual gauge group SU(Ñc) ! SU(Ñc � 1). The upshot is that

we’re left with the dual theory of an SU(Nf �Nc � 1) gauge group coupled to Nf � 1

flavours. This is the expected result.

We see that these simple deformations respect the duality, with a mass term on one

side mimicked by a Higgs e↵ect on the other.

Matching RG Scales

There’s a slight subtlety that we’ve brushed under the carpet so far. The key element

in our dictionary relating mesons �̃� ⇠ M can’t quite be right. This is because the

quarks on the left-hand side are defined in the UV of SQCD and each have dimension

1 so �̃� has dimension 2. Meanwhile the singlet M is a free field in the dual theory so

has dimension 1. So our dimensional analysis is amiss.

– 206 –



This should be straightforward to patch up: we just need some invariant RG scale

to take up the slack. But this scale should be holomorphic and, moreover, we don’t

want it to mess up the symmetries on the two sides. Either the electric RG scale ⇤ or

magnetic scale ⇤̃ change the (admittedly spurious) U(1)A charge. But we can introduce

a new scale µ which is some geometric mean of the two

⇤3Nc�Nf ⇤̃3(Nf�Nc)�Nf = (�1)Nf�NcµNf (6.48)

The scale µ is, by construction, invariant under all symmetries, spurious or otherwise.

A better characterisation of the dictionary is then

�̃�

µ
= M

The strange looking minus sign in (6.48) is largely a convention, but it can be shown

to ensure that the dual of the dual theory brings us back to the original.

The Theory Nf = Nc + 1 Again

We’ve advertised Seiberg duality as holding for Nf � Nc + 2. But it also gives the

right answer for Nf = Nc + 1, at least if we include the additional term detM in the

superpotential so that (6.45) becomes

W ⇠ det M + q̃Mq

This is the expected superpotential (6.37) for the Nf = Nc + 1 theory, with the dual

quarks q and q̃ identified with the baryons B and B̃.

A Glimpse of the Superconformal Index

Until now, we’ve given no more than plausible evidence for Seiberg duality. The sym-

metries and ’t Hooft anomalies match and it passes some simple tests as we deform

the theory. It turns out that there is a much more quantitative test that the duality

passes. This comes from computing an object known as the superconformal index.

The superconformal index is an extension of the Witten index. While the Witten

index receives contributions only from the ground states, the superconformal index

receives contributions from a much larger, but still restricted class of states. Moreover,

it can be reliably computed for theories even at weak coupling.

The superconformal index is defined for superconformal theories on S3
⇥ R. It is a

function of two variables, p and q, by tracing over all states

I(p, q) = Tr (�1)Fpj1+j2� 1
2Rqj1�j2� 1

2R

Here R is the R-charge of the state while j1 and j2 are the two angular momenta

associated to the rotation group SO(4) ⇠= SU(2)⇥ SU(2).
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The formulae for the superconformal indices are fairly complicated and, at first

glance, look very di↵erent for SQCD and mSQCD. It is a highly non-trivial mathe-

matical fact that these formulae do, in fact, coincide12.

6.5.4 Why Seiberg Duality is Electromagnetic Duality

There is one feature of Seiberg duality that perhaps remains mysterious: why have we

called the dual theory “magnetic” and the original theory “electric”? The answer to this

gets to the heart of how to think about Seiberg duality and other related phenomena.

The basic idea goes back to Maxwell theory. The equations of motion are usually

written as

@µF
µ⌫ = Jµ and @µ

?F µ⌫ = 0

with Jµ the electric current. If there are no charged particles in the theory then

Jµ = 0 and the Maxwell equations exhibit a surprising symmetry in which we exchange

F µ⌫
!

?F µ⌫ . In terms of the underlying electric and magnetic fields, this means

E ! B and B ! �E

This is electromagnetic duality. It is broken in electromagnetism because our world has

electric sources, but no magnetic sources.

However, one could imagine a theory in which there are particles carrying both

electric and magnetic charges. The latter are called magnetic monopoles. In this case,

Maxwell’s equations should be replaced by

@µF
µ⌫ = Jµ

e
and @µ

?F µ⌫ = Jµ

m

with Jµ

e
and Jµ

m
the electric and magnetic currents respectively. In such a theory,

electromagnetic duality may be restored, now with the electric and magnetic particles

interchanged. However, there is a consistency condition between electric charges qel and

magnetic charges qmag: they can be shown to obey the Dirac quantisation condition

qelqmag

2⇡
2 Z

A derivation of this can be found in the lectures on Gauge Theory. This has an interest-

ing consequence. The electric charge is a measure of the strength of the electromagnetic

force. (For example, the fine structure constant is ↵ = q2el/4⇡✏0~c.) The Dirac quanti-

sation conditions tells us that if the electric charges are weakly coupled, then magnetic

charges will necessarily be strongly coupled.

12For more information about the superconformal index, see the lectures by Yuji Tachikawa or by
Abhijit Gadde.
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It’s not so easy to write down versions of QED that include both electric and magnetic

charges. This is because we must work with the gauge field Aµ, and the resulting

Bianchi identity @µ?F µ⌫ = 0 immediately implies that there are no magnetic monopoles.

However, the story becomes richer in certain non-Abelian gauge theories. It turns out

that some non-Abelian gauge theories necessarily have magnetic monopoles arising as

solitons. This means that although we start by writing a theory purely of electric

charges, the actual theory includes both electric and magnetic charges. Examples of

theories with solitonic magnetic monopoles includeN = 2 andN = 4 super Yang-Mills.

However, theN = 1 SQCD theories that we’ve been considering in this Section do not

obviously contain magnetic monopoles. There are certainly no classical soliton solutions

that one can construct that have magnetic charge. On the other hand, the theories are

strongly coupled and it’s not at all clear what properties their excitations have. Part

of the claim of Seiberg duality is that the dual description should really be thought of

as a kind of electromagnetic duality, with the SU(Nf �Nc) gauge group related to the

original SU(Nc) gauge group by something morally equivalent to swapping electric and

magnetic fields. Correspondingly, the dual baryons b and b̃ should be viewed as some

kind of magnetic excitation from the perspective of the original theory.

You may have noticed that I’m saying a lot of words here and not writing down any

formulae! That’s because it’s di�cult to make the above claims precise. There are,

however, some hints that this is the right way to think about things. For example, the

relationship (6.48) between the scales

⇤3Nc�Nf ⇤̃2Nf�3Nc ⇠ constant

This formalises something that we’ve already seen: Seiberg duality is a strong-weak

duality. As the gauge coupling in one theory gets smaller, the coupling in the other

gets larger. This is reminiscent of the behaviour in electromagnetic duality.

However, the best evidence that Seiberg duality should be viewed as electromagnetic

duality comes from exploring other theories. In particular, N = 2 and N = 4 theories

both exhibit a form of electromagnetic duality where both electric and magnetic degrees

of freedom can be made manifest. The existence of a duality means that there are two

formulations of the theory, one in which the electric objects are viewed as fundamental

particles and the other in which magnetic objects are fundamental particles. In either of

these descriptions, the other particles arise as solitons. Its only when Seiberg duality is

viewed within this larger context as one of many dualities among quantum field theories,

that it becomes clearer that it is, indeed, a version of electromagnetic duality.
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