
3 Supersymmetry and Geometry

In this section, we will begin our journey into the territory of mathematicians. Our

strategy is to think about the physics of a particle moving on a manifold. As this

section progresses, we will learn that the quantum ground states of this particle encode

some precious information about the manifold.

Before we get to supersymmetry, let’s set the scene. We consider a massive, non-

relativistic particle moving on the manifold M of dimension dim(M) = n. The dynam-

ics of this particle is described by the Lagrangian

L =
1

2
gij(x) ẋ

iẋj (3.1)

where xi are coordinates on the manifold, with i = 1, . . . , n, and gij(x) is a Riemannian

metric on M .

Lagrangians of the form (3.1) are commonplace in physics, both in quantum mechan-

ics and in higher dimensional quantum field theories. They often go by the unhelpful

name of a sigma model. Sometimes they are called non-linear sigma models to reflect

the fact that, unless gij is constant, the equations of motion will be non-linear. The

name “sigma model” is utterly unilluminating; it dates from one of the first such models

written down by Gell-Mann and Levy to describe the dynamics of mesons. (Somewhat

comically, Gell-Mann and Levy were building on an earlier model that described both

pions and an extra meson known as the “sigma”. They then wrote down an improved

model that described just the mesons but chose to name it after the missing particle.

And the name stuck.)

Geometrically, we should think of the sigma model as a map from the worldline of

the particle W to the manifold,

x(t) : W 7!M

The manifold M is known as the target space. For much of what we do below, the story

will be simplest if M is a compact, orientable manifold and we’ll assume this to be the

case in what follows.

Strictly speaking, the metric gij(x) in the Lagrangian should be viewed as the pull

back of the metric from M to W . As we saw in earlier courses covering di↵erential

geometry, strictly speaking the sigma model only describes the particle in a patch of the

manifold M that is covered by the coordinates xi. One might think that to understand

more subtle topological issues, we should be willing to consider overlapping patches.

Perhaps surprisingly, it will turn out that this is not necessary, at least in these lectures.
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We now ask: what does the particle described by (3.1) know about the manifold M ,

and what kind of mathematics might it encapsulate? To get a sense for this, we could

first think about the Lagrangian (3.1) as describing a classical particle. In this case the

equations of motion are the geodesic equations

ẍi + �i

jk
ẋjẋk = 0 (3.2)

where �i

jk
is the Levi-Civita connection,

�i

jk
=

1

2
gil (@jgkl + @kgjl � @lgjk)

and we’re using the notation @i = @/@xi.

There is certainly a lot of interesting physics in the geodesic equation. But it’s

challenging to extract any interesting mathematical statements about the manifold M

from knowledge of these geodesics. In particular, at any given time, the particle knows

only about its immediate surrounding, yet any point looks much the same as any other

locally. This means that the state of the particle cannot know anything about the

global properties of the manifold. To extract any such information, we would need to

know about the entire history of the particle.

This can be contrasted with the situation in quantum mechanics. Now the wavefunc-

tion spreads over the manifold M , which suggests that the state of the particle may well

know about some of the manifold’s quirks. In particular, the state of a quantum particle

may be sensitive to the topology of M . Ultimately, we will see that this is indeed the

case, at least when we consider supersymmetric extension of our theory. But, for now,

let’s push on can consider the quantum theory associated to the non-supersymmetric

Lagrangian (3.1).

To describe the quantum theory, we first need the momentum

pi =
@L

@ẋi
= gijẋ

j

We then impose canonical commutation relations [xi, pj] = i�i
j
and construct the Hamil-

tonian

H = piẋ
i � L =

1

2
gijpipj

Already here, things are not so straightforward because the metric gij depends on xi

and these don’t commute with pi. Di↵erent choices of ordering give di↵erent quantum

Hamiltonians and so di↵erent theories.
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There is no right or wrong choice here. But we can narrow down our options by

requiring that the resulting theory has certain desirable properties. Given that we’re

interested in the geometry of M , it makes sense to search for a Hamiltonian that

is covariant with respect to changes of coordinates on M . In other words, to stick

as closely as possible to di↵erential geometry. The action of the momentum on the

wavefunction is, as usual, pi = �i@i, so the Hamiltonian should be a second order

di↵erential operator with terms that involve no more than two derivatives acting on

the metric. There is a one-parameter family of such Hamiltonians, labelled by ↵ 2 R,

H = � 1

2
p
g

@

@xi

✓
p
ggij

@

@xj

◆
+ ↵R (3.3)

where g = det gij and R is the Ricci scalar. The first term in this expression is the

Laplacian, acting on functions, and can also be written more simply using the covariant

derivative,

H = �1

2
gijrirj + ↵R (3.4)

We should also decide what Hilbert space we want our operators to act on. The obvious

choice is to take the wavefunctions  (x) as functions over M , with the norm given by

|| ||2 =
Z

dnx
p
g | (x)|2 (3.5)

Note, in particular, that the inner product includes the factor of
p
g in the measure, as

is appropriate in the geometric context.

Now we have our Hamiltonian (3.4) describing a quantum particle roaming around

on a manifold M . What do we do with it? As physicists, our natural inclination is

to find the spectrum of the Hamiltonian. We would typically expect that the particle

has a unique ground state, with an infinite tower of excited states. This prompts two

interesting questions: first, is it possible to calculate this spectrum? Second, what can

we do with this information?

Both of these questions are interesting, although neither is easy. In general, it is a

di�cult problem to determine the spectrum of the Hamiltonian (3.4). Which properties

of the manifold can be reconstructed from this spectrum is reminiscent of the famous

question “can you hear the shape of a drum?”. Mathematicians have spent much time

on this question. It is known, for example, that two manifolds may have the same

spectrum even though they are not isometric. The first examples are 16-dimensional

tori, but subsequent examples have been found in any dimension n � 2. In fact, it’s
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known that two manifolds may share the same spectrum even if they have di↵erent

topology (e.g. their fundamental group may be di↵erent). All of which is to say that

the problem of a quantum particle moving on a manifold M is certainly interesting,

but thinking as a physicist provides no particular advantage. We will now see that this

situation changes (for the better!) when we introduce supersymmetry.

3.1 The Supersymmetric Sigma Model

There is a beautiful generalisation of the sigma model Lagrangian (3.1) that admits

supersymmetry. In addition to the n coordinates xi, we also introduce n complex

Grassmann variables  i, and then consider the action

S =

Z
dt

1

2
gij(x) ẋ

iẋj + igij 
† irt 

j � 1

4
Rijkl 

i j † k † l (3.6)

The index i on  i is telling us that the fermions live in the tangent space (strictly the

tangent bundle) ofM . This is highlighted by the appearance of the covariant derivative,

pulled back to the worldline, in the fermion kinetic term

rt 
i =

d i

dt
+ �i

jk

dxj

dt
 k

As the particle moves on M , the fermions rotate due to this extra term. Finally,

note that the four fermion term contracts with the Riemann tensor Rijkl. This is the

first suggestion that there might be some pretty geometry lurking in this theory. It’s

sometimes useful to note that the last term can also be written as
1

4
Rijkl 

i j † k † l =
1

2
Rijkl 

i † j k † l

The equivalence of these two expressions follows from the Riemann tensor identity

Ri[jkl] = 0.

The action (3.6) is invariant under N = 2 supersymmetry, given by the following

supersymmetry transformations,

�xi = ✏† i � ✏ † i

� i = ✏(�iẋi + �i

jk
 † j k) (3.7)

� † i = ✏†(+iẋi + �i

jk
 † j k)

The associated supercharges are:

Q = gijẋ
i † j and Q† = gijẋ

i j (3.8)

Note that, in contrast to Section 1, we have taken the supercharge Q to depend on  

rather than  †. This is a notational convenience whose advantage we will see as we go

along.
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How to Show that the Sigma Model is Supersymmetric

Conceptually, it’s straightforward to demonstrate the supersymmetricness of the sigma

model: you just vary the action, use the transformations (3.7), and show that it van-

ishes. In practice, you end up with a tsunami of terms. Here’s some help to guide you

along the way.

First, when implementing the supersymmetry transformation it’s useful to set ✏ = 0

and just keep the ✏† terms in the variation. There’s no subtlety here: it’s just means

that we only have to keep track of half the terms in the variation. The other half

are then fixed by ultimately requiring that the action and its variation are real. In

particular, setting ✏ = 0 means that we have � = 0 while � † 6= 0.

Second, there’s a familiar trick, described in the lectures on Quantum Field Theory,

that is used to compute the conserved charges associated to any symmetry: we do local

variations, instead of global variations. To this end we promote ✏† ! ✏†(t). We will

then find the supercharges multiplying the ✏̇† terms in the variation of the action.

Now we can start. Varying the action with � = 0 but �x, � † 6= 0 gives

�S =

Z
dt gij

⇣
ẋi�ẋj + i� †i ̇j + i� †i�j

kl
ẋk l + i †i��j

kl
ẋk l + i †i�j

kl
�ẋk l

⌘

+ �gij

✓
1

2
ẋiẋj + i †i ̇j + i�j

kl
ẋk †i l

◆

� 1

4
�Rijkl 

i j † k † l � 1

2
Rijkl 

i j� † k † l

where we’ve used Rijkl = Rij[kl] in the final term. Next it’s useful to tame the terms by

counting the number of fermions that they contain. There will be terms with 1 fermion,

3 fermions and 5 fermions and if the action is to be invariant, these must individually

cancel.

For example, the one-fermion terms come from �xi = ✏† i in terms that started o↵

with no fermions, and from the first part of the fermion variation �1 † i = i✏†ẋi in terms

that started o↵ with two fermions. These are

�S
���
1�fermion

=

Z
dt gijẋ

i�ẋj + igij�1 
†i( ̇j + �j

kl
ẋk l) +

1

2
�gijẋ

iẋj

=

Z
dt gijẋ

i(✏̇† j + ✏† ̇j)� gij✏
†ẋi( ̇j + �j

kl
ẋk l) +

1

2
@lgij ✏

† lẋiẋj

There are two terms with ✏†ẋ ̇ that immediately cancel. We’re left with

�S
���
1�fermion

=

Z
dt ✏†


1

2
@lgij � gik�

k

ij

�
ẋiẋj †l + ✏̇†gijẋ

i j
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The first term vanishes because the metric is covariantly constant, rg = 0. Or, in more

detail, we use the definition of the Levi-Civita connection, gik�k

jl
= 1

2 (@jgil + @lgij � @igjl).
But this comes multiplied by ẋiẋj in the variation which means that we get to sym-

metrise, so gik�k

jl
ẋiẋj = 1

2@lgijẋ
iẋj which, happily, cancels the other term in the varia-

tion of the action. We’re left with

�S
���
1�fermion

=

Z
dt ✏̇†gijẋ

i j

As explained above, we identify this as the conserved charge arising from the symmetry,

�S = ✏̇†Q†, giving Q† = gijẋi j as advertised in (3.8).

It’s simplest to next look at terms with 5 fermions. These come from the �Rijkl

term and the Rijkl i�2 †j k †l term where the we include only the part of the fermion

variation that itself has two fermions, �2 †j = ✏†�j

mn
 †m n. Combined, these terms

give

�S
���
5�fermion

=

Z
dt ✏†


�1

4
@mRijkl 

m i j † k † l +
1

2
Rijkl�

j

mn
 i j †m n †l

�

After using the fermions to impose anti-symmetry, this term vanishes by virtue of the

Bianchi identity r[mRij]kl = 0.

This leaves us with the 3-fermions terms in the variation of the action. They are, of

course, everything that we didn’t yet consider.

�S
���
3�fermion

=

Z
dt �gij

⇣
i †i ̇j + i�j

kl
ẋk †i l

⌘
+ igij �2 

†i( ̇j + �j

kl
ẋk l)

+ igij 
†i ���j

kl
ẋk l + �j

kl
�ẋk l

�
� 1

2
Rijkl 

i j�1 
† k † l

=

Z
dt ✏†@mgij 

m

⇣
i †i ̇j + i�j

kl
ẋk †i l

⌘
+ igij✏

†�i

mn
 †m n( ̇j + �j

kl
ẋk l)

� igij✏
†
h
 †i@m�

j

kl
 mẋk l +  †i�j

kl
 ̇k l

i
+

i

2
✏†Rijkl 

i jẋk †l

There are two di↵erent kinds of terms in this expression. The first take the form  †  ̇.

Gathering them together, we find that they come multiplying rg = 0. The second

take the form ẋ †  . The first of these involve combinations of the connection that

gather together to give @� + �2. But this is the definition of the Riemann tensor and

is cancelled by the final term above. The upshot is that, for a global variation with

✏̇† = 0, we have �S = 0: the action is supersymmetric.
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3.1.1 Quantisation: Filling in Forms

Quantising the sigma model needs a little care due to operator ordering issues. The

canonical momenta are

pi =
@L

@ẋi
= gij

�
ẋi + i�i

kl
 † k l

�
and

@L

@ ̇i
= igij 

† i

We have, as always

[xi, pj] = �i
j

and { i, † j} = gij

The tricky commutator is, it turns out, the one between bosons and fermions. This is

best described in the terms of the mechanical momentum as opposed to the canonical

momentum,

⇡i = gijẋ
j = pi � igil�

l

jk
 † j k

The associated commutation relations turn out to be

[⇡i, 
j] = i�j

ik
 k , [⇡i, 

† j] = i�j

ik
 † k and [⇡i, ⇡j] = �Rijkl 

† k l

Let’s now look more closely at the Hilbert space of fermions. We quantise the fermions

in the usual way: we introduce a state |0i that obeys

 i|0i = 0

for all i = 1, . . . , n. We then build up the Hilbert space by acting with successive  † i.

At the first level we have n states,  † i|0i. At the next level we have 1
2N(N � 1) states,

 † i † j|0i = � † j † i|0i, and so on. The natural anti-symmetry of Grassmann objects

means that there are
�
n

p

�
states of the form ( †)p|0i.

As we already advertised in Section 1.4.1, this is a very familiar structure in geometry:

it arises for totally anti-symmetric (0, p) tensor fields, also known as p-forms. This

prompts the identification

|0i  ! 1

 † i|0i  ! dxi

 † i † j|0i  ! dxi ^ dxj

...

 † 1 . . . †n|0i  ! dx1 ^ . . . ^ dxn

States in the Hilbert space of supersymmetric quantum mechanics are no longer just

functions over the manifold M , but now all forms over the manifold M . States of the

kind f(x)( †)p|0i correspond to p-forms. We denote the space of p-forms over M as

⇤p(M).
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This relation between Grassmann variables and forms, identifying  † i  ! dxi^
provides the key link between supersymmetry and more interesting aspects of geometry.

From this, many lovely geometrical facts follow. For example, we can ask: what is the

geometrical interpretation of  i? From the commutation relation { i, † j} = gij, it

clearly acts as a map  i : ⇤p(M) 7! ⇤p�1(M). We can be more explicit and check

 i † j † k . . . † l|0i = { i, † j † k . . . † l}|0i
=
⇥
(gij † k . . . † l)� ( † jgik . . . † l) + . . .

⇤
|0i

But, in the language of forms, this is the action of the interior product,

 i  ! gij◆@/@xj

Meanwhile, the inner product between states in the Hilbert space is,

h!|⌘i =
Z

M

!̄ ^ ?⌘ (3.9)

Where !̄ is the complex conjugation of ! and ? is the Hodge dual. Note that this is

non-vanishing only if ! and ⌘ are forms of the same degree p. Furthermore, evaluated

on functions ! 2 ⇤0(M), it reproduces the norm (3.5).

The Lagrangian (3.6) has a U(1) symmetry acting on fermions as

 i ! ei↵ i and  † i ! e�i↵ † i

The corresponding Noether charge is

F = gij 
† i j

which counts the number of fermionic excitations or, in our new geometrical language,

the degree of the form. If we have a state |�i 2 ⇤p(M), then

F |�i = p|�i

The fact that F is conserved means that Hamiltonian evolution doesn’t mix up forms

of di↵erent degrees: energy eigenstates lie in a particular ⇤p(M). The fermion number

F also provides the grading that splits our Hilbert space into bosonic and fermionic

pieces: H = HB �HF . These comprise of even and odd forms respectively.

HB = C⌦
"
M

p even

⇤p(M)

#
and HF = C⌦

"
M

p odd

⇤p(M)

#

where the overall factor of C is there simply because wavefunctions are complex valued

in quantum mechanics rather than real.
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Finally, we come to the supercharges Q and Q† themselves. The presence of the

momentum operator means that these act as derivatives, while the fermions ensure

that they also map Q : ⇤p(M) 7! ⇤p+1(M). But there is a very natural object in

di↵erential geometry with these properties: it is the exterior derivative

Q = i † ipi  ! dxi ^ @

@xi
= d

Similarly, Q† : ⇤p(M) 7! ⇤p�1(M) act as the adjoint operator

Q† = i ipi  ! gij◆@/@xi
@

@xj
= d†

Acting on p-forms, the adjoint operator can also be written as

d† = (�1)n(p+1)+1 ? d?

This adjoint operator annihilates functions d†f = 0 for f 2 ⇤0(M). This is to be ex-

pected since it follows from  i|0i = 0. Similarly, the exterior derivative itself annihilates

top forms, d! = 0 for all ! 2 ⇤n(M). Before we go on, note that the correspondence

Q ⌘ d and Q† ⌘ d† is the reason that we chose to define Q to be the supercharge

involving  † rather than, as in Section 1, in terms of  .

The identification of the supercharges also gives a geometric meaning to the Hamil-

tonian. It is

H =
1

2
{Q,Q†} ) H =

1

2
�

with

� = dd† + d†d

This is the Laplacian operator in di↵erential geometry. It is clear from its definition in

terms of d and d† that it is a prime candidate for a supersymmetric Hamiltonian; in

some sense everything that we’ve done above is just to realise this possibility in terms

of Grassmann variables  and  †.

The Laplacian is positive definite, as befits a supersymmetric Hamiltonian. This

follows from the fact that the † in Q† (or, equivalently d†) means the adjoint operation

with respect to the inner product (3.9) so that, for any ! 2 ⇤p(M),

h!|�!i = h!|dd†!i+ h!|d†d!i = ||d†!||2 + ||d!||2 � 0 (3.10)
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Figure 8. A typical energy spectrum of the quantum mechanics, with pairs of states related

by supersymmetry in yellow and the lone ground states, associated to de Rham cohomology,

in red.

A short calculation (see, for example, Section 3.1.4 of the lectures on General Relativity)

shows that, when acting on function f 2 ⇤0(M), the Laplacian is given by

�f =
1
p
g
@i(
p
ggij@jf)

in agreement with the Hamiltonian (3.3) for the non-supersymmetric sigma model.

Note, however, that in the absence of supersymmetry there was always the option to

add the ↵R term in (3.3) to the Hamiltonian. Supersymmetry removes this ambiguity.

3.1.2 Ground States and de Rham Cohomology

We’ll now consider the kind of spectrum that we expect to find. As we saw in Section 1,

all states with energy E 6= 0 must come in pairs. In particular, if an energy eigenstate

state with E 6= 0 obeys

Q|↵i = 0

then |↵i is Q-exact, meaning that it can be written as |↵i = Q|�i for some |�i. To see

this, we just need to use QQ† +Q†Q = 2E to see that

|↵i = 1

2E
Q
�
Q†|↵i

�

This tells us that Q and Q† map us back and forth between the two states related by

supersymmetry. In the form language, we see that supersymmetry relates pairs of p

and p+ 1 forms. These are shown as the yellow dots in Figure 8.
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However, as we’ve seen in previous examples, the ground states with E = 0 are

special since there is no need for these to be paired. In the present context, the ground

states arise from forms that obey

�� = 0 , d� = d†� = 0

Forms of this kind are called harmonic. These are depicted as red dots in Figure 8.

The space of harmonic p-forms is denoted Harmp(M). We learn that the Hilbert space

of ground states is

Hground =
M

p

Harmp(M)

This discussion also tells us that there are three kinds of states in the Hilbert space:

those for which |�i = Q|↵i or |�i = Q†|�i, which sit in supersymmetric pairs. And

those for which Q|�i = Q†|�i = 0 which are the supersymmetric ground states. This

means that any state |�i 2 H has a unique decomposition as

|�i = Q|↵i+Q†|�i+ |!i (3.11)

where �|!i = 0. In the geometric language, this is equivalent to saying that any form

can be written uniquely as

! = d↵ + d†� + � (3.12)

where ! is harmonic. This is known as the Hodge decomposition theorem.

There is an important comment to make here. The Hodge decomposition theorem is

not a trivial statement in mathematics. It took Hodge much of the 1930s to prove and,

even then, needed corrections from Weyl and Kodaira. Yet the statement about the

decomposition of states in the Hilbert space (3.11) follows trivially from the structure

of supersymmetric quantum mechanics! What’s going on?

Shortly we will “prove” other theorems in geometry where we will make use of the

physicist’s secret weapon, the path integral. Here, however, the power of physics comes

only from our blatant disregard for anything approaching rigour. In geometry, the

space of di↵erential forms is not a Hilbert space because the inner product (3.9) is not

complete. In quantum mechanics, we deal with this by restricting attention to L2 forms

but then one has to worry whether the exterior derivative acts solely within this space.

All of these are subtleties that we sweep under the rug in physics, but present the real

challenge behind the proof of the Hodge decomposition theorem.
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Cohomology

There is another way to view the ground states in terms of cohomology. As we’ve seen,

the exterior derivative d (or equivalently the supercharge Q) maps us from d : ⇤p(M)!
⇤p+1(M). We can depict this in terms of what mathematicians call a chain complex

⇤0(M)
d�! ⇤1(M)

d�! ⇤2(M)
d�! ⇤3(M)

d�! . . .

Because d2 = 0, the image of one map necessarily lies in the kernel of the next. The

idea of cohomology is that it’s interesting to look more closely at the di↵erence between

the kernel and image.

First some definitions. A form � is said to be closed if d� = 0. We denote the space

of all closed p-forms as Zp(M). Another way to say this is that Zp(M) is the kernel of

the map d : ⇤p(M)! ⇤p+1(M).

A form � is said to be exact if it can be written as � = d↵ for some ↵. We denote the

space of all exact p-forms as Bp(M). Another way to say this is that Bp(M) is image

of the map d : ⇤p�1(M)! ⇤p(M).

As we mentioned above, we necessarily have Bp(M) ⇢ Zp(M). The de Rham coho-

mology group is defined to be

Hp(M) = Zp(M)/Bp(M)

The quotient here is an equivalence class. Two closed forms � and �0 2 Zp(M) are

said to be equivalent if � = �0 + d↵ for some ↵. We say that � and �0 sit in the same

equivalence class [�]. The cohomology group Hp(M) is the set of equivalence classes.

In other words, it consists of closed forms mod exact forms.

Finally, we define the Betti numbers,

bp = dimHp(M)

There are a number of interesting things about these Betti numbers. First, this count-

ing of cohomology classes is just another way of counting the ground states in quantum

mechanics, and the Betti numbers can equally well be viewed as counting harmonic

forms. This follows from. . .

Claim: There is an isomorphism Hp(M) ⇠= Harmp(M) and so

bp = dimHarmp(M)
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Proof: The proof follows straightforwardly from the Hodge decomposition (3.12). We’ll

first show that each harmonic form is associated to an element of Hp(M). Clearly

any harmonic form � is closed, with d� = 0. But the unique nature of the Hodge

decomposition (3.12) means that � cannot be written as � = d(something) and so

forms the basis of an equivalence class [�] 2 Hp(M).

Next we must go the other way and show that each equivalence class of [!] 2 Hp(M)

is associated to a harmonic form. We decompose ! = d↵ + d†� + �. By the definition

of [!] 2 Hp(M), we must have d! = 0 and so, using the inner product (3.9), we have

0 = hd!|�i = h!|d†�i = hd↵ + d†� + �|d†�i = hd†�|d†�i

where, in the final step, we integrated by parts and used the facts that dd↵ = 0

and d� = 0. The upshot is that d†� = 0 and any element of the equivalence class

[!] 2 Hp(M) takes the form ! = d↵ + �. Any other member of the same equivalence

class !0 2 [!] can be written as !0 = d⌘ + � and is associated to the same harmonic

form �. ⇤

There’s an analogy here with gauge symmetry that is worth highlighting. In Maxwell

theory, the gauge potentials A and A+ d↵ are physically equivalent as they are related

by a gauge transformation. If we want to pick a representative of this equivalence class

then we need gauge fixing condition that picks out one particular choice of A. For

cohomology, the equivalence class [!] relates ! ⇠ ! + d↵. A representative of this

class can be picked by the “gauge fixing condition” d†! = 0. This then picks out the

harmonic forms as special.

Any manifold M with dimension dim(M) = n always has b0 = 1 and bn = 1. The

zero forms are just functions over the manifold, and any constant function over M is

clearly harmonic, but cannot be written as d(somethng) as there are no p = �1 forms.

Similarly, the volume form Vol = ? 1 provides the harmonic top form.

Other Betti numbers come in pairs with bp = bn�p, a relationship that follows from

Poincaré duality. It turns out that all these higher Betti numbers are non-vanishing

only if the manifold M has some interesting topology. To explain this, we need to

remove the co in cohomology.
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Figure 9. The red lines depict a topologically trivial submanifold C on the left, and a

topologically non-trivial sub-manifold C on the right.

Homology

Here we give a brief overview of how the de Rham cohomology, and associated harmonic

forms, contain information about the topology of the manifold M .

Consider a submanifold C ⇢M . We’ll take this to be a closed submanifold, meaning

that it has no boundary

@C = 0

An interesting question is whether C itself can be thought of as the boundary of another

manifold, meaning C = @D. This is a question of topology.

We can see this in two simple examples shown in Figure 9. There we depict two

manifolds of dimension two: the sphere M = S2 and the torus M = T2. On each we’ve

drawn a one-dimensional submanifold C as a red line. For C ⇢ S2, this submanifold

is the boundary of a disc C = @D. For C ⇢ T2 there is no such bounding manifold

D. This reflects the fact that there is interesting topology in the torus, but not in the

sphere.

Indeed, there are actually two di↵erent topo-

logically non-trivial submanifolds of the torus:

in addition to the circle C shown in Figure 9,

there is also the circle C 0 that winds in the way

shown on the right.

The algebraic structure of these topologi-

cally non-trivial submanifolds is identical to those of forms. In particular, a boundary

of a boundary is always vanishing, which we write as @2 = 0. This, obviously, is the

– 78 –



strikingly reminiscent of the exterior derivative relation d2 = 0. We use this to de-

fine homology groups using @ analogous to the cohomology groups that we defined

previously using d. The homology group Hp(M) is the equivalence class of closed p-

dimensional submanifolds that are not themselves the boundary of a (p+1)-dimensional

manifold. In particular, two submanifolds C1 and C2 lie in the same cohomology class

if one can be smoothly deformed into the other. In terms of equations, this mean that

di↵erence is a boundary,

C1 ⇠ C1 if and only if C1 � C2 = @D

The relationship between homology and cohomology is more than just an analogy.

The spaces Hp(M) and Hp(M) are dual to each other, and hence isomorphic. This

statement, known as de Rham’s theorem, is not straightforward to prove but it’s easy

to get some intuition for how it works. Given a closed submanifold C ⇢M and a form

! on M we can define a map to the real numbers, given by

(C,!) =

Z

C

!

Strictly speaking, the integral only makes sense if dimC = p and ! is a p-form. If the

form ! has a degree di↵erent than dimC then the pairing is simply said to be zero. In

what follows, we will sometimes refer to such a closed submanifold C as a cycle.

This pairing has some lovely properties that follow from Stokes’ theorem. First, the

answer depends only on the equivalence class [!] 2 Hp(M). To see this, note that

(C,! + d↵) =

Z

C

(! + d↵) =

Z

C

! +

Z

C

d↵

but the total derivative
R
C
d↵ = 0 because @C = 0.

Conversely, if we consider two submanifolds C1 and C2 that can be smoothly deformed

into each other, so C1 � C2 = @D, then integrating any closed form ! gives
Z

C1

! �
Z

C2

! =

Z

@D

! =

Z

D

d! = 0

We see that the answer only depends on the equivalence class [C] 2 Hp(M).

The upshot of these arguments is that the ground states of the supersymmetric sigma

model (3.6) are determined by the topology of the target space M . Heuristically, the

quantum particle can minimise its energy by spreading its wavefunction over topologi-

cally non-trivial submanifolds of M .
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Here are some simple examples. The sphere Sn is boring: its only Betti numbers are

b0 = 1 corresponding to constant functions and bn = 1 corresponding to the top form.

The torus Tn is more interesting: it has Betti numbers bp =
�
n

p

�
.

In n = 2 dimensions, closed manifolds are known as Riemann surfaces and are

labelled by their genus g which counts the number of holes. Here are some examples

of manifolds with genus g = 0, g = 1 and g = 2 respectively

The Betti numbers are b0 = b2 = 1 and b1 = 2g. Each extra hole introduces two new

topologically non-trivial 1-manifolds that encircle the hole in di↵erent ways.

Finally, I should mention in any logical presentation, homology precedes cohomology.

Our physics approach has lead us to introduce these in an inverted order.

3.1.3 The Witten Index and the Chern-Gauss-Bonnet Theorem

In Section 1, we learned that there is something special about the Witten index in

supersymmetric quantum mechanics. Recall that this is defined by Tr (�1)F e��H and

counts then number of supersymmetric ground states, up to a sign.

For our supersymmetric sigma model, the Witten index is just the alternating sum

of Betti numbers

Tr (�1)F e��H = �(M) :=
X

p

(�1)pbp (3.13)

This is perhaps the most famous topological invariant in mathematics: it is known as

the Euler character of the manifold.

Again, some examples. The sphere Sn has Euler character

�(Sn) = 1 + (�1)n

so is either �(Sn) = 2 for n even or �(Sn) = 0 for n odd. The torus Tn always has

�(Tn) = 0. The 2d Riemann surface of genus g has �(M) = 2� 2g.
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We can see from our discussion of quantum mechanics why this is a topological

invariant. We know that the Witten index is robust against any small change of the

parameters in the quantum mechanics. In the present case, that means that if we vary

the metric gij, at least within reason so that we avoid singularities, then the Witten

index should remain unchanged. But that means that object �(M) defined in (3.13)

must be independent of the the choice of metric: it can be depend only on cruder

aspects of M , specifically its topology.

Finally, note that the sigma models provide many other examples in which the Witten

index vanishes but there are, nonetheless, ground states with E = 0. For example, the

sigma model on S3 (or, indeed, any odd dimensional sphere) has �(S3) = 0 but there

are two ground states, one the constant function corresponding b0 = 1 and the other

the volume form corresponding to b3 = 1. These ground states are also protected by

topology, this time by the cohomology rather than the cruder Euler character.

The Path Integral Again

As we saw in Section 2, there is a straightforward description of the Witten index in

terms of the path integral. We simply need to calculate

I = Tr (�1)F e��H =

Z
DxD †D e�SE [x, , †]

where Euclidean time ⌧ has period � and both x and  are assigned periodic boundary

conditions. The Euclidean action is

SE =

I
d⌧

1

2
gij(x) ẋ

iẋj + gij 
† ir⌧ 

i +
1

4
Rijkl 

i j † k † l

with r⌧ i =  ̇i + �i

jk
ẋj k. We know that the Witten index is independent of �. We

will use this to compute the path integral in the limit � ! 0. The key idea is that, in

this limit, any non-trivial excitations around the Euclidean circle costs an increasing

amount of action and so we can restrict ourselves to constant configurations, where the

path integral reduces to a normal integral.

Putting these words into formulae, we first rescale the time coordinate to work with

⌧ 0 = ⌧/� so the new time coordinate has period ⌧ 0 2 [0, 1). We also rescale  ! ��1/4 ,

leaving us with the Euclidean action

SE =

I 1

0

d⌧ 0
1

2�
gij(x) ẋ

iẋj +
1p
�
gij 

† ir⌧ 
i +

1

4
Rijkl 

i j † k † l

– 81 –



where we now see explicitly that in the limit � ! 0, the modes with ẋ and  ̇ non-zero

are heavily suppressed. The path integral then reduces to the ordinary integral

Tr (�1)F e��H =
1

(2⇡)n/2

Z
dnx

1
p
g

Z
dn dn † exp

✓
�1

4
Rijkl 

i j † k † l
◆

As in previous examples, we have to saturate the Grassmann integration. But this

time, there’s clear way to do it. We simply expand out the exponential until we find

the right number of fermions.

Since the fermions always come in groups of four, if n is odd the integral necessarily

vanishes. We learn that

�(M) = 0 if dimM = odd

This simple result also follows from the relation bp = bn�p. However, if n is even then

the term with n/2 powers of the Riemann tensor will saturate the integral.

We start with n = 2. In this case, we pull down just a single copy of the Riemann

tensor. After doing the Grassmann integrations, we find

Tr (�1)F e��H =
1

4⇡

Z
d2x
p
g R

This is the well known Gauss-Bonnet expression for the Euler character of a Riemann

surface.

In general, the Grassmann integrations leave us with n/2 copies of the Riemann

tensor, contracted with epsilon symbols

Tr (�1)F e��H =
1

(4⇡)n/2(n/2)!

Z
dnx

1
p
g
✏i1...in✏j1...jnRi1i2j1j2 . . . Rin�1injn�1jn

This is the generalisation of the Gauss-Bonnet theorem, first proven by Chern in 1944.

The contraction of the epsilon symbols results in an expression known as the Euler

density. The slightly unusual looking 1/
p
g should be thought of as

p
g⇥ 1p

g
⇥ 1p

g
with

the 1p
g
factors combining with the epsilon symbols to give tensor densities.

As an example, for n = 4 dimensional manifolds the expansion of the Euler density

gives

�(M) =
1

8⇡2

Z

M

d4x
p
g
�
RijklR

ijkl � 4RijR
ij +R2

�
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The magic of the Chern-Gauss-Bonnet theorem is that a global topological object,

�(M), is described in terms of an integral of local data, the Euler density. The magic

of supersymmetric quantum mechanics is that it gives a straightforward derivation of

this result, with the only real complication the combinatoric factors that arise from

Grassmann integration. This is first example where a deep mathematical result can

derived in a di↵erent way using the path integral. It won’t be the last.

3.2 Morse Theory

Our goal in this section is to understand some basic ideas of Morse theory, viewed

through the lens of supersymmetric quantum mechanics.

We stick with our N = 2 supersymmetric sigma model (3.6), describing a particle

moving on a manifold M . The novelty is that we now also include a potential h(x)

over the manifold. The resulting supersymmetric theory is a combination of the sigma

model and the kind of theories we considered in Section 1.4.1,

L =
1

2
gijẋ

iẋj + igij 
† irt 

j � 1

4
Rijkl 

i j † k † l � 1

2
gij

@h

@xi

@h

@xj
� (ri@jh) 

† i j (3.14)

Note that the final, fermionic term has the opposite sign from that of Section 1.3; this

is purely a choice of convention and, as we will see shortly, will bring us in line with

definitions used in mathematics. This action is invariant under the supersymmetry

transformations

�x = ✏† � ✏ †

� i = ✏

✓
�iẋi + �i

jk
 † j k � gij

@h

@xj

◆
(3.15)

� † i = ✏†
✓
+iẋi + �i

jk
 † j k � gij

@h

@xj

◆

These are a combination of the transformations (1.19) for our original quantum me-

chanics with a potential and (3.7) for the supersymmetric sigma model.

In the absence of the potential, we know that the ground states of the supersymmetric

quantum mechanics spread over cycles of M . However, when we add a the potential h,

the wavefunctions get squeezed and, as the potential gets larger, the wavefunctions are

increasingly localised at the minima of the potential. We know that the Witten index

can’t change. But, more strongly, the total number of E = 0 ground states doesn’t

change either and, even in the presence of the potential, is given by the Betti numbers

of the manifold.
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To see this statement, first note that the supercharges associated to (3.15) are given

by

Q =

✓
gijẋ

i + i
@h

@xj

◆
 † j and Q† =

✓
gijẋ

i � i
@h

@xj

◆
 j

Translated into the geometric language, we have

Q  ! d+ dxi ^ @ih = d+ dh^ = e�hdeh (3.16)

Similarly

Q†  ! (d+ dh^)† = ehd†e�h

We saw in Section 3.1.2 that the ground states are determined by the cohomology of

Q. But the cohomology when h 6= 0 is isomorphic to the cohomology when h = 0. We

simply take the wavefunctions in the latter case and multiply them by e�h. Indeed, this

is the form of the wavefunctions (1.12) that we found back Section 1.2 when considering

a particle on a line.

The fact that the number of supersymmetric ground states is independent of h means

that something interesting must be going on. Because if we crank up h to be very large,

the ground states are localised around the minima of the potential V = |@ih|2. This

means that there must be some relationship between these minima and the topology

of the manifold. This relationship goes under the name of Morse theory.

The minima lie at critical points of h which we will label x = X. They obey

@h

@xi
(X) = 0 for all i = 1, . . . , n

The function h is said to be a Morse function if it has the property that the critical

points x = X are isolated and non-degenerate. From now on, we’ll assume that this is

the case.

Consider the situation where we scale the Morse function h(x) ! ⇣h(x), and sub-

sequently send ⇣ ! 1. In this limit, the physics is entirely dominated by the critical

points of the potential and, at the semi-classical level, the ground state wavefunction

is localised at the critical point x = X. That’s not to say that all critical points are

necessarily true E = 0 ground states; there may well be tunnelling of the kind that we

discussed in Section 2.3 that lifts putative ground states in pairs. But the true ground

states must be contained within the set of critical points.

– 84 –



We also need to figure out what’s going on with fermions. This is the same calculation

that we already met in Section 1.4.1. There, we learned that we should look at the

eigenvalues of the Hessian @i@jh,

(@i@jh) e
j

k
= �k e

j

k

where ej
k
are the eigenvectors and �k the eigenvalues, with k = 1, . . . , n. (The index k

labels the eigenvectors and eigenvalues and shouldn’t be summed over. Note also that

we flipped the sign of h in the action (3.14) relative to our discussion in Section 1.4.1,

and that shows up as a change of minus sign in this equation relative to (1.27).)

For each negative eigenvalue �k < 0, the final term in (3.14) tells us that we can lower

the energy by exciting the corresponding collection of fermions ej
k
 † j. Meanwhile, for

each positive eigenvalue �k > 0, we’re better o↵ in the unexcited state.

We define the Morse index, µ(X), to be

µ(X) = The number of negative eigenvalues of @i@jh(X)

We learn that the semi-classical ground state sits in the sector with µ(X) fermions

excited. In other words, the semi-classical ground state at the critical point x = X is

a p-form with p = µ(X).

Already we learn something striking. We can compute the Witten index by simply

summing over the critical points X, just as we did in (1.24). The novelty is that we

know that, for our supersymmetric sigma model, the Witten index tells us the Euler

character of the manifold M . This means that we can compute the Euler character of

M from the critical points of a function over M ,

�(M) =
X

X

(�1)µ(X)

In fact, we can say more than this. The total number of critical points may well be

more than the total number of E = 0 ground states, since states can be lifted in pairs.

But the number of critical points can never be smaller than the number of ground

states! Suppose that there are mp critical points X with Morse index p = µ(X). This

can be no less than the number of ground states associated to p-forms, so

mp � bp (3.17)

with bp the Betti number. This is known as the weak Morse inequalities.

Nice as this is, it’s possible to do better. We can, in fact, recover the original Betti

numbers bp from an understanding of the critical points and the relationships between

them. In the rest of this section we explain how.
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Figure 10. Two shapes, both topologically S2
with the Morse function given by the height.

On the left there are two critical points, on the right there are four. My wife thought it

important to point out that these are not drawn to scale.

A Simple Example: The Two Sphere

To illustrate these ideas, we can look at the case of S2. We know that the Betti numbers

are b0 = b2 = 1 and b1 = 0.

Suppose that we embed S2 with its round metric in R3. Then we can consider the

height function

h = z

This is shown in the left-hand side of Figure 10. Clearly there are two critical points of

the height function: at the bottom of the sphere where it is a minimum and at the top

of the sphere where it is a maximum. The Morse index is µ = 0 and µ = 2 respectively,

so from the discussion above we know that these ground states are associated to 0-forms

and 2-forms. We also know that ground states localised around these minima must be

exact E = 0 states.

Now we deform the system. We could change the Morse function h but, for illustrative

purposes, it is simplest if we instead change the metric on the sphere. We’ll turn it

into the bean shape shown in the right-hand side of Figure 10, keeping the same height

function h = z. This time there are four critical points, one with µ = 0, two at the top

with µ = 2, and the saddle point in the middle with µ = 1.
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Note that the Euler character hasn’t changed,

�(S2) =
X

X

(�1)µ(X) = 1 + (�1) + 1 + 1 = 2

Moreover, the weak Morse inequalities hold, with m0 = b0 = 1 and 1 = m1 > b1 = 0

and 2 = m2 > b2 = 1.

For the bean shaped metric, we know that two of four semi-classical ground states

must be lifted to have E > 0. Clearly, it should be the 1-form and some combination

of the two 2-forms that gets lifted. Our goal now is to understand how this works,

both in the case of the kidney bean and more generally. We will see that much of the

technology that we will need has already been covered in the supersymmetric instanton

calculation of Section 2.3

3.2.1 Instantons Again

Suppose that our Morse function has r critical points at x = Xa with a = 1, . . . , r, such

that

@h

@xi
(Xa) = 0

The weak Morse inequalities (3.17) tell us that r �
P

p
bp, the total number of su-

persymmetric ground states (counted without sign). If r =
P

p
bp then the Morse

inequalities are saturated, mp = bp, and we’re done: as we crank up the strength of

the potential, the ground state wavefunctions morph smoothly from being spread over

cycles of the manifold, to being localised at the critical points. This is the situation

depicted by the orange in the previous example.

However if r >
P

p
bp, like in the example of the kidney bean, then there are more

critical points than genuine ground states and we have some work to do. Some of the

semi-classical ground states associated to critical points must be lifted.

The exact energy eigenstate localised around x = Xa will be denoted as | ai. Some

of these states will persist as zero energy states when all quantum corrections are

taken into account. Meanwhile others will be lifted but, as we saw in Section 2.3, will

remain as low lying states, with energies of order e�Sinst . Our goal is to understand this

spectrum.
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To this end, we will compute the matrix elements

h a|Q | bi

Any state with E = 0 must be annihilated by Q so, in general, we expect this matrix

to have rank r�
P

p
bp, with the zero eigenvectors the true quantum ground states and

the remainder those that are lifted.

As is Section 2.3, it’s simpler to compute the related set of matrix elements

h a|Q | bi ⇡
h a| [Q, h] | bi
h(Xb)� h(Xa)

where, after Wick rotation, the commutator wih the supercharge (3.16) gives

[Q, h(x)] =
@h

@xi
 † i

The fact that we have just a single fermion  † in the matrix element means that we’ll

get non-vanishing contributions if the state | ai has one additional fermion excited

than | bi. Or, said di↵erently, if the Morse indices di↵er by one:

µ(Xa)� µ(Xb) = 1 (3.18)

The di↵erence �µ = µ(Xa)� µ(Xb) is called the relative Morse index.

The Instanton Equations

It’s clear that we are now back in the realm of the quantum tunnelling calculations

that we performed in Sections 2.2 and 2.3. To start, we can study the instantons in a

sigma model with potential. Focussing just on the bosonic fields for now, the action

(3.14) in Euclidean time is

SE =

Z
d⌧

1

2
gijẋ

iẋj +
1

2
gij

@h

@xi

@h

@xj

where now ẋ = dx/d⌧ . We can write this by completing the square as

SE =

Z
d⌧

1

2
gik

✓
dxi

d⌧
⌥ gij

@h

@xj

◆✓
dxk

d⌧
⌥ gkl

@h

@xl

◆
± dxi

d⌧

@h

@xi

For the class of configurations that interpolate from x(⌧) = Xb at time ⌧ ! �1 to

x(⌧) = Xa at time ⌧ ! +1, the action is minimised for configurations that obey the

instanton equations

dxi

d⌧
= ±gij

@h

@xj
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Solutions to the equation with the + sign are instantons; those with the � sign are

anti-instantons. The action is given by

Sinst = ±(h(Xa)� h(Xb))

Since we want the action to be positive definite, we should pick the instanton solution

when h(Xa) > h(Xb) and the anti-instanton when h(Xa) < h(Xb).

From our previous calculation in Section 2.3, we know that the fermion zero modes

play a crucial role in supersymmetric instanton calculations. So our next question:

how many fermi zero modes does our instanton have? To answer this, we look at

the linearised fermion equation of motion. Here “linearised” means that we drop the

Riemann tensor term in (3.14), and the connection term in rt. In Euclidean time, the

linearised equations are

D i :=
d i

d⌧
+ gijrj@kh 

k = 0 (3.19)

and

D† † i := �d † i

d⌧
+ gijrj@kh 

† k = 0

We want to know how many solutions each of these equations have in the background

of an instanton. In fact, we really just want to know the di↵erence between the number

of solutions to these equations. This is because if both D and D† have zero modes

then they will most likely be lifted by the non-linear terms in the action. And, indeed,

generically, this will happen. However if there are unpaired zero modes of, say D†,

then these must be saturated in some other way in the path integral. This prompts

our interest in the index

I(D) = dimKerD � dimKerD†

where KerD is the kernel of D, the space of solutions to D i = 0. Clearly, the index

counts the number of unpaired zero modes of the instanton.

Furthermore, because our matrix element h a| [Q, h] | bi contains just a single fermion

 †, we’re only going to get non-zero contributions from instantons which have one more

zero mode for  † than for  , namely

I(D) = �1 or, equivalently I(D†) = +1

We’re always guaranteed to get some fermi zero modes from acting with broken super-

symmetry. If we start from an instanton configuration, and originally set all fermions
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to zero, then acting with the supersymmetry transformations (3.15) (and remembering

to Wick rotate to Eulidean time ⌧ = it), we have

� i = ✏

✓
dxi

d⌧
� gij

@h

@xj

◆

� † i = �✏†
✓
dxi

d⌧
+ gij

@h

@xj

◆

Because we want a  † zero mode, rather than a  zero mode, we should focus on

configurations that obey

dxi

d⌧
= gij

@h

@xj
(3.20)

That is, we should focus on instantons rather than anti-instantons. This means that we

should look at configurations that start, at ⌧ ! �1 at Xb and end up at ⌧ ! +1 at

Xa, with h(Xa) > h(Xb). If we think of h(x) as a height function, these are trajectories

that go up, rather than down.

Instantons and the Relative Morse Index

We’ve now played the “Grassmann integration” card twice: once in (3.18) to argue

that we should get contributions only between vacua that have relative Morse index 1,

and again above to argue that we should only get contributions from instantons with

I(D†) = 1. Clearly we need these two di↵erent arguments to coincide. Happily they

do because of the following result:

Claim: The index of D† is equal to the relative Morse index

I(D†) = µ(Xa)� µ(Xb)

Proof(ish): Here we give a sketch of the proof of this statement. The operator D,

defined in (3.19), acts on an n-dimensional space of fermions  i and takes the form

D† =
d

d⌧
� Hess[h]

where Hess[h] is the n⇥ n Hessian matrix

Hess[h]i
j
= gikrk@jh

When evaluated at the critical points x = Xa, this coincides with the Hessian that

we previously used to define the Morse index. But the equation above provides an
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Figure 11. An example of the spectral flow of eigenvalues between two vacua, albeit one in

which creative licence has trumped mathematical precision. The level crossings shown above

can occur but they are not generic. In a more typical trajectory, the order of eigenvalues

remains the same under spectral flow.

extension of the definition of the Hessian to each point along the instanton trajectory

x(⌧). As we move along this trajectory, the eigenvalues and orthonormal eigenvectors

will smoothly evolve,

Hess[h(⌧)] ek(⌧) = �k(⌧)ek(⌧) (3.21)

There is no sum over k = 1, . . . , n in this equation which labels the eigenvectors and

eigenvalues. (The eigenvectors ek have an additional i = 1, . . . , n index which is the

vector index and is suppressed in the equation above.)

We can now follow the n eigenvalues �i as we move from one critical point to another.

This is known as spectral flow, and an example is shown in Figure 11. The number

of negative eigenvalues at ⌧ = �1 is the Morse index µ(Xa); the number of negative

eigenvalues at µ = +1 is µ(Xb).

Of particular interest are those eigenvalues which start negative and end up positive,

or vice versa. The di↵erence between those that cross in one direction, and those that

cross in the other, is the relative Morse index µ(Xa) � µ(Xb). The example shown in

the Figure 11 has one more negative eigenvalue at the end than at the beginning which

means that the corresponding instanton interpolates between two value with relative

Morse index µ(Xa)� µ(Xb) = +1.
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To solve the Dirac equation D† = 0, we simply expand the fermions in terms of

the eigenvectors, writing  i(⌧) =
P

k
ck(⌧)eik(⌧). We insert this ansatz into the Dirac

equation and, using the orthogonality of eigenvectors gijeike
j

l
= �kl, we have

✓
d

d⌧
� �k(⌧)

◆
ck(⌧) = �

X

l

gije
i

k
ėj
l
cl (3.22)

with no sum over k. First, let’s suppose that we can ignore the term on the right-hand

side. Then the equation has a straightforward solution,

ck(⌧) = Ak exp

✓
+

Z
d⌧ 0 �k(⌧

0)

◆

But this is a normalisable solution to the Dirac equation only if �(⌧) < 0 for ⌧ ! +1
and �(⌧) > 0 for ⌧ ! �1. That is, we get a solution for every eigenvalue that flips

from positive to negative. Meanwhile, the same analysis shows that every eigenvalue

that goes the other way, from negative to positive, gives a solution to D = 0. This is

precisely what we wanted to show, namely

I(D†) = µ(Xa)� µ(Xb)

That leaves us with the question of why it’s legal to ignore the term on the right-

hand side of (3.22). This is where we get to the “ish” part of proofish. The term

captures how the eigenvectors twist as we move along the instanton trajectory due to

the Levi-Civita connection. (In (3.22), this takes the form of a Berry connection.) This

connection doesn’t introduce any further topology into the game and it is a true fact

that it doesn’t change the index, albeit not a fact that I will demonstrate here. In

acknowledgement of this slipshod approach, I’ll replace the traditional QED box used

at the end of a proof with something more wonky.

It turns out that for background configurations with I(D†) > 0 we generically have

KerD = 0, so that I(D†) = dimKerD†. (For example, the situation shown in Figure

11 is not generic.) We will assume that this is the case moving forwards.

The calculation above also tells us about the bosonic collective coordinates of an

instanton. Suppose that we find a solution x(⌧) to the instanton equation (3.20). To

see if this solution has any collective coordinates, we can look at variations x(⌧)+�x(⌧)

and see if �x(⌧) satisfies the linearised instanton equation,

d

d⌧
�xi � gijrj@kh �x

k = 0
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But this coincides with the Dirac equationD†�x = 0 whose solutions we’ve just counted.

The upshot is that the number of bosonic collective coordinates is equal to the number

of fermi zero modes, and both are counted by the relative Morse index. A slicker way of

saying this is to note that bosonic and fermionic zero modes are related by the unbroken

supersymmetry Q† in the background of an instanton.

For our purposes, we want to consider instantons that interpolate between critical

points with relative Morse index 1. Here the sole bosonic collective coordinate is the

obvious one: the time ⌧1 at which the instanton does its business of interpolating from

one critical point to the other. This is the collective coordinate that we met previously

in Section 2.2.

Although not of immediate utility, we can

also get a feel for where the other bosonic col-

lective coordinates may come from when �µ >

1. Consider the height Morse function on the

round sphere S2. We know that there are two

critical points at the south and north pole with

Morse index 0 and 2 respectively. Correspond-

ingly, the instanton that interpolates from the

south to the north pole has two collective coordinates: one is the time ⌧1 at which the

instanton makes the jump, the other is the angle � of the trajectory as shown in the

figure. In this example, the second collective coordinate is obvious because it arises

due to a symmetry. But the arguments above tell us that, perhaps surprisingly, this

second collective coordinate persists even when we deform the sphere, or potential, so

that there’s no longer a rotational symmetry.

Completing the Instanton Computation

The rest of our instanton computation proceeds in exactly the same manner as that of

Section 2.3. Our final answer is the obvious generalisation (2.41): for vacua | ai and
| bi, whose Morse index di↵ers by 1, we have

h a|Q | bi =
e�Sinst

p
2⇡

X

�

n� (3.23)

Here the sum is over all distinct instantons � and n� = ±1 is a sign that comes from

computing the determinants

n� =
detDp
detD†D

= ±1
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Figure 12. Two di↵erent instanton trajectories interpolating between Xb with µ(Xb) = 0

and Xa with µ(Xa) = 1.

We met this sign before in Section 2.3 where we confessed that it is a little tricky to

fix. Now it is time to make good on our promise of explaining where it comes from.

Let’s start in the vacuum | ai localised at the end of the instanton trajectory at

Xa. There are µ(Xa) negative eigenvalues of the Hessian and their eigenvectors span

a µ(Xa)-dimensional space that we call Va. The ground state | ai is associated to a

µ(Xa)-form and this induces an orientation on Va.

The tangent to the instanton trajectory atXa lies in the space Va of negative eigenvec-

tors. Let us call this tangent vector v. Generically, v will coincide with the eigenvector

with largest negative eigenvalue �k (or smallest |�k|) since this is usually the unique

direction for which the eigenvalue flips sign by the time we reach Xb at the bottom. We

denote the subspace of Va that is orthogonal to v as Ṽa. There is a natural orientation

on Ṽa that comes from taking the interior product ◆v a.

Now we propagate the space Ṽa along the instanton trajectory �. We can do this,

for example, by following the eigenvectors ek(⌧) of (3.21) corresponding to those eigen-

values that remain negative along the entire journey.

By the time we reach the end of the trajectory, the orientation on Ṽa that we started

with gives an orientation on Vb, the space of negative eigenvectors of the Hessian at Xb.

But there is a di↵erent way to define an orientation on Vb, which is that induced by

the ground state | bi or, more precisely, the corresponding µ(Xb)-form. The question

is: do these two ways of defining an orientation coincide? If they do, we take n� = 1.

If they do not, we take n� = �1.
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For example, consider again the deformed bean-shaped sphere shown in Figure 12.

There are two instanton trajectories that interpolate from the minimum Xb at the

bottom to the saddle point Xa in the middle. At Xa, the tangent vectors to the two

di↵erent instanton trajectories point in di↵erent directions, and that means that each

instanton trajectory induces opposite orientations ◆v a on Ṽa. Correspondingly, one

instanton will have n� = +1 and the other n� = �1, and the two cancel out in (3.23).

This same argument explains why the ground states are not lifted for the double well

on a circle that we discussed in Section 2.3.4.

3.2.2 The Morse-Witten Complex

Let’s recap. A Morse function gives us a collection of critical points. There are mp

critical points X with Morse index p = µ(X) and, associated to each, there is an energy

eigenstate | ai and an associated p-form. These can be thought of as a basis for an

mp-dimensional space that we will call Cp.

Not all the energy eigenstates | ai have vanishing energy or, equivalently, not all of

them are annihilated by Q. But, as we saw in Section 2.3, they all have energy that is,

at most, of order e�Sinst . The tunnelling calculation that we’ve just done shows that,

h a|Q | bi =
e�Sinst

p
2⇡

X

�

n� whenever µ(Xa)� µ(Xb) = 1

If we think about Q as acting within this space of states, we can insert an “almost

resolution” of the identity 1 ⇡
P

a
| aih a| to get

Q| bi =
X

a

h a|Q | bi | ai

=
X

a :µa=µb+1

X

�

n�p
2⇡

e�(h(Xa)�h(Xb)) | ai

Here the “almost resolution” of 1 is because we’ve neglected all higher energy states.

But their overlap with the low lying states | ai is exponentially suppressed and can

be ignored. This means that we’re left with an expression for the action of Q among

the critical points. Neither the factor of
p
2⇡, nor the instanton action, are important

for our present purposes and can be absorbed into the normalisation of the states. We

then have

Q| bi =
X

a :µa=µb+1

X

�

n� | ai
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Figure 13. The four di↵erent instanton trajectories on the bean.

This is a map Q : Cp ! Cp+1. More abstractly, it can be viewed as a map between

spaces of critical points. And, importantly, it satisfies Q2 = 0. This means that we

can define a chain complex (strictly a cochain complex), known as the Morse-Witten

complex, or sometimes the Morse-Smale-Witten complex

0 �! C0 Q�! C1 Q�! . . .
Q�! Cn Q�! 0

The cohomology of Q describes the E = 0 ground states of the system or, equivalently,

the Betti numbers.

As an example we can look once again at the bean shaped manifold shown in Figure

13. We’ve already seen that the two instantons taking us from X4 to X3 cancel out,

leaving us with

Q| 4i = 0

This means that | 4i is a true ground state of the system. There are also two instan-

ton trajectories emanating from X3, one to each of the peaks at X1 and X2. These

trajectories have di↵erent orientations, meaning

Q| 3i = | 1i � | 2i

Finally, we have Q| 1i = Q| 2i = 0 as both states are top forms. The true ground

states lies in Q-cohomology and there are two of them: the 0-form | 0i and the 2-form

| 1i+ | 2i. This reproduces the cohomology of S2.
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3.3 The Atiyah-Singer Index Theorem

We now turn to a second application of supersymmetric quantum mechanics. We will

study a version of supersymmetric quantum mechanics that yields the Atiyah-Singer

index theorem. Before introducing the physics, we first explain what problem the index

theorem addresses.

In n dimensions, where n is even, a Dirac spinor � has 2n/2 components. In flat

space, the free Dirac equation reads

/@� = �a@a� = 0 (3.24)

Here the gamma matrices obey the usual Cli↵ord algebra

{�a, �b} = 2�ab a, b = 1, . . . , n (3.25)

The only solutions to (3.24) are constant spinors. That’s a bit boring and, in Rn, more

than a bit non-normalisable. Things get more interesting when the fermion lives on a

curved manifold M . To describe this situation, we first introduce vielbeins

gije
i

a
e j

b
= �ab

The i, j indices are raised and lowered using the metric gij while the tangent space

indices a, b are raised and lowered using �ab. (See the lectures on General Relativity for

more details.) The Dirac equation then takes the form

/D� = �ae i

a
Di� = 0 (3.26)

with the covariant derivative given by

Di = @i +
1

2
(!i)

bcSbc (3.27)

Here Sab are the generators of SO(n) (strictly Spin(n)) in the spinor representation

Sab =
1

4
[�a, �b]

Meanwhile (!i)ab is the spin connection, defined by

(!i)
a

b
= �a

cb
ec

i
= ea

j
rie

j

b

We can then ask: how many solutions there are to the Dirac equation (3.26)? This is

where the Atiyah-Singer index theorem comes in. It relates the number of solutions

to the Dirac equation to the topology of the underlying manifold. The purpose of

this section is to give a physics derivation of the index theorem from supersymmetric

quantum mechanics.
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3.3.1 The N = 1 Sigma Model

Our quantum mechanics of choice has half the supersymmetry of the models that we’ve

considered until now in this section. That is, we will have N = 1 supersymmetry with a

single real supercharge Q. We met some simple theories of this kind already in Section

1.4.3.

With N = 1 supersymmetry, the sigma model action (3.6) is replaced by something

that, at first glance, appears much simpler,

L =

Z
dt

1

2
gij(x) ẋ

iẋj +
i

2
gij 

irt 
j (3.28)

The key di↵erence is that the Grassmann variables are now Majorana modes

 † i =  i

We no longer have the Riemann tensor interaction term, but the Levi-Civita connection

still shows up, as before, in the kinetic term for the fermions,

rt 
i =

d i

dt
+ �i

jk

dxj

dt
 k (3.29)

Although the action (3.28) has fewer interaction terms, it also has less symmetry. In

particular, because the fermions are real we no longer have the U(1) symmetry that

rotated the phase of the fermions. For our N = 2 sigma model (3.6), this symmetry

ensured that the energy eigenstates had a fixed number, p of excited fermions. Now

that we no longer have this symmetry, we expect the energy eigenstates to involve

a mixture of di↵erent fermions. The only protection we have comes from the (�1)F
symmetry that categorises states into HB with an even number of fermions and HF

with an odd number.

We’ve already seen in Section 1.4.3 what emerges when we quantise the fermions so

we will be brief here. The canonical anti-commutation relations are

{ i, j} = gij

which is closely related to the Cli↵ord algebra (3.25): the relationship between the

fermions and gamma matrices involves a vielbein to accommodate the presence of the

metric:  i = e i

a
�a. This is telling us that, upon quantisation, the fermions will give

2n/2 states which can be viewed as a Dirac spinor � living on the manifold M . While

quantisation of the N = 2 sigma model (3.6) gave us p-forms over the manifold, now

we have a spinor.
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The action (3.28) is invariant under the supersymmetry transformations

�xi = ✏ i and � i = �✏ẋi

with the associated supercharge

Q =
1

2
gij 

iẋi

The ground states of the quantum mechanics once again obey Q|�i = 0. We can ask

how this equation translates into the geometric language. The answer is clear: the

fermion  i in the supercharge is replaced by a gamma matrix, while the mechanical

momentum ẋ is replaced by the appropriate covariant derivative, so that Q = i /D. The

upshot is that ground states of the quantum mechanics are given by solutions to the

Dirac equation

/D� = 0 (3.30)

where the covariant derivative is (3.27), as appropriate for a spinor on a curved manifold

M . The Hamiltonian is then H = Q2 = � /D
2
.

We can now see why this quantum mechanics is of interest. The ground states are

specified by solutions to the Dirac equation which is exactly what we want to count.

Moreover, we know how to count ground states in supersymmetric quantum mechanics,

at least up to sign: we use the Witten index.

To get an expression for the index, we first need to figure out which states sit in

HB and which in HF . As we already saw in Section 1.4.3, this has a particularly nice

interpretation in terms of the spinor. Because we are an even dimension n, the Dirac

spinor decomposes into two Weyl spinors which are eigenspinors of

�̂ = in/2�1 . . . �n

This obeys �̂2 = 1 and {�̂, �i} = 0, and is the generalisation of the “�5” matrix in four

dimensions. This is the operator that determines whether a given state lies in HB or

HF via the identification

�̂ = (�1)F

We can always pick a basis of gamma matrices that are block o↵-diagonal, so that we

have

�̂ =

 
1 0

0 �1

!
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where each entry is a 2n/2�1 dimensional matrix. The Dirac operator then takes the

form

/D =

 
0 D†

D 0

!
(3.31)

where D : HB ! HF and D† : HF ! HB. The Witten index coincides with the index

of the operator D,

Tr (�1)F e��H = I(D) := dimKerD � dimKerD† (3.32)

This is also the quantity of relevance to the Atiyah-Singer index theorem. Our next

task is to compute it. But, by now, our strategy for this should be clear: we turn to

the path integral.

3.3.2 The Path Integral Again

The same argument that we used in Section 3.1.3 when deriving the Chern-Gauss-

Bonnet theorem tells us that the path integral localises on constant configurations

ẋi =  ̇i = 0. We’ll pick a constant configuration and expand

xi(⌧) = xi

0 + �xi(⌧) and  i(⌧) =  i

0 + � i(⌧)

We then compute the path integral by performing a Gaussian integration over the

fluctuations �x and � . Our life is made easier if we work in normal coordinates in

which

gij(x) = �ij �
1

3
Rijkl(x0)�x

k�xl

and

��i

jk
(x) = @l�

i

jk
(x0) �xl = �1

3

�
Ri

jkl
(x0) +Ri

kjl
(x0)

�
�xl

To quadratic order, the Euclidean action then becomes

SE =
1

2

Z
d⌧ �ij

✓
��xi

d2

d⌧ 2
�xj + � i

d

d⌧
 j

◆
� 1

2
Rijkl  

i

0 
j

0 �x
k
d�xl

d⌧

Performing the Gaussian integral periodic boundary conditions, we have

Z =

Z
D�xD� e�SE =

s
det0(�ij@⌧ )

det0(��ij @2⌧ + ⌦ij @⌧ )
=

s
1

det0(��i
j
@⌧ + ⌦i

j
)

The fermionic determinant in the numerator now sits under square root, reflecting

the fact that the fermions are real. (It could be better thought of as a Pfa�an.)

Both determinants have had their zero modes truncated since these correspond to the

integrals over x0 and  0, both of which we will do explicitly below.
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After the small cancellation seen above, we’re left with the task of computing the

determinant operator involving the matrix

⌦i

j
:= �ipRpjkl(x0) 

k

0 
l

0 (3.33)

This should be thought of as an n⇥n matrix that depends both on the point x0 and on

the background fermion  0. (It may seem odd to think about a matrix as depending

on a background Grassmann parameter like  0; the meaning of this should become

clearer below when we think about what we’re going to do with this matrix.) This is

an anti-symmetric matrix and we can choose a basis in which it takes block diagonal

form

⌦i

j
=

0

BBBBB@

W1

W2

. . .

Wn/2

1

CCCCCA
with Wa =

 
0 !a

�!a 0

!

The eigenvalues are ±i!a and these depend on both x0 and on  0. We can also diago-

nalise the derivative term simply by working in a Fourier basis around the circle. Since

we know that the end result for the Witten index must be independent of �, we’ll take

advantage of this and work with � = 1. We then have

�xi(⌧) ⇠ eik⌧ with k = 2⇡p and p 2 Z

This means that the eigenvalues of the bosonic fluctuation operator are i(k ± !). Re-

stricting to any given 2⇥ 2 matrix W, we have
q

det0(�@⌧ +W) =
Y

p 6=0

(2⇡ip+ i!)1/2 (2⇡ip� i!)1/2

=
1Y

p=1

(2⇡ip)2
"
1 +

✓
i!

2⇡p

◆2
#

We’ve met each of these products before. The second, convergent product is given by

(2.6)

1Y

p=1

"
1 +

✓
i!

2⇡ip

◆2
#
=

sinh(i!/2)

i!/2

The first, divergent, product can be treated using zeta function regularisation as in

(2.7) and gives
1Y

p=1

(2⇡ip)2 = �i
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Putting this together, we have an expression for the partition function after integrating

over the fluctuations,

Z = (�i)n/2
n/2Y

a=1

i!a/2

sinh(i!a/2)

We’re now left just with the zero mode integrations: including these gives us the

expression for the Witten index and hence the index of the Dirac operator

I(D) = (�i)n/2
Z nY

i=1

dxi

0p
2⇡

d i

0

n/2Y

a=1

i!a/2

sinh(i!a/2)

The next step is to do the fermion zero mode integration. The idea here is that each

!a depends quadratically on the fermion zero modes. We should expand each term in

the product,

!/2

sinh(!/2)
= 1� !2

24
+

7!4

5760
+ . . .

Because the function is even, the expansion contains only even powers of ! and hence

the fermionic variables  0 come in groups of four. The fermionic integration picks out

the term that saturates the Grassmann integration. We learn that the index I(D) will

be non-vanishing only on manifolds whose dimension n is a multiple of four. (This also

eliminates the factors of i in the expression for I(D).)

There is a more geometric way to think about this. Instead working with fermions,

we turn again to forms. (The fact that our fermions don’t yield forms upon quantisation

is irrelevant here: this is just a formal trick.) We introduce the curvature 2-form

Ra

b
= Ra

bcd
✓̂c ^ ✓̂d

where ✓̂ = ea
i
dxi are a basis of one-forms. (see the lectures on General Relativity for

more details.) Clearly R has the has the same formal structure as the fermionic matrix

⌦ that we met before. This means that we can equally well write

I(D) =

Z

M

Â(M) with Â(M) =
1

(2⇡)n/2

s

det

✓
R/2

sinh(R/2)

◆

This is the Atiyah-Singer index theorem. The expression Â(M) is referred to as the

A-roof genus or A-hat genus of M (or, more correctly, the tangent bundle of M). The

expression should be viewed as expanding out the determinant until we find a top form
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that can be integrated over the manifold M . The terms that appear in this expansion

are
Z

M

Â(M) = 1� p1
24

+
1

16

✓
7

360
p21 �

1

90
p2

◆
+ . . .

where the various terms in the expansion arise for manifolds of dimension n = 0, 4, 8

and so on. The pi are known as Pontryagin numbers and can be expressed as integrals

of the curvature 2-form over the manifold M . For a manifold of dimension dim(M) = 4,

we have
Z

M

Â(M) = �p1
24

with p1 = �
1

8⇡2

Z

M

trR2 (3.34)

The simplest examples of 4-manifolds are the torus and sphere, which have p1(T4) =

p1(S4) = 0. This tells us that the index of the Dirac operator vanishes. For the torus

T4, with periodic boundary conditions for spinors, this is because both D and D† have

zero modes. For the sphere S4, it is because there are no zero modes.

To find a compact manifold M with p1 6= 0, we need to turn to something more

exotic. A nice example is provided by the manifold known as M = K3, which can be

viewed as a smooth quartic surface in CP3. This is the only non-trivial Calabi-Yau

4-manifold and has p1(K3) = �48.

The factor of 1/24 in (3.34) is telling us something interesting. Because the left-hand

side is counting something, the right-hand-side must be an integer. This suggests that

the integral p1 must be a multiple of 24. In fact, things are a little more subtle. The

thing that we’re counting is the number of solutions to the Dirac equation and to pose

this question at all, we must be able to put Dirac spinors on the manifold M . This,

it turns out, is not possible for all manifolds. Those for which is is possible are called

spin manifolds. And for any orientable spin manifold, it turns out that p1 is always

divisible by 48.

The canonical example of a non-spin 4-manifold is complex projective space CP2.

It’s not possible to consistently patch spinor fields over this space, and so the question

of counting solutions to the Dirac equation is irrelevant. It turns out that p1(CP2) = 3.

Moreover, one can show that for any orientable 4-manifold, p1 is always divisible by 3.

For manifolds with dimM = 8, we need the result

p2 =
1

128⇡4

Z

M

⇣
(trR2)2 � 2trR4

⌘

There are generalisations to higher dimensional manifolds.
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3.3.3 Adding a Gauge Field

There is an interesting generalisation of the action (3.28) that retains N = 1 super-

symmetry. This is

L =

Z
dt

1

2
gij(x) ẋ

iẋj +
i

2
gij 

irt 
j + i⌘†

↵
Dt⌘

↵ +
1

2
(Fij)

↵

�
⌘†
↵
⌘� i j (3.35)

with i, j = 1, . . . , n as before and ↵, � = 1, . . . , r. Here the  i are Majorana fermions,

with covariant derivative given by the same expression (3.29) that we had before. Mean-

while, the ⌘↵ are complex fermions with covariant derivative

Dt⌘
↵ =

d⌘↵

dt
+ (Ai)

↵

�

dxi

dt
⌘�

We should think of Ai as a U(r) gauge connection over the manifold M . Just as the

metric gij is something fixed, so too is this gauge field. In more mathematical language,

we should think of A as a connection of a vector bundle E. In the action (3.35) F is

the associated field strength

(Fij)
↵

�
= @i(Aj)

↵

�
� @j(Ai)

↵

�
+ [Ai, Aj]

↵

�

Note that the four-fermion term involves F , which is the curvature of A. This entirely

analogous to the situation in N = 2 supersymmetric quantum mechanics where the

four-fermion term involves the Riemann tensor, which is the curvature of the spin

connection.

At first glance, it is surprising that the action (3.35) admits supersymmetry. Un-

til now, all our examples of supersymmetry involve a matching between bosonic and

fermionic degrees of freedom. But here we have introduced additional fermionic degrees

of freedom ⌘↵ without the corresponding bosonic partners. Nonetheless, you can check

that the action is invariant under the following N = 1 supersymmetry,

�xi = ✏ i

� i = �✏ẋi

�⌘↵ = �✏ i(Ai)
↵

�
 �

Together with the conjugate expression �⌘†
�
= ✏⌘†

↵
(Ai)↵� 

i. It turns out that adding

extra fermions, without bosonic counterparts, is an option only for supersymmetric

theories in d = 0 + 1 and d = 1 + 1 dimensions.
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How should we think about the theory (3.35). Quantising the real fermions  i gives

us a spinor over M as before. Quantising the complex fermions ⌘↵ gives us forms, but

they’re not forms over the manifold M since they don’t carry the i = 1, . . . , n index.

Instead, they are forms over the gauge bundle E. In more mundane language, this

simply means that the states transform in di↵erent representations of the U(r) gauge

connection. Ignoring the  i fermions for now, we start with the state |0i such that

⌘↵|0i = 0

This is a singlet (i.e. neutral) under the U(r) gauge bundle. Next, we have ⌘†↵|0i
which sit in the fundamental representation of U(r), and the ⌘†↵⌘†�|0i which sits in

the anti-fundamental representation, and so on. Furthermore, there is a U(1) symmetry

that rotates ⌘↵ ! ei✓⌘↵ and this ensures that energy eigenstates have fixed number of

⌘† excitations and so sit in a fixed representation of U(r).

The upshot is that the Hilbert space consists of a collection of spinors over M , each

transforming in the pth antisymmetric representation of U(r). The E = 0 ground

states obey Q|�i = 0 which, translated into the geometric language, becomes the Dirac

equation /D� = 0 with

Di = @i +
1

2
(!i)

bcSbc + Ai

with Ai in the appropriate representation. Once again, this can be put in block o↵-

diagonal form (3.31) and we can compute the index I(D) which, as in (3.32), coincides

with the Witten index. Restricting to the fundamental representation, a similar calcu-

lation to the one above now yields the Atiyah-Singer index theorem

I(D) =

Z

M

Â(M) ^ ch(F ) (3.36)

where F it the Chern character,

ch(F ) = Tr eF/2⇡ = r + c1(F ) + c2(F ) + . . .

The individual Chern classes are topological invariants of the gauge field when inte-

grated over the manifold M . The first two are

c1 =
1

2⇡
TrF and c2 =

1

8⇡2
TrF ^ F � TrF ^ TrF

There are close connections here to the physics of solitons. In particular, the integral of

the first Chern number counts the number of vortices in a gauge theory. The integral of

the second Chern number counts the number of Yang-Mills instantons. Both of these

have an interesting zero mode structure, even in flat spacetime, as follows from the

Atiyah-Singer index theorem (3.36).
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3.4 What Comes Next?

We have barely scratched the surface of supersymmetric theories and their connection

to mathematics. In this final section we give a brief sketch of the next steps. Roughly

speaking, there are two directions that are particularly rich: increase the number of

supersymmetries, and increase the spacetime dimension of the quantum theory.

First the supersymmetries. The stories we told above revolved around N = 2 super-

symmetry (for Morse theory) and N = 1 supersymmetry (for the index theorem). We

briefly met theories with N = 4 supersymmetry in Section 1.4.2 where we saw that they

naturally come with complex fields and a holomorphic superpotential. This suggests

that a sigma model with N = 4 supersymmetry should have a target space M that is,

in some sense, a complex manifold.

This is indeed what happens. Sigma models with N = 4 supersymmetry have target

spaces that are Kähler. These target spaces necessarily have even dimension, with

coordinates that can be paired together into complex numbers consistently over the

entire manifold. This structure is best seen through the introduction of superfields,

where the kinetic terms in the Lagrangian are written directly in terms of a function

known as the Kähler potential K(�, �̄) that is related to the metric by

gij̄ = 2
@2K

@�i�̄j̄
(3.37)

Superfields and the Kähler potential are both described in the accompanying lectures

on Supersymmetric Field Theory.

More supersymmetry brings yet more structure to the geometry, at least to a point.

There are theories with N = 8 supersymmetry whose target spaces are hyperKähler.

Such manifolds have a dimension that is a multiple of four, with three inequivalent

ways of pairing coordinates together into complex numbers. It’s a little like having a

quaternionic structure on the manifold (although beware that there is a di↵erent kind of

object in mathematics known as a “quaternionic manifold”). However, the interesting

things don’t keep happening forever and by the time we get to N = 16 supersymmetry

the restriction becomes too strong and the target space is obliged to be flat and largely

boring.

The full riches of supersymmetry really come when we consider theories in higher

dimensions, meaning quantum field theories rather than quantum mechanics. While

there are interesting stories for field theories in any spacetime dimension d  6 (and, if

you include gravitational theories, for d  11) there is, as I now explain, a reason why

QFTs in d = 1 + 1 dimensions are special.
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Consider a sigma model in d spacetime dimensions. We introduce coordinates xµ,

with µ = 0, 1, . . . , d � 1 for spacetime. The action is again based on some target

space M . This means that the fields �i(x), with i = 1, . . . , n should be thought of as

coordinates on M . The sigma model takes the form

S =

Z
ddx gij(�)@µ�

i@µ�j + fermions (3.38)

Note that there are two conceptually di↵erent spaces in this action. The spacetime

of the quantum field theory has dimension d, while the target space M has dimension

dimM = n.

With no potential V (�) to preference one point on the manifold M from another,

this theory has many classical ground states: each point on M or, equivalently, each

constant value of �i should be viewed as a di↵erent classical ground state of the system.

But what happens in the quantum theory? We’ve already seen that for d = 1,

which is just quantum mechanics, the ground state wavefunction spreads over M . This

is important as it means that the ground state knows something about the entire

manifold M and may therefore encode some information about its topology. We’ve

seen examples of this throughout these lectures.

What happens in higher dimensions with d > 1? It turns out that d = 2 is just like

quantum mechanics: the ground state wavefunction spreads over the whole manifold

M . Meanwhile, at least in this respect, quantum theories in dimensions d � 3 behave

like the classical theory: each point on M defines a di↵erent ground state.

I won’t prove this statement in these lectures. It sometimes goes by the name of the

(Coleman)-Mermin-Wagner theorem and is closely related to the concept of a “lower

critical dimension” in Statistical Field Theory. At heart, it boils down to a property

of the Poisson equation r2� = �(x) in d Euclidean dimensions. At long distances, the

solution grows in d = 1 and d = 2. (It is � ⇠ x in d = 1 and � ⇠ log x in d = 2.)

Conversely, the solution decays at long distance as � ⇠ 1/xd�2 in d � 3. Physically,

this translates into the fact that wavefunctions spread over M for sigma models with

d = 1 and d = 2, while the ground state remains localised at a point in M for d � 3.

This means that if we want to find some interesting physics that captures topological

properties of M , we should first look at d = 1 and d = 2. We’ve now spent over 100

pages studying supersymmetric quantum mechanics. So the next step is to look at

supersymmetric sigma models of the form (3.38) in d = 1 + 1.
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There is a rather special feature of quantum field theories in d � 2 dimensions that

distinguishes them from quantum mechanics in d = 1: renormalisation. This means

that the coupling constants that characterise a theory are not, in fact, constant. Instead

they change with scale. Sigma models in d = 1+ 1 dimensions are no exception. Here,

the couplings of the theory are encoded in the metric gij(�). Under renormalisation, this

metric changes and depends on the scale µ at which you look. The manner in which

the metric changes is governed by the beautifully geometric beta function equation,

known as Ricci flow

µ
@gij
@µ

= Rij (3.39)

This equation also plays an important role in String Theory, where it is ultimately

responsible for the emergence of the Einstein equations of general relativity.

Taking into account the renormalisation (3.39), there are three types of behaviour

that can occur depending on the type of target space M . Those spaces with positive

Ricci curvature, R > 0, will shrink under RG flow.. In this case, the theory becomes

increasingly strongly coupled in the infra-red and the impact on the physics is rather

dramatic with the seemingly massless scalars �i developing a quantum-generated mass.

Examples include M = Sn and M = CPn. You can read more about this in the

lectures on Statistical Field Theory and the lectures on Gauge Theory.

Target spaces M with negative Ricci curvature, R < 0, will typically expand under

RG flow. In this case they become more and more weakly coupled as the flow to they

infra-red. Hyperbolic spaces provide a simple example.

The sweet spot are those target spaces M for which the metric is Ricci flat, with

Rij = 0. In fact, rather wonderfully, you don’t have to start in the UV with a manifold

M with a Ricci flat metric. If the manifold admits a Ricci flat metric, then the quantum

theory will typically find it through the RG flow. The long-wavelength physics of such

a theory is then governed by an interacting conformal field theory. Or, if we’re dealing

with a supersymmetric sigma model, an interacting supersymmetric conformal field

theory or SCFT for short.

At this point, there is again an lovely intersection with results from mathematics.

If we have N = 4 supersymmetry so that the target space is Kähler, then there is

famous class of compact manifolds M that admit a Ricci flat metric known as Calabi-

Yau manifolds. (For what it’s worth, they are defined by having vanishing first Chern

class.) Our discussion above means that for each Calabi-Yau manifold M there is an

associated SCFT.
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That, it turns out, is interesting. While the quantum mechanical sigma models

described earlier in these lecture notes capture well-known stories of geometry, the

d = 1 + 1 sigma models give a new lens through which to look at the manifolds

M . And this lens gives us new information about the manifolds that goes beyond

what mathematicians originally knew (although they very quickly caught up!) It is

appropriate to refer to this view of the target spaceM , as seen by a SCFT, as “quantum

geometry”.

There are many novelties that come from associating a SCFT to a Calabi-Yau man-

ifold M . But one stands out. There is not a unique association between manifolds

M and SCFTs. Instead, pairs of manifolds M and N turn out to give rise to the

same SCFT. These two manifolds M and N are topologically distinct and, naively, one

wouldn’t have thought that they have anything to do with each other. But, perhaps

surprisingly, “quantum geometry” turns out to be more myopic than classical geometry

and the SCFT approach cannot distinguish objects which appear obviously di↵erent

to a classical geometer. At first glance, this myopia might appear to be a weakness,

but closer examination shows that it is very much a strength. The myopia only arises

because there are deep connections between the two manifolds M and N , with the

geometric information of one encoded in a hidden and subtle form in the other. In

technical language, the complex structure of one manifold is mapped to the symplectic

structure of the other. This mapping is known as mirror symmetry. It is, sadly, a topic

for another course.
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