
2 Supersymmetry and the Path Integral

In addition to making the symmetry aspect of supersymmetry manifest, the Lagrangian

description of the quantum mechanics has one additional advantage: it allows us to

bring the path integral to bear on the problem.

We’ll make plenty of use of the path integral in later studies of supersymmetric

systems. The purpose of this section is to understand some of the basic properties of

the quantum mechanical path integral and how we can use it to compute quantities of

interest in supersymmetric theories.

2.1 The Partition Function and the Index

Let’s start with a purely bosonic system, with the familiar action

S =

Z
dt

1

2
ẋ2 � V (x) (2.1)

In statistical mechanics, we typically want to compute the partition function

Z = Tr e��H

How do we compute this using path integrals?

Our starting point is Feynman’s expression for the propagator. Take a particle that

sits at point xi at time ti. The quantum amplitude for it to be at point xf at a later

time tf has the beautiful path integral expression

hxf |e�iH(tf�ti)|xii =
Z

x(tf )=xf

x(ti)=xi

Dx(t) eiS[x(t)] (2.2)

Note that the initial and final states |xii and |xfi appear on the right-hand-side as

boundary conditions for the paths: we integrate over all paths x(t) such that x(ti) = xi

and x(tf ) = xf .

Our goal now is to manipulate (2.2) so that the left-hand-side looks like the partition

function Z. There are a number of di↵erences that we need to fix. First, the time

evolution operator in quantum mechanics is unitary, e�iHt. Meanwhile, in statistical

mechanics the relevant operator is e��H , with a minus sign in the exponent rather than

a factor of i. To deal with this, we work in imaginary time,

⌧ = it
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So e�iHt = e�H⌧ . On the right-hand-side, we write the action in Euclidean time so it

becomes

S = +i

Z
d⌧

1

2

✓
dx

d⌧

◆2

+ V (x) = iSE

Here SE is the Euclidean action. In quantum field theory, this operation is tantamount

to Wick rotation. The Feynman expression (2.2) then becomes

hxf |e�H(⌧f�⌧i)|xii =
Z

x(⌧f )=xf

x(⌧i)=xi

Dx(⌧) e�SE [x(⌧)] (2.3)

That’s fixed up the minus signs and factors of i. Next up is the trace in the partition

function. This means that we sum over a basis of states. If we choose that basis to be

position eigenstates, then we have

Z = Tr e��H =

Z +1

�1
dx hx|e��H |xi

Comparing this to (2.3), we have

Z =

Z +1

�1
dx hx|e��H |xi =

Z +1

�1
dxi

Z
x(⌧f )=xi

x(⌧i)=xi

Dx(⌧) e�SE [x(⌧)]

where ⌧f = ⌧i + � and the important point is that we now integrate over paths where

the particle comes back to where it started: xf = xi. Furthermore, we integrate over

all possible starting points xi. This gives our final expression for the partition function

which we write as

Z = Tr e��H =

Z

x(�)=x(0)

Dx(⌧) e�SE [x(⌧)]

where now the boundary conditions just tell us that we should integrate over all possible

closed paths. Equivalently, we can implement this condition by insisting that we work

in periodic Euclidean time, so that ⌧ is a coordinate on a circle S1, with

⌧ ⌘ ⌧ + �

Although we’ve derived this punchline in the context of quantum mechanics, it also

works in quantum field theory. If you want to compute the thermal partition function

of any quantum field theory, you simply need to work in periodic, Euclidean time. This

will tell you information about the equilibrium properties of the system at temperature

T = 1/�.
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2.1.1 An Example: The Harmonic Oscillator

To get a sense for how these calculations work, let’s look at everyone’s favourite exam-

ple: the harmonic oscillator. This, of course, takes the form (2.1) with the potential

V (x) =
1

2
!2x2

We know that the harmonic oscillator has energy levels E = !(n+ 1
2) with n = 0, 1, . . .

(assuming that ! > 0). This means that, in this case, we can just compute the partition

function by summing over all states.

Z = e��!/2
1X

n=0

e�n�! =
e��!/2

1� e��!
(2.4)

How does the path integral reproduce this? We have

Z =

Z
Dx(⌧) exp

✓
�1

2

Z
d⌧ x

✓
� d2

d⌧ 2
+ !2

◆
x

◆

where we’ve left the periodic boundary conditions implicit and integrated by parts

in the Euclidean action to highlight the fact that the resulting path integral takes a

Gaussian form. If we extrapolate from finite-dimensional Gaussian integrals, we find

ourselves with the slightly formal expression

Z = det

✓
� d2

d⌧ 2
+ !2

◆�1/2

We should think of this determinant as the product of eigenvalues of the di↵erential

operator. The eigenfunctions of this operator are

x(⌧) = eik⌧ )
✓
� d2

d⌧ 2
+ !2

◆
x(⌧) = (k2 + !2)x(⌧)

but we should remember that we’re working on a circle with periodic boundary condi-

tions so we require x(⌧ + �) = x(⌧). This restricts the k values to be quantised

k =
2⇡n

�
n 2 Z

This, of course, is just the usual calculations that we do in our first course on Quantum

Mechanics. The novelty here is that we now need to multiply all these eigenvalues

together

Z =
+1Y

n=�1

"✓
2⇡n

�

◆2

+ !2

#�1/2

=
1

!

1Y

n=1

"✓
2⇡n

�

◆2

+ !2

#�1
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In the second equality we’ve taken out the n = 0 term, and then used the fact that ±n

give the same contribution to remove the square-root factor at the expense of restricting

the product to positive integers. We can rewrite the resulting expression as a product

of two terms, each itself an infinite product

Z =
1

!

1Y

n0=1

✓
2⇡n0

�

◆�2 1Y

n=1

"
1 +

✓
�!

2⇡n

◆2
#�1

(2.5)

The second of these expressions is convergent and the result is well known:
1Y

n=1

"
1 +

✓
�!

2⇡n

◆2
#
=

2

�!
sinh

�!

2
(2.6)

We won’t prove this result here, but just note that it follows immediately from Euler’s

product formula for sine,

sin(⇡z) = ⇡z
1Y

n=1

✓
1� z2

n2

◆

As an obvious sanity check, it’s clear that both sides of this equation have the same

zeros. A full proof of the equivalence is not too hard, but a little involved.

That leaves us with the first infinite product in (2.5) to deal with. And that’s more

tricky because it diverges. To better understand such terms, we should really go back

and dissect the path integral to figure out where it came from. (For example, the

partition function should be dimensionless but this term has dimension of [Energy]21

which is a hint that we didn’t define our measure very well.) However, in the spirit

of this course we’re going to treat this term as blithely as possible. And, for those

physicists of a blithe disposition, there are few tools more useful than zeta function

regularisation.

The zeta function is defined, for Re(s) > 1, by the sum

⇣(s) =
1X

n=1

n�s

However, ⇣(s) is defined for all values of s. The idea is that we use this to give meaning

to divergent sums. For example, we could think of the sum of all positive integers as

⇣(�1) = �1/12. Although these zeta function games seem rather inane when you first

meet them, the magic is that they tend to give the right answers when used to regulate

divergences in quantum field theory. (For example, in the lectures on String Theory

we first invoked the unconvincing ⇣(�1) = �1/12 argument to compute the critical

dimension of the string, and then spent a significant amount of time rederiving this

using conformal field theory techniques where the divergences were absent.)
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Let’s see how we can put the zeta function to work for the harmonic oscillator. We

first introduce the related function

⇣1(s) =

✓
�

2⇡

◆2s

⇣(2s) =
1X

n=1

✓
2⇡n

�

◆�2s

Now we take the derivative with respect to s. Note that, if y = ax then dy/dx = y log a.

So

⇣ 01(s) = 2

✓
�

2⇡

◆2s✓
log

✓
�

2⇡

◆
⇣(2s) + ⇣ 0(2s)

◆

=
1X

n=1

✓
2⇡n

�

◆�2s

log

✓
2⇡n

�

◆�2

Evaluated at s = 0, we have

⇣ 01(0) = 2 log

✓
�

2⇡

◆
⇣(0) + 2⇣ 0(0) =

1X

n=1

log

✓
2⇡n

�

◆�2

Or, taking the exponential of both sides,

1Y

n=1

✓
2⇡n

�

◆�2

=

✓
�

2⇡

◆2⇣(0)

e2⇣
0(0)

Now we need the values ⇣(0) = �1
2 and ⇣ 0(0) = �1

2 log(2⇡). Combining these gives the

zeta-tamed value for the divergent product

1Y

n=1

✓
2⇡n

�

◆�2

=
1

�
(2.7)

We can see immediately that, despite the dubious route to get there, the end result

is plausible. This is because the 1/� factor from the regularised product combines

with the 1/! factor that sits in front of (2.5) to ensure that the partition function is

dimensionless, as it should be.

Putting this together with our convergent product (2.6), we get our end result for

the path integral

Z =
1

2 sinh(�!/2)
(2.8)

But this is what we want: it agrees with the harmonic oscillator partition function (2.4)

computed through more traditional means.
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One last, trivial observation before we move on. The harmonic oscillator potential

depends, of course, on !2. In the derivation above, we assumed that ! > 0. In what

follows, a better answer for the partition function is

Z =
1

2 sinh(�|!|/2) (2.9)

This trivial amendment will be important to remember later when we discuss the

supersymmetric oscillator.

2.1.2 Fermions: Periodic or Anti-Periodic?

When dealing with supersymmetric systems, our theory necessarily contains fermionic,

or Grassmann, variables. And these bring a new subtlety to the problem.

In quantum field theories in higher dimensions, fermions famously come with a minus

sign issue: rotate a fermionic field by 2⇡ and it doesn’t come back to itself, but picks

up a minus sign. This same minus sign manifests itself when computing the thermal

partition function.

As we saw in Section 2.1, if we want to compute Z = Tr e��H then we should work

in Euclidean time with period �. The bosonic fields x(t) are given periodic boundary

conditions

x(⌧ + �) = x(⌧)

But for the fermionic fields, that minus sign suggest two possibilities: we could have

periodic or anti-periodic boundary conditions

 (⌧ + �) =  (⌧) or  (⌧ + �) = � (⌧)

Relatedly, there are two natural partition functions that we could construct for fermions.

In addition to the thermal partition function Tr e��H , we could also consider the quan-

tity Tr(�1)F e��H . In supersymmetric quantum mechanics, Tr(�1)F e��H is the Witten

index and is necessarily an integer. But, for a general fermionic system it is just a dif-

ferent way to sum the states, weighted by an extra minus sign. I’ll refer to the quantity

Tr (�1)F e��H as an “index” in both supersymmetric and non-supersymmetric theories,

although strictly this terminology should be reserved for the former case.

It seems plausible that inserting a factor of (�1)F in the trace would flip the sign

of the fermion as we go around the Euclidean temporal circle. But which boundary

condition corresponds to the thermal partition function, and which to the index?
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As always, the right answer can be found by going back to first principles and looking

at how one constructs the path integral from small, but finite, time steps. Here, how-

ever, we will simply give the answer and then provide some motivation. The answer

is that the thermal partition function requires anti-periodic boundary conditions for

fermions,

Anti-Periodic: Z = Tr e��H =

Z

 (�)=� (0)
D †D e�SE [ , †]

Meanwhile, the index is computed with periodic boundary conditions:

Periodic: Tr (�1)F e��H =

Z

 (�)= (0)

D †D e�SE [ , †]

To motivate this result, we will calculate the path integral in a particularly simple case.

The Fermionic Oscillator

The simple model that we’ll use as a testing ground is a free fermion with action

S =

Z
dt
h
i † ̇ � ! † 

i

This is nothing complicated: it is the Lagrangian description for a two state system. As

we’ve seen previously, the canonical commutation relations are { , } = { †, †} = 0

and { , †} = 1 and these naturally act on a two-dimensional Hilbert space spanned

by |0i and |1i such that

 |0i = 0 and |1i =  †|0i

The Hamiltonian of this system is

H =
1

2
![ †, ] ) H|0i = �!

2
|0i and H|1i = +

!

2
|1i

Note that we’ve chosen the symmetric operator ordering for the Hamiltonian, so that

the energies are E = ±!/2. In the absence of supersymmetry, there is nothing that

enforces this upon us and other orderings will give energies shifted by E + constant.

However, we will see below that the naive implementation of the path integral also

gives this symmetric choice of energies.
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For the two state system, the computation of the thermal partition function using

the Hamiltonian approach is a trivial calculation: we get

Z = Tr e��H = e��!/2 + e+�!/2 (2.10)

We define the fermion number F =  † , so F |0i = 0 and F |1i = 1. Then the index

di↵ers from the partition function just by a minus sign

Tr (�1)F e��H = �e��!/2 + e+�!/2 (2.11)

Clearly the index isn’t independent of � for this simple model: that is only true for

supersymmetric systems.

Our challenge is to reproduce these two results from the path integral and use this to

confirm which boundary condition gives which quantity. For both choices of boundary

condition, the starting point is the same: the Euclidean action is

SE[ 
†, ] =

Z
d⌧


 †d 

d⌧
+ ! † 

�

The fermionic path integral is Gaussian. By dint of the complex Grassmann nature of

the integration variables, we get det rather than det�1/2, so that

Z
D †D e�SE [ †

, ] = det

✓
d

d⌧
+ !

◆

We again think of the determinant as the product of eigenvalues. The eigenfunctions

have the same form as before

 (⌧) = ⌘0 e
ik⌧ )

✓
d

d⌧
+ !

◆
 = (ik + !) 

for some constant Grassmann parameter ⌘0. The di↵erence between periodic and anti-

periodic boundary conditions comes in the allowed values of k. We have

Periodic :  (⌧ + �) =  (⌧) ) k =
2⇡n

�

Anti-Periodic :  (⌧ + �) = � (⌧) ) k =
2⇡(n� 1/2)

�

with n 2 Z. We see that the modes are, up to a normalisation, either integer or

half-integer valued depending on the choice of boundary conditions.
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Let’s start with the periodic case. We have

Periodic: det

✓
d

d⌧
+ !

◆
=
Y

n2Z

✓
2⇡in

�
+ !

◆

= !
1Y

n=1

 ✓
2⇡n

�

◆2

+ !2

!

= !
1Y

n0=1

✓
2⇡n0

�

◆2 1Y

n=1

 
1 +

✓
�!

2⇡n

◆2
!

= 2 sinh

✓
�!

2

◆
(2.12)

where, in the last line, we’ve used our previous expressions for the convergent product

(2.6) and the divergent product, tamed by zeta function regularalisation (2.7). As

promised, this coincides with the index Tr (�1)F e��H that we computed in (2.11).

(Actually it di↵ers by a minus sign, but this is simply the convention for F .)

Meanwhile, with anti-periodic boundary conditions, we have

Anti-Periodic: det

✓
d

d⌧
+ !

◆
=
Y

n2Z

✓
2⇡i(n� 1/2)

�
+ !

◆

The modes k come in ± pairs with n pairing with �n + 1. (So, for example, n = 1

pairs up with n = 0 since both have k = ±⇡/�). We use this to rewrite the product as

det

✓
+

d

d⌧
+ !

◆
=

1Y

n=1

 ✓
2⇡(n� 1/2)

�

◆2

+ !2

!

=
1Y

n0=1

✓
2⇡(n0 � 1/2)

�

◆2 1Y

n=1

 
1 +

✓
�!

2⇡(n� 1/2)

◆2
!

Again, the determinant factorises into two inner products. Again, the second of these

is convergent and has a well known form (that, once more, we won’t prove),

1Y

n=1

 
1 +

✓
�!

2⇡(n� 1/2)

◆2
!

= cosh

✓
�!

2

◆

We’re left, however, with the first infinite product and this is clearly divergent. As

before, we turn to zeta function regularisation for refuge. The same argument that we

used for the bosonic oscillator can be invoked here too, now applied to the so-called

Hurwitz zeta function

⇣(s, 1/2) =
1X

n=0

1

(n+ 1/2)s
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The upshot is that, with anti-periodic boundary conditions, the path integral gives

det

✓
d

d⌧
+ !

◆����
anti�periodic

= 2 cosh

✓
�!

2

◆

This reproduces the thermal partition function (2.10).

It will not have escaped your attention that the path integral calculation was a lot

of work to get the partition function for a two state system. However, as we come to

consider more complicated quantum mechanical models, including higher dimensional

field theories, the path integral starts to come into its own and, ultimately, is much

more convenient than canonical quantisation.

2.1.3 The Witten Index Revisited

It’s useful to understand why, from the path integral perspective, the Witten index

is always an integer for supersymmetric theories. After all, something magical must

happen where we do an infinite dimensional integral but, regardless of the parameters

in the integrand, we always get an integer. How does this come about? The answer is

a rather special property of supersymmetric path integrals known as localisation.

To see how this works, we’ll revert to the simplest system of a particle with spin on

a line. In Euclidean time, the action (1.14) becomes

SE[x, , 
†] =

I
d⌧

"
1

2

✓
dx

d⌧

◆2

+  †d 

d⌧
+

1

2
h0 2 � h00 † 

#
(2.13)

where the
H
is there to remind us that we’re working in periodic time. The Euclidean ac-

tion is invariant under the Wick rotated supersymmetry transformations (1.19), which

read

�x = ✏† � ✏ † , � = ✏

✓
dx

d⌧
+ h0

◆
, � † = ✏†

✓
�dx

d⌧
+ h0

◆
(2.14)

The bosonic field x(⌧) is always periodic: x(⌧) = x(⌧ + �). But that means that the

supersymmetry transformations (2.14) only hold if  is also periodic:  (⌧) =  (⌧ +�).

As we’ve seen, if we wish to compute the thermal partition function Z = Tr e��H using

the path integral then we must give the fermions anti-periodic boundary conditions.

But, in doing so, we break supersymmetry. In contrast, if we wish to compute the

Witten index Tr (�1)F e��H then the path integral enjoys supersymmetry. This makes

intuitive sense. In general, the full partition function Z is no easier to compute for a

supersymmetric theory than a non-supersymmetric theory. But the Witten index is

much easier. And, from the path integral perspective, this manifests itself because of

the transformations (2.14).
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To proceed, let’s first show that the Witten index

I = Tr (�1)F e��H =

Z
DxD †D e�SE [x, , †]

doesn’t care about the magnitude of the potential. To this end, we rescale h ! �h

with � > 0. We then di↵erentiate with respect to � to find

dI
d�

=

Z
DxD D †

✓
�
I

d⌧ (�h0 2 � h00 † )

◆
e�SE

The extra term in the integrand has a special form because it is itself a supersym-

metry variation. To see this, it’s useful to use the supersymmetry generators that we

introduced in (1.21). With a rescaled potential �h and Euclidean time, these become

Q� =

Z
dt


 (t)

�

�x(t)
�
✓
dx

d⌧
� �h0

◆
�

� †(t)

�

Q†
�
=

Z
dt


� †(t)

�

�x(t)
+

✓
dx

d⌧
+ �h0

◆
�

� (t)

�
(2.15)

Then look at

Q†
�

I
d⌧ h0 =

I
d⌧

✓
�h00 † + h0dx

d⌧
+ �h0 2

◆

=

I
d⌧

✓
�h00 † +

dh

d⌧
+ �h0 2

◆

=

I
d⌧
�
�h00 † + �h0 2�

where, in the final term, we lost the total derivative. (Note that there’s no danger of a

boundary term here because ⌧ parameterises a circle and all fields are periodic.) This

means that we can write the derivative of the Witten index as

dI
d�

=

Z
DxD D †

✓
�Q†

�

I
d⌧ h0 

◆
e�SE

But we also know that the action is invariant under supersymmetry and, as we showed

in (1.22), this can be written as Q†
�
SE = 0. This means that our final expression is a

path integral of a total supersymmetry variation,

dI
d�

=

Z
DxD D † Q†

�

✓
�e�SE

I
d⌧ h0 

◆

The integrand is said to be Q-exact. The all-important point is that the integral of any

Q-exact quantity always vanishes.
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To see this, note from (2.15) that there are two terms in Q† (or Q): one in which

we di↵erentiate with respect to x(t), and one in which we di↵erentiate with respect to

 (t). Let’s start with the second of these.

To set the scene, we’ll briefly return to normal Grassmann integration (as opposed

to functional integration). Recall that the integral over any Grassmann variable ✓ only

gives a non-zero answer if there’s a single copy of ✓ in the integrand,
Z

d✓ 1 = 0 and

Z
d✓ ✓ = 1

There can’t be more powers of ✓ in the integrand because these are Grassmann variables

and ✓2 = 0. This means that Grassmann integration always obeys
Z

d✓
d

d✓
(Anything) = 0 (2.16)

That’s because the d/d✓ kills any power of ✓ that may have been lurking in the expres-

sion “Anything”, ensuring that there’s nothing left to saturate the
R
d✓ integral. The

formula (2.16) looks very much like an “integration by parts” formula for Grassmann

variables, but with no danger of a boundary term.

The story above also holds for the functional integration over fermionic fields. We

have
Z

D D † �

� (t)
(Anything) =

Z
D D † �

� †(t)
(Anything) = 0

That deals with the fermionic functional derivatives in Q and Q†.

We’re left with the bosonic functional derivatives �/�x(t). Here we have a total

derivative, albeit of a functional kind and we would expect such an integral to be given

by the boundary term. The question is: what should we consider to be the boundary

of this functional space? Large x(t)? Wildly varying x(t)? Either way, the boundary

term vanishes. This is because there is an exponential suppression from the action e�SE

that asymptotes quickly to zero for anything that you might reasonably consider to be

the boundary. The upshot of these arguments is that
Z

DxD D † Q† (Anything) =

Z
DxD D † Q (Anything Else) = 0

This, in turn, ensures that

dI
d�

= 0

which, of course, we know to be true from our Hamiltonian analysis.

– 44 –



Now we’re in business. Because the Witten index is independent of �, we can cal-

culate it in the limit � ! 1. Here the potential term in the action suppresses all

contribution except for the a finite number of constant maps,

x(⌧) = X such that h0(X) = 0

There are the critical points of h. The phenomenon of an integral – in this case an

infinite dimensional functional integral – receiving contributions from just a handful of

points is known as localisation. It is a property of supersymmetric path integrals that

is not shared by most other quantum systems.

We still need to compute the partition function around each of these critical points.

As we increase �, the potential around each critical point gets steeper and steeper and

the physics can be better and better approximated by a harmonic oscillator, with

h0(x) ⇡ h00(X)(x�X) + . . . ) V (x) ⇡ 1

2
(h00(X))2(x�X)2 + . . .

Indeed, taking the � ! 1 limit should be viewed as suppressing the non-linear inter-

actions in the potential. The statement that the Witten index is independent of � is

equivalently to saying that the one-loop approximation is, in fact, exact.

All of this means that the path integral expression for the Witten index is

Tr (�1)F e��H =

Z
DxD D † e�SE =

X

X

det(d/d⌧ � h00(X))

det1/2(�d2/d⌧ 2 + h00(X)2)

where the sum is over the critical points. Happily, we’ve already put some e↵ort into

computing the determinants of these operators. The bosonic contribution is (2.9)

det1/2
✓
� d2

d⌧ 2
+ !2

◆
= 2 sinh

✓
�|!|
2

◆

Meanwhile, the fermionic contribution is (2.12)

det

✓
d

d⌧
� !

◆
= �2 sinh

✓
�!

2

◆

The end result is

Tr (�1)F e��H =
X

X

�h00(X)

|h00(X)| =
X

X

sign(�h00(X))

This is the answer we expected. If h(x) is a polynomial of odd degree, then it has an even

number of critical points X, with h00(X) alternating in sign, giving Tr (�1)F e��H = 0.

Meanwhile, if h(x) is a polynomial of even degree then the alternating signs don’t cancel

out, leaving Tr (�1)F e��H = ±1.
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2.2 Instantons

Much of our story so far has revolved around understanding the structure of ground

states in supersymmetric systems. A common theme – one familiar from other quantum

mechanical models – is that the existence of multiple classical ground states does not

necessarily mean that there are multiple quantum ground states.

In this section, we develop a more hands-on understanding of how ground states are

lifted. Once again, our tool of choice will be the path integral and, as we will see,

this provides a particularly direct way to think about quantum tunnelling and related

phenomena. We will explore how this works in some detail, first in ordinary quantum

mechanical systems and then in those that exhibit supersymmetry.

The path integral in Euclidean time is (2.3),

hxf |e�HT |xii =
Z

x(T/2)=xf

x(�T/2)=xi

Dx(⌧) e�SE [x(⌧)] (2.17)

To start, we’ll focus only on the bosonic degrees of freedoms and then introduce fermions

into the discussion later. We’ll also restrict attention to just a single degree of freedom

x(⌧), with Euclidean action

SE =

Z
d⌧

"
1

2

✓
dx

d⌧

◆2

+
1

2

✓
dh

dx

◆2
#

(2.18)

Although the specific form of the potential V = 1
2h

0 2 arises naturally in any super-

symmetric theory, it is possible to write any positive definite potential in this way.

Moreover, as we now show, this turns out to be a useful thing to do even in a non-

supersymmetric theory.

Tunnelling is particularly easy to understand from the path integral perspective. It

arises from paths that start at one minima and end up at another. If the parameters

in the potential are such that we can do a semi-classical analysis, then the amplitude

for tunnelling is dominated by the classical paths that minimise SE. There is a rather

cute way of finding these paths. We write the action (2.18) by completing the square

SE =

Z
d⌧

1

2

✓
dx

d⌧
⌥ dh

dx

◆2

± dx

d⌧

dh

dx

The first term is positive definite, the second a total derivative. This means that we

have

SE � ±
Z

d⌧
dh

d⌧
= ±(h(xf )� h(xi)) (2.19)
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Figure 5. The instanton profile.

If we fix the end points xi and xf to be two distinct minima, then the action is minimised

when this inequality is saturated with the most stringent ± sign. This means that if

h(xf ) > h(xi), we should solve the equation

dx

d⌧
=

dh

dx
(2.20)

Solutions to this equation are known as instantons. The name is chosen (by ’t Hooft)

to mimic the names give to particles but, as will see, these solutions are not localised

in space but in (Euclidean) time and so occur just for an instant. If h(xf ) < h(xi), we

should solve the other equation

dx

d⌧
= �dh

dx
(2.21)

Solutions to this equations are called anti-instantons. They interpolate between the

two vacua in the opposite direction to instantons.

It will be useful to look at an example. Suppose that we take

h =
!

2a

✓
1

3
x3 � a2x

◆
) V =

!2

8a2
(x2 � a2)2 (2.22)

This is a double well potential with minima at x = ±a. The coe�cient out front

is chosen so that, around each minima, the potential is approximated by a harmonic

oscillator with frequency !,

V (x) ⇡ 1

2
!2(x± a)2 + . . . (2.23)

We have h(�a) = !a2/3 > h(a) = �!a2/3. The instanton therefore interpolates from

x = +a at ⌧ ! �1 to x = �a to ⌧ ! +1. In this case, the solution to (2.20) is
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Figure 6. On the left: a double well potential V (x) with two minima. On the right, the

same potential but flipped to �V (x) as befits Euclidean time.

straightforward:

xinst(⌧) = �a tanh

✓
!(⌧ � ⌧1)

2

◆
(2.24)

The profile of the instanton is shown in Figure 5. As ⌧ ! 1, we see that x(⌧) ⇡
⌥ae⌥!⌧ ! ⌥a and the instanton asymptotes exponentially quickly back to the vacuum.

The profile deviates significantly from the vacuum only in region of width ⇠ 1/!. The

exact position ⌧ = ⌧1 where this happens is an arbitrary integration constant.

For this example, the action of the instanton is

Sinst =
2!a2

3

For more general h(x) the exact solution of the instanton may be harder to come by but

its simple to get an intuitive feel for its properties. Viewed from the usual perspective

of Lagrangian dynamics, the Euclidean action (2.18) describes a particle moving in

a potential �V (x). This is shown on the right-hand side of Figure 6 for the double

well potential. The instanton (or anti-instanton) describes a particle that starts at one

maximum of �V (x) at ⌧ ! �1 and then rolls down and up to another maximum,

reaching the peak only at ⌧ ! +1.

If V (x) has multiple minima, then we can only find solutions to the instanton equa-

tions (2.20) and (2.21) that interpolate between neighbouring minima. This is because

these are first order equations of motion, and once you sit at a critical point of h you

have necessarily stopped. That doesn’t mean that there is no tunnelling between mul-

tiple vacua: indeed, as we’ll see shortly, in non-supersymmetric quantum mechanics

it is usually approximate solutions to the classical equations of motion that dominate

proceedings.
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2.2.1 Tunnelling

To get a feel for the path integral manipulations, we won’t yet introduce supersymmetry.

Instead we’ll explore the quantum mechanical physics of the double well potential shown

in the left-hand side of Figure 6.

Let’s first remind ourselves what we qualitatively expect from the ground states.

Around each minima, the potential looks like a harmonic oscillator (2.23) and we

can then construct approximations to the ground states as Gaussian wavefunctions,

localised around each of the minima

 left(x) = exp
⇣
�!
2
(x+ a)2

⌘
and  right(x) = exp

⇣
�!
2
(x� a)2

⌘

For any even potential V (x) = V (�x), the energy eigenstates are also eigenstates of

the parity operator, meaning that they are either even or odd functions. A better

approximation to the low-lying energy eigenstates must therefore be

 ±(x) ⇡  left(x)±  right(x)

But the true ground state of any quantum system has no node, meaning that  (x) 6= 0

for any finite x. (Given a wavefunction  (x) with a node, we can consider | (x)| and
then smooth out the cusp to lower the expected energy.) So it must be that  +(x)

is an approximation to the ground state, while  �(x) is an approximation to the first

excited state.

We’ll now add some quantitative meat to these statements using the path integral

which provides a particularly straightforward way to compute the ground state energies

of the double well potential. To see this, we pick position eigenstates |xii and |xfi.
These need not themselves be ground states of the system, but should have a non-

zero overlap with the ground states. As we’ve seen, the path integral (2.17) naturally

computes hxf |e�HT |xii. If we insert a complete set of energy eigenstates |ni, with

energy En, then we have

hxf |e�HT |xii =
X

n

e�EnT hxf |nihn|xii

If we wait long enough, this sum is dominated by the ground state E0 < En for all

n 6= 0. We then have, for large T ,

hxf |e�HT |xii ⇠ e�E0T

So to determine the ground state energy, we just need to compute the path integral

and extract the large T behaviour. We can then find the ground state energy in the

exponent.
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We will now use the semi-classical, or WKB, approximation to compute the amplitude

for a particle to tunnel from one vacuum to the other and, in doing so, extract the

ground state energy. We start by using the path integral to compute the amplitude for

the particle to tunnel from one classical vacuum to another due to a single instanton.

We write

x(⌧) = xinst(⌧) + �x

where xinst(⌧) is the solution to the relevant instanton equation (either (2.20) or (2.21)).

We then expand the Euclidean action as

SE[x] = Sinst +

Z
d⌧

1

2
�x

✓
� d2

d⌧ 2
+ V 00

◆
�x+O(�x3) (2.25)

Here V 00 is evaluated on xinst. Similarly, Sinst is the action of the instanton which, from

(2.19), is

Sinst = |h(xf )� h(xi)| (2.26)

Alternatively, written in terms of the potential V = 1
2h

0 2, the action of the instanton

is Sinst =
R
dx

p
2V . It should be thought of as a measure of the di�culty in getting

up and over (or, more precisely, through) the barrier between the two minima.

The semi-classical approximation is valid whenever we can ignore the O(�x3) con-

tributions relative to the �x2 contributions in the path integral. To understand the

circumstances under which this holds, we should look more closely at the action and

identify a dimensionless coupling constant g which multiplies all higher order terms.

Perturbation theory is then valid when g ⌧ 1. A simpler way to view things is to

rescale the potential h(x) ! �h(x). Then the semi-classical approximation is valid

in the limit � � 1 where we have a steep potential, with deep minima. Under this

rescaling, the action of the instanton (2.26) becomes

Sinst ! �|h(xf )� h(xi)|

and so we see that �� 1 is equivalent to

Sinst � 1

This is the requirement that we will use for the semi-classical approximation to be

valid. The results that we will get below will receive corrections of order 1/Sinst.
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In the language of quantum field theory, neglecting the higher order �x3 terms is

tantamount to computing one-loop diagrams but not two-loop or higher. In normal

circumstances, we would be doing perturbation theory around the classical vacuum

x(⌧) = ±a, in which case we would have V 00 = !2, a constant. The di↵erence here

is that we’re now doing perturbation theory around the background of the instanton

profile.

The kind of instanton calculations that we’re performing here are often referred to as

non-perturbative. This refers to the fact that tunnelling phenomena of this kind can’t

be captured by perturbation theory around any single vacuum. However, the phrase

“non-perturbative” is also a little misleading: we’re still doing perturbation theory, just

around a non-trivial solution.

Inserting (2.25) into the path integral (2.17), and dropping the terms that are cubic

or higher, we are left with a Gaussian integral

h�a|e�HT |+ ai
���
one�inst

= e�Sinst

Z
D�x exp

✓
�
Z

d⌧ �x

✓
� d2

d⌧ 2
+ V 00

◆
�x+ . . .

◆

On the left-hand side, we’ve taken the tunnelling to happen over a time T ; ultimately

we will be interested in taking T ! 1. We have also stressed that we’re computing

the contribution to the tunnelling from a single instanton and we’ll subsequently see

that this is just part of the story.

Now we’re in a familiar situation. The Gaussian integral gives, as usual, by

det�1/2

✓
� d2

d⌧ 2
+ V 00

◆
(2.27)

As we stressed above, this di↵ers from the usual determinant that we compute in

perturbation theory only because V 00 = V 00(xinst(⌧)) is now evaluated on the time-

dependent profile xinst(⌧). Nonetheless, the strategy to computing the determinant

remains the same: we first find the eigenvalues
✓
� d2

d⌧ 2
+ V 00

◆
�x = ��x (2.28)

The determinant is then given by the (suitably regularised) product of eigenvalues �.

There is, however, a catch. In the background of the instanton, there is always one

eigenvalue that is zero. Viewed naively, this would seem to tell us that the determinant

vanishes, giving an infinite amplitude for tunnelling. This, it turns out, is not an infinity

that we should try to regulate away, but instead an infinity that means we should think

more carefully about what we’re calculating. Our first task, therefore, is to understand

the physics behind this zero eigenvalue.
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Happily, there is a simple reason for the existence of this zero eigenvalue. It follows

from the fact that, as seen in the explicit instanton profile (2.24), the instantons come

with an integration constant ⌧1 which specifies the “time” at which the profile jumps

from one ground state to the other. Clearly the action of the instanton xinst(⌧ � ⌧1) is

independent of ⌧1. But this means that

�x0 =
@xinst

@⌧1
(2.29)

obeys (2.28) with a vanishing eigenvalue � = 0.

Understanding zero modes is an important part of any instanton computation. They

typically arise, as in the present case, because the instanton solution is not unique,

but labelled by a number of parameters known as collective coordinates. For us, the

instanton profile has a single collective coordinate, ⌧1. Any fluctuation, like (2.29),

that can be thought of as a variation of a collective coordinate necessarily has zero

eigenvalue. These fluctuations are called zero modes.

In the present case, the existence of the zero mode can be traced to the fact that the

underling quantum mechanics enjoys time translation symmetry, while any particular

instanton profile does not. In quantum field theory (or statistical field theory), we

would refer to the zero mode as a “Goldstone boson” for time translational symmetry.

Now that we understand that the zero mode simply corresponds to the possible times,

�T/2 < ⌧1 < T/2, at which the instanton makes its move, it’s clearer how we should

proceed. We should treat the zero mode separately. First we integrate over all the

non-zero modes. Then, rather than attempting to integrate over the zero mode, we

instead exchange this for an explicit integration over the collective coordinate ⌧1; this

will simply multiply our final expression by an overall factor of T , the time over which

the tunnelling takes place. The end result is

h�a|e�HT |+ ai
���
one�inst

= e�Sinst

Z
T/2

�T/2

d⌧1p
2⇡

J

s
1

det0 (�@2
⌧
+ V 00)

(2.30)

There are a few things to unpick in this formula. First, this is only the one-loop

contribution and, strictly speaking, we should include a + . . . corresponding to higher

loop contributions. Next, the determinant is written as det0, with the prime denoting

that we include only non-vanishing eigenvalues. The
p
2⇡ is the standard normalisation

for each mode in the path integral.
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Finally, there is that factor of J : this is merely the Jacobian that arises when changing

from integrating over the field x(⌧), to the collective coordinate ⌧1. It is easy to calculate

J2 =

Z
d⌧

✓
@xinst

@⌧1

◆2

=

Z
d⌧

1

2

 ✓
@xinst

@⌧

◆2

+

✓
dh

dx

◆2
!

= Sinst (2.31)

where, in the second equality, we’ve used the fact that xinst(⌧) satisfies the instanton

equation (2.20).

There is one further step that is useful. We will write our expression in way that

makes the comparison to the classical ground state energy clearer. As we’ve seen, each

classical ground state is given by a harmonic oscillator of frequency !. We already

computed the path integral for Euclidean periodic time � in Section 2. The long time

behaviour must be independent of the boundary conditions, so we also have

ha|e�HT |aiSHO =

s
1

det (�@2
⌧
+ !2)

⇡ e�!T/2 (2.32)

where e�!T/2 is the long time behaviour of the 1/ sinh formula that we derived in (2.8).

It will ultimately be clearer to write our tunnelling amplitude in a way that highlights

the connection to the harmonic oscillator so, to this end, we collect everything together

to get the final result for the one-instanton contribution,

h�a|e�HT |+ ai
���
one�inst

= Te�!T/2Ke�Sinst (2.33)

where all the other pre-factors have been bundled together into

K =

r
Sinst

2⇡

s
det (�@2

⌧
+ !2)

det0 (�@2
⌧
+ V 00)

There are three things to take away from this. First, there are some slightly messy

pre-factors that we’ve absorbed into K, which now include a ratio of the harmonic

oscillator and instanton determinants. The exact expression for this ratio will not be

particularly important in what follows and we won’t make any attempt to compute

it. However, the advantage of writing this as a ratio of determinants is that it makes

it clear that it di↵ers from 1 only due to physics in a region of width 1/! where the

instanton profile is non-trivial, and V 00(xinst) di↵ers from !2. We’ll see the utility of

this shortly.
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Figure 7. A dilute gas consisting of an instanton, followed by an anti-instanton and then,

finally, another instanton.

Second, the amplitude is suppressed by a factor of e�Sinst . This is a characteristic

feature of tunnelling in quantum mechanics. Finally, we see that the tunnelling ampli-

tude from a single instanton has the slightly odd Te�T behaviour. It turns out that the

correct interpretation of this comes by considering not a lone instanton, but a whole

slew of them.

2.2.2 The Dilute Gas Approximation

In the calculation above, we restricted to a single instanton solution that interpolates

from one classical ground state to the other. However, we know that the interesting

part of this instanton profile takes place over a region that is exponentially localised

within a width ⇠ 1/!. That means that if we take an instanton, followed a long time

later, by an anti-instanton, followed some time later still by another instanton, then

this almost solves the classical equation of motion. It’s not an exact solution because

there are no exact classical solution with these properties. But, if the instantons and

anti-instantons are separated by a distance L � 1/!, then the action of a string of n

such objects is roughly

Sn�inst = nSinst +O(e�!L)

This means that the action decreases very little as L increases. In this sense, as long

as L � 1/!, the deviation from an exact solution is small.

Our interest in the classical instanton solutions is purely as a starting point for a

semi-classical evaluation of the path integral. But, for these purposes, the approximate

solutions, consisting of a string of instantons and anti-instantons are equally as good.

This is known as the dilute gas approximation. An example of a dilute gas is shown in

Figure 7.
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We take the locations of these instantons and anti-instantons to lie at

�T

2
< ⌧1 < ⌧2 < . . . < ⌧n <

T

2
(2.34)

where ⌧k is the position of an instanton for k odd, and an anti-instanton for k even.

The dilute gas approximation holds if ⌧k+1 � ⌧k � 1/!.

In computing the amplitude h�a|e�HT |ai, we should sum over all possible numbers of

instantons and anti-instantons. We just need one more instanton than anti-instanton

to ensure that we end up in the opposite vacuum from where we started. In other

words, n should be odd in (2.34).

Because the (anti)-instantons are far separated, their contribution to the path integral

are independent. That means that we can simply import the calculation that we did

above and the full tunnelling amplitude generalises the one-instanton result (2.33)

h�a|e�HT |+ ai = e�!T/2
X

n odd

Z
T/2

�T/2

d⌧1

Z
T/2

⌧1

d⌧2 . . .

Z
T/2

⌧n�1

d⌧n (Ke�Sinst)n

Note that the harmonic oscillator contribution e�!T/2 sits out the front of everything.

Instead, each (anti)-instanton independently contributes a factor of the ratio of deter-

minants K since, as we argued above, this ratio of determinants is non-trivial only in

the vicinity of the (anti)-instanton.

The factor of T in (2.33), which came from the integral over the collective coordinate

⌧1, is now replaced by the multi-integral above. This is straightforward to evaluate and

gives

h�a|e�HT |+ ai = e�!T/2
X

n odd

T n

n!
(Ke�Sinst)n = e�!T/2 sinh(KTe�Sinst)

We see the e↵ect of summing over the dilute gas is to exponentiate the one-instanton

contribution KTe�Sinst .

We can also do a similar calculation to evaluate the amplitude h+a|e�HT | + ai =

h�a|e�HT | � ai for returning to our original vacuum. Everything is the same, except

that we should now take the number n of instantons and anti-instantons to be even.

Of course, n = 0 is allowed. We then get

h�a|e�HT |� ai = e�!T/2
X

n even

T n

n!
(Ke�Sinst)n = e�!T/2 cosh(KTe�Sinst)

Before we go on, we note that this same calculation appears in a seemingly di↵erent

setting of Statistical Field Theory when we showed that discrete symmetries in 1d hot

systems cannot be spontaneously broken. (See section 1.3.3 of those notes.)
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The two formulae above contain the information about the energy splitting that

we wanted to find. From our earlier discussion, we know that the ground state has

non-vanishing overlap with

|groundi = |+ ai+ |� ai

while the first excited state has overlap with

|excitedi = |+ ai � |� ai

From above, we have

hground|e�HT |groundi = 2e�E0T with E0 =
!

2
�Ke�Sinst

and

hexcited|e�HT |excitedi = 2e�E1T with E1 =
!

2
+Ke�Sinst

We see the promised energy splitting, proportional to the characteristic tunnelling

amplitude e�Sinst .

Strictly speaking, neither of the formulae above can be trusted. Both E0 and E1 will

receive perturbative contributions to their energies and these will scale as some power

of 1/Sinst. The important fact is that, because of the symmetry of the potential, these

contributions will be the same for both states. The real meaning of the calculation

we’ve just done is to compute the splitting of the two states

E1 � E0 = 2Ke�Sinst

Of course, if we really want to do a good job then we should roll up our sleeves and

compute the ratio of determinants that sits in K. But we can see the key piece of

physics without doing this: the splitting of energy levels scales as e�Sinst .

2.3 Instantons and Supersymmetry

It’s now time to return to supersymmetric quantum mechanics. It turns out that

there is a deep relationship between instantons and supersymmetry, both in quantum

mechanics and in higher dimensional quantum field theories. The two make for perfect

bedfellows. In this section, we will start to get a hint of where this relationship emerges

from. We’ll also see that the existence of fermions brings some important technical

di↵erences to the tunnelling calculation that we did in the last section.
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For concreteness, we’ll again work with the cubic h given in (2.22), corresponding to

a double well potential V (x) with minima at x = ±a. The novelty, of course, is the

presence of fermions.

The Euclidean supersymmetric action is (2.13)

SE[x, , 
†] =

Z
d⌧

"
1

2

✓
dx

d⌧

◆2

+  †d 

d⌧
+

1

2
h0 2 � h00 † 

#
(2.35)

We can largely proceed as the previous section. The bosonic instanton configuration

is xinst(⌧) and we evaluate the path integral in a semi-classical expansion around this

background. In addition to the bosonic fluctuations �x, we must also integrate out the

fermions. This give the usual determinant contribution

det

✓
d

d⌧
� h00

◆
(2.36)

where, as for the bosonic fluctuations, we evaluate h00 = h00(xinst(⌧)) on the instanton

profile.

We need to briefly pause to think about what this determinant means because, in

contrast to the bosonic fluctuations (2.27), it’s not the determinant of a Hermitian

operator. The operator used to be Hermitian, back when we were living in real time,

where it was (+id/dt� h00). But the Wick rotation ruined that property. We define

D =
d

d⌧
� h00 and D† = � d

d⌧
� h00 (2.37)

The eigenvalue equation of this pair of operators should be thought of as

Df(⌧) = �g(⌧) and D†g(⌧) = �f(⌧)

The determinant (2.36) is then the product of all eigenvalues �.

2.3.1 Fermi Zero Modes

When we come to evaluate the fermionic determinant we run into the same subtlety

that we saw in the bosonic case: the operator D has a zero eigenvalue and so the

determinant is zero. In fact, the profile of the associated fermionic fluctuation takes

the same form as the bosonic zero mode (2.29),

 0 = ⌘
dxinst

d⌧
(2.38)
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Here ⌘ is a constant Grassmann parameter. You should think of it as a Grassmann

collective coordinate, analogous to the bosonic collective coordinate ⌧1. It is straight-

forward to see that  0 is an eigenfunction with vanishing eigenvalue. We have

dxinst

d⌧
=

dh

dx
) d2xinst

d⌧ 2
� h00dxinst

d⌧
= 0 )

✓
d

d⌧
� h00

◆
 0 = 0

We could have anticipated the existence of this fermionic zero mode on symmetry

grounds. Recall that we could trace the bosonic collective coordinate ⌧1 to time trans-

lational symmetry since, while the action is invariant under time translations, any given

instanton profile is not. Similarly, the fermionic collective coordinate can be traced to

a fermionic symmetry which is, of course, supersymmetry. If we look again at the

transformation rules (2.14) for the fermions in Euclidean time, then we see something

rather nice:

� = ✏

✓
dx

d⌧
+ h0

◆
, � † = ✏†

✓
�dx

d⌧
+ h0

◆
(2.39)

The supersymmetry transformations have, hidden within them, the instanton and anti-

instanton equations (2.20) and (2.21)! This, it turns out, is a beautiful feature of

supersymmetry, and one that persists as we look both to more complicated theories

and to more complicated instantons and other solitons. For now, we note that if we

take an instanton obeying ẋ = h0 and hit it with a supersymmetry transformation,

then  will turn on while  † will not. But, because supersymmetry is a symmetry, the

action of the solution doesn’t change when  turns on. This is the fermi zero mode

(2.38) that we identified above.

You might be nervous that we seem to have broken reality. In the background of an

instanton, the fermion  has a zero mode, but  † does not. Indeed, the equation of

motion for  † is D† † = 0 and D† has no zero mode in the background of an instanton.

Conversely, in the background of an anti-instanton  † has a zero mode, while  has

none. This issue is commonplace for fermions in Euclidean time (or, more generally, in

Euclidean space) and arises because D is not Hermitian. It’s best to think of  and  †

as independent degrees of freedom in Euclidean time. Only when we Wick rotate back

to real time (or Minkowski space) do the reality and Hermiticity properties of various

operators manifest themselves again.

The upshot is that the instanton breaks one half of the supersymmetries: Q† is broken

and generates a fermionic zero mode, while Q survives. Objects, like instantons, which

have the property of preserving some fraction of the supersymmetry are known as BPS.

(The initials stand for Bogomolnyi, Prasad and Sommerfeld, but what they actually
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did was only vaguely related to supersymmetry and the meaning of the initials BPS

has evolved over the years.)

Although Q is unbroken, it is not totally redundant. It actually relates the collective

coordinates ⌧1 and ⌘ of the instanton, a kind of “zero dimensional” supersymmetry.

This interpretation won’t be important for now.

Let’s now return to our tunnelling computation. We know what to do: rather than

integrate over all fermion modes, we isolate the zero mode and treat it separately,

choosing instead to integrate over the fermionic collective coordinate ⌘. As before, we

pick up a Jacobian factor which, because the fermion zero mode (2.38) has the same

functional form as the bosonic zero mode (2.29), is the same value J =
p
Sinst that

we computed in (2.31). But Jacobians for Grassmann integration come as 1/J , rather

than J so this actually cancels our original bosonic contribution.

The net e↵ect is that if we repeat the steps that took us to (2.30), we now have

h�a|e�HT |+ ai
���
one�inst

= e�Sinst

Z
T/2

�T/2

d⌧1p
2⇡

Z
d⌘

det0(@⌧ � h00)p
det0 (�@2

⌧
+ V 00)

We now have a ratio of determinants, both with zero eigenvalues omitted. There

is no need to do our previous trick of introducing the harmonic oscillator amplitude

(2.32). Indeed, part of the reason for doing that previously was to make manifest the
1
2~! ground state energy but, as we’ve seen, the analogous semi-classical energy in

supersymmetric quantum mechanics is exactly zero.

2.3.2 Computing Determinants

In non-supersymmetric theories, it can be very challenging to compute the determinants

in the background of an instanton. In contrast, in supersymmetric theories it is trivial

because the ratio of determinants precisely cancels! To see this, we use the definition

of the fermionic operators in (2.37) and note that

D†D =

✓
� d

d⌧
� h00

◆✓
d

d⌧
� h00

◆

= � d2

d⌧ 2
+ h000dx

d⌧
+ (h00)2

= � d2

d⌧ 2
+ h000h0 + (h00)2

where, to get to the second line, we’ve used the fact that these operators are evaluated

on the solution to the instanton equation (2.20). But the potential is V = 1
2h

0 2, so
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V 0 = h0h00 and V 00 = h000h0 + (h00)2, so

D†D = � d2

d⌧ 2
+ V 00

which is precisely the bosonic fluctuation operator. This means that if we have a

bosonic eigenfunction f , with D†Df = �f with � > 0, then we can define g = Df/
p
�.

We then have Df =
p
�g and D†g =

p
�f , which means that

p
� is an eigenvalue of

the fermionic operator (in the sense that we described previously).

This cancellation is entirely analogous to our previous observation that the ground

state energy in a supersymmetric vacuum is zero, since the +1
2~! from the harmonic

oscillator is precisely cancelled by a �1
2~! from the fermions. Here we see a similar

cancellation persists about a BPS instanton configuration. This is a lesson that also

transfers to higher dimensional quantum field theories, where it is often the case that all

perturbative contributions cancel between bosons and fermions when evaluated about

BPS backgrounds.

In the present context, it means that the tunnelling amplitude in a supersymmetric

theory due to a single instanton is extremely simple:

h�a|e�HT |+ ai
���
one�inst

= e�Sinst

Z
T/2

�T/2

d⌧1p
2⇡

Z
d⌘

Not only is it very simple, it is also very zero. That’s because of the presence of the

fermion zero mode. Recall the rules for Grassmann integration,
Z

d⌘ 1 = 0 and

Z
d⌘ ⌘ = 1

With nothing to soak up the fermion zero mode in the integrand, the amplitude for

tunnelling vanishes.

In fact, this is to be expected given our earlier discussion of supersymmetric quantum

mechanics. From Section 1.2, we know that the semi-classical ground states |� ai and
|+ai lie in di↵erent spin sectors or, equivalently, in di↵erent components of the Hilbert

space factorisation H = HB �HF . This means that there can be no tunnelling from

one state to another and the path integral realises this by introducing a lone fermion

zero mode.
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2.3.3 Computing the Ground State Energy

The Hamiltonian analysis of Section 1.2 told us more about this system. We know, for

example, that the two states localised in di↵erent minima remain true ground states

of the system but their energy is lifted above zero (i.e. supersymmetry is broken for

a cubic h(x)). It is possible to see this from the path integral. We just need a small

tweak of our previous analysis.

Rather than working with position eigenstates | ± ai, we’ll instead revert briefly

to the exact ground states |Li and |Ri, which have support localised around the left

and right minima respectively. Supersymmetry means that these must have the same

energy E0 and sit in HB and HF respectively. This means that Q†|Ri = Q|Li = 0.

Moreover, from our early analysis (1.3) we know that the two states are related by

|Ri = Q†|Li/
p
2E0. The energy of either state can then be computed as follows:

E0 = hL|H|Li = 1

2
hL|{Q,Q†}|Li = 1

2
hL|QQ†|Li =

r
E0

2
hL|Q|Ri

This means that

E0 =
1

2
|hL|Q|Ri|2 (2.40)

We see that, to compute the energy of the ground state, we must compute a tunnelling

amplitude hL|Q|Ri but, crucially, with a factor of the supercharge Q sandwiched be-

tween the two states.

In fact, it turns out that there’s a little trick and things work out better if we compute

the amplitude hL| [Q, h] |Ri1. This is very closely related to the amplitude hL|Q|Ri
that we need. First, for a steep potential, we have |Ri ⇡ | + ai and |Li ⇡ | � ai, so
h(x)|Ri ⇡ h(a)|Ri and h(x)|Li = h(�a)|Li and

hL| [Q, h] |Ri ⇡ (h(a)� h(�a))hL|Q |Ri = Sinst hL|Q |Ri

But the commutator [Q, h] has a particularly nice form. After Wick rotating the

supercharge (1.17) reads Q = i(p� h0) and the commutator is

[Q, h] =
dh

dx
 

1
This sidesteps an annoying subtlety. If you compute the matrix element for hL|Q|Ri directly then,

at leading order, the result will vanish. This is because, after Wick rotation to Euclidean time, Q
is proportional to the instanton equations and so vanishes when evaluated on the instanton. (This

follows from the fact that the supersymmetry transformation (2.39) is proportional to the instanton

equation.) You then have to work to higher order to find the non-vanishing ground state energy.

Computing the matrix element of [Q, h] avoids this headache.
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This means that we can get to the ground state energy (2.40) by computing the am-

plitude

hL|Q |Ri ⇡ 1

Sinst
hL| [Q, h] |Ri = 1

Sinst
hL|h0 |Ri

Now we can revert to our path integral expression again. We compute hL|Q|Ri by the

same kind of analysis that we performed above, but this time with an extra power of

h0 in the integrand,

hL|Q|Ri = e�Sinst

Sinst

Z
T/2

�T/2

d⌧p
2⇡

Z
d⌘ h0  

We next replace the  that appears in this expression with the fermi zero mode (2.38)

 0 = ⌘ dx/d⌧ . Furthermore, h0 should be evaluated on the the instanton background

xinst(⌧). Importantly, the presence of  0 soaks up the
R
d⌘ integral, rescuing the result

from the vanishing answer we found before. We now have

hL|Q|Ri = e�Sinst

Sinst

Z
d⌧p
2⇡

dh

dx

dx

d⌧
=

e�Sinst

Sinst

Z
d⌧p
2⇡

dh

d⌧

Rather wonderfully, the final integral is a total derivative and just gives us h(⌧ =

+1)� h(⌧ = �1) = Sinst. The final answer is then very simple:

hL|Q|Ri = e�Sinst

p
2⇡

(2.41)

We learn that the ground state energy is non-zero, but exponentially small

E0 ⇠ e�2Sinst

There’s another lesson lurking in the calculation above. To compute the energy E0,

we didn’t need to invoke the dilute gas approximation; it was su�cient to look at a

single instanton. Indeed, viewed the right way it was necessary to look at just a single

instanton. This is because the single instanton is BPS, meaning that it is invariant

under one-half of the supersymmetries, and therefore has just a single fermion zero

mode. However, a string of instanton-anti-instanton pairs does not have this property:

it breaks both Q and Q† and therefore has two fermion zero modes, rather than just

one. This is a special property of BPS instantons in supersymmetric theories that is

closely related to the localisation of the path integral that we saw previously.

We’ll revisit instanton calculations of this kind in Section 3.2 where we discuss Morse

theory. It will turn out that these kind of calculations underlie many of the key ideas

in that context.
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2.3.4 One Last Example: A Particle on a Circle

Before we move on to more geometrical things, there is one last example that will prove

useful to have under our belts. This is the supersymmetric particle moving on a circle

S1, with

h(x) = !R sin(x/R)

where R is the radius of the circle. The associated potential is

V (x) = !2 cos2(x/R)

and has two minima at x = ±⇡R/2.

We briefly discussed this model in Section 1.2.2 where we showed that, despite its

similarities to the double well potential, it actually has two zero energy ground states,

given by e+h|0i and e�h †|0i. The puzzle that we’d like to address here is: why aren’t

these states lifted from the perspective of the path integral?

It’s straightforward to guess the reason for this, but a little trickier to show how it

works. Consider instantons (as opposed to anti-instantons) that solve

dx

d⌧
= h0 = ! cos(x/R)

These necessarily interpolate from small h(x) to large h(x) which, for us, means from

the vacuum x = �⇡R/2 at ⌧ ! �1 to the vaccum x = +⇡R/2 at ⌧ ! +1. The

novelty is that we have two di↵erent instanton solutions in this case, corresponding

to the two di↵erent ways to go around the circle. The first instanton has ẋ > 0, the

second ẋ < 0.

So it’s clear what the solution to our puzzle must be. These two instantons must

contribute with opposite signs, so that they cancel out in the matrix element

h+⇡R
2

|Q |� ⇡R

2
i

that we care about, leaving the energy of both states at zero. The question is: how

does this minus sign arise in the computation?

This, it turns out is subtle. A rerun of the calculation above shows that there’s

nowhere obvious that this sign could appear. The non-obvious place is, it turns out, in
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the definition of the determinants. The cancellation that we derived in Section 2.3.2 is

really

detDp
detD†D

= ±1

Figuring out which sign we get is not so straightforward. For now, we’ll content our-

selves with the observation that, by answer analysis, the signs must be opposite for the

two instantons that traverse the circle in di↵erent directions. We’ll give a prescription

for computing this sign in Section 3.2 when we discuss Morse theory.
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