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SU(2) Super Yang-Mills

These can be constructed by acting with the supercharge Q on the superconformal
primary µ

ia, yielding [21, 22]
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Here i = 1, 2, 3 is an SU(2)R index. The fermionic operators Â also carries an m = 1, 2
SU(2)R index, now in the fundamental, as well as the – spinor index. Both the current
and the scalar operator M are SU(2)R singlets. These operators have dimension � =
3, 3.5 and 4 respectively. In what follows we will make use of both the relevant scalar
operators µ and M to deform the theory.

The deformation by the the scalar operator M
a is well studied. We add

”L = h
a
M

a (2.1)

This corresponds to weakly gauging the SU(2)I flavour symmetry and giving an expec-
tation value h to the real scalar in the vector multiplet. Importantly, this deformation
preserves supersymmetry, but breaks SU(2)I æ U(1)I . The E1 fixed point is known
to flow to supersymmetric Yang-Mills with gauge group SU(2) and vanishing discrete
theta angle. The low-energy physics is given by

LYM = 1
2g2 tr

3
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(2.2)

Here ⁄ is a symplectic Majorana spinor which we describe in more detail in Section
3. The scale of the IR gauge coupling is set by the relevant perturbation in the UV:
1/g

2 ≥ |h|

The surviving U(1)I µ SU(2)I symmetry is identified as the topological current in
the low-energy theory,

JI = 1
8fi2 ú tr F · F

The fact that this topological current is enhanced to SU(2)I at the fixed point was first
noted in [8], and has since been verified through analysis of instanton zero modes [22],
the superconformal index [23], and the Nekrasov partition function [24]. (Indeed, the
existence of such symmetry enhancement in the ultra-violet is a recurring theme in five
dimensional gauge theories and has been seen using numerous methods [25–40].

The enhanced SU(2)I symmetry at the fixed point means that we flow to SU(2)
super-Yang-Mills regardless of the direction of the parameter h

a in (2.1). In particular,
if we fix a direction – say h

a = h”
a3 – then we flow to SU(2) super-Yang-Mills for both

h > 0 and h < 0.
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Symmetries:
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Here i = 1, 2, 3 is an SU(2)R index. The fermionic operators Â also carries an m = 1, 2
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Here ⁄ is a symplectic Majorana spinor which we describe in more detail in Section
3. The scale of the IR gauge coupling is set by the relevant perturbation in the UV:
1/g

2 ≥ |h|

The surviving U(1)I µ SU(2)I symmetry is identified as the topological current in
the low-energy theory,

JI = 1
8fi2 ú tr F · F

The fact that this topological current is enhanced to SU(2)I at the fixed point was first
noted in [8], and has since been verified through analysis of instanton zero modes [22],
the superconformal index [23], and the Nekrasov partition function [24]. (Indeed, the
existence of such symmetry enhancement in the ultra-violet is a recurring theme in five
dimensional gauge theories and has been seen using numerous methods [25–40].

The enhanced SU(2)I symmetry at the fixed point means that we flow to SU(2)
super-Yang-Mills regardless of the direction of the parameter h

a in (2.1). In particular,
if we fix a direction – say h

a = h”
a3 – then we flow to SU(2) super-Yang-Mills for both

h > 0 and h < 0.
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Topological current:



The UV Fixed Point
Seiberg, ’96

SYM

The existence of interacting supersymmetric fixed points suggests a very natural
way to explore the landscape of 5d field theories: we start from a supersymmetric
theory in the UV and deform by a relevant operator. Of course, if we wish to break
supersymmetry – and we do – then we necessarily relinquish some control, and since
our starting point is strongly coupled, the suspicion is that it will be di�cult to say
anything about where we land up. Nonetheless, in recent years there has been some
success at breaking supersymmetry in lower dimensions to derive dualities for strongly
coupled, non-supersymmetric field theories, albeit dualities that were known previously
[15–17]. In particular, the authors of [15, 16] used information about the topological
phases of gapped theories to argue that certain flows from a supersymmetric fixed
point should land on non-supersymmetric fixed points. Related topological arguments
have also been used to explore the phase structure of 4d gauge theories by adding soft
supersymmetry breaking terms to both N = 1 and N = 2 super-Yang–Mills [18–21].

In this short note, we apply similar arguments to explore the phase structure of RG
flows that emanate from the five dimensional E1 critical point, better known as the
UV completion of SU(2) N = 1 supersymmetric Yang–Mills [8]. We deform the theory
by relevant operators that, at weak coupling, gap out both the scalar and the fermion,
leaving behind only the SU(2) gauge field. Nonetheless, we argue that (given certain
assumptions described more fully below), at strong coupling, certain non-perturbative
states remain gapless. We propose that these may point to the existence of a non-
supersymmetric, interacting fixed point in 4+1 dimensions.

2 The E1 Critical Point

The E1 fixed point was first identified by Seiberg [8]. It can be thought of as the minimal
UV completion of SU(2) super-Yang–Mills, with no discrete theta angle1. The fixed
point has symmetry

F = SU(2)I ◊ SU(2)R

Here SU(2)R is the R-symmetry shared by all theories with eight supercharges while
SU(2)I is the global symmetry that gives the theory its enticing name. (This is the
first in a sequence of theories with En global symmetry, and E1 = SU(2).)

The conserved current J
a
µ , with a = 1, 2, 3 the SU(2)I index, resides in a short

conformal multiplet together with a number of other conformal primary operators.
1 In 5d theory with SU(2) gauge group, there are two choices of ◊ angle (◊ = 0 or fi) coming from

the fact fi4(SU(2)) = Z2 [10].
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The UV fixed point has:

Deform the UV theory by:

These can be constructed by acting with the supercharge Q on the superconformal
primary µ

ia, yielding [22–24]
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Here i = 1, 2, 3 is an SU(2)R index. The fermionic operators Â also carry an m = 1, 2
SU(2)R index, now in the fundamental, as well as the – spinor index. Both the current
and the scalar operator M are SU(2)R singlets. The operators µ, Â and (M, J) have
dimension � = 3, 3.5 and 4 respectively. In what follows we will make use of both the
relevant scalar operators µ and M to deform the theory.

The deformation by the the scalar operator M
a is well studied. We add

”L = h
a
M

a (2.1)

This can be thought of as weakly gauging the SU(2)I flavour symmetry and giving
an expectation value h to the real scalar in the vector multiplet. Importantly, this
deformation preserves supersymmetry, but breaks SU(2)I æ U(1)I . The E1 fixed
point then flows to supersymmetric Yang–Mills with gauge group SU(2) and vanishing
discrete theta angle. The low-energy physics is given by
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Here ⁄ is a symplectic Majorana spinor; we describe properties of this spinor in Ap-
pendix A. The scale of the IR gauge coupling is set by the relevant perturbation in the
UV: |h| = 1/2g

2

The surviving U(1)I µ SU(2)I symmetry is identified as the topological current in
the low-energy theory,

J
top = 1

8fi2 ú tr F · F (2.3)

The fact that this topological symmetry is enhanced to SU(2)I at the fixed point was
first noted in [8], and has since been verified through analysis of instanton zero modes
[23], the superconformal index [25], and the Nekrasov partition function [26]. Indeed,
the existence of such symmetry enhancement in the ultra-violet is a recurring theme in
five dimensional gauge theories [27–44].

The enhanced SU(2)I symmetry at the fixed point means that we flow to SU(2)
super-Yang–Mills regardless of the direction of the parameter h

a in (2.1). In particular,
if we fix a direction – say h

a = h”
a3 – then for both h > 0 and h < 0 we flow to SU(2)

super-Yang–Mills and, ultimately, to the free theory.
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scalar operator in triplet of SU(2)I
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The UV Fixed Point
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An Aside: (p,q)5-Brane Webs

On the Coulomb branch, we can move smoothly from one SYM to the other.

NS5-brane

D5-brane

instanton

W-boson

W-boson

instanton

Figure 1. Brane configurations corresponding to the pure SU(2) gauge theory on the
Coulomb branch. Horizontal lines represent D5-branes and vertical lines NS5-branes. A
fundamental string stretched between D5-branes corresponds to a W-boson in the field the-
ory on the left-diagram, while it appears as an instanton of the dual \SU(2) gauge theory on
the right. The supersymmetric CFT arises when the rectangle shrinks to a point.

If we move onto the Coulomb branch, then the transition between the theories at
h > 0 and h < 0 proceeds smoothly. This is seen very clearly in the brane diagrams
of [12, 13], as shown in the Figure 1. Viewed from the low-energy field theory, this is
a transition from a theory with 1/g

2
> 0 into the regime that seemingly has 1/g

2
< 0.

The result can be viewed as a kind of UV duality, where the theory with 1/g
2

< 0 is
again described by super-Yang–Mills, but with a dual gauge group that we denote as
\SU(2). The gauge couplings and scalar expectation values are related by

1
ĝ2 = ≠ 1

g2 and „̂ = „ + 1
2g2 (2.4)

The W-bosons in one regime morph smoothly into the instantons in the other.

The supersymmetric conformal theory corresponds to the point where both „, 1/g
2 æ

0. In this limit, the gluons and gluinos for both SU(2) and the dual \SU(2) gauge
group are massless. The masses of the vector multiplets in SU(2) are proportional to
the vertical side of the rectangle in Figure 1 and the masses of the vector multiplets
in \SU(2) are proportional to the horizontal side of the rectangle. Moreover, when
both gauge groups are massless in addition we get tensionless strings (which, on the
Coulomb branch, arise as solitonic monopole strings). The tension of this string is
proportional to the area of the rectangle in Figure 1. Note that when the SU(2) gauge
groups become massless, there are massless gluinos carrying SU(2)R charge. Similarly,
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If we move onto the Coulomb branch, then the transition between the theories at
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the vertical side of the rectangle in Figure 1 and the masses of the vector multiplets
in \SU(2) are proportional to the horizontal side of the rectangle. Moreover, when
both gauge groups are massless in addition we get tensionless strings (which, on the
Coulomb branch, arise as solitonic monopole strings). The tension of this string is
proportional to the area of the rectangle in Figure 1. Note that when the SU(2) gauge
groups become massless, there are massless gluinos carrying SU(2)R charge. Similarly,
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If we move onto the Coulomb branch, then the transition between the theories at
h > 0 and h < 0 proceeds smoothly. This is seen very clearly in the brane diagrams
of [12, 13], as shown in the Figure 1. Viewed from the low-energy field theory, this is
a transition from a theory with 1/g
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> 0 into the regime that seemingly has 1/g
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The result can be viewed as a kind of UV duality, where the theory with 1/g
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again described by super-Yang–Mills, but with a dual gauge group that we denote as
\SU(2). The gauge couplings and scalar expectation values are related by
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The W-bosons in one regime morph smoothly into the instantons in the other.

The supersymmetric conformal theory corresponds to the point where both „, 1/g
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0. In this limit, the gluons and gluinos for both SU(2) and the dual \SU(2) gauge
group are massless. The masses of the vector multiplets in SU(2) are proportional to
the vertical side of the rectangle in Figure 1 and the masses of the vector multiplets
in \SU(2) are proportional to the horizontal side of the rectangle. Moreover, when
both gauge groups are massless in addition we get tensionless strings (which, on the
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If we move onto the Coulomb branch, then the transition between the theories at
h > 0 and h < 0 proceeds smoothly. This is seen very clearly in the brane diagrams
of [12, 13], as shown in the Figure 1. Viewed from the low-energy field theory, this is
a transition from a theory with 1/g
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> 0 into the regime that seemingly has 1/g
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The result can be viewed as a kind of UV duality, where the theory with 1/g
2

< 0 is
again described by super-Yang–Mills, but with a dual gauge group that we denote as
\SU(2). The gauge couplings and scalar expectation values are related by
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The W-bosons in one regime morph smoothly into the instantons in the other.

The supersymmetric conformal theory corresponds to the point where both „, 1/g
2 æ

0. In this limit, the gluons and gluinos for both SU(2) and the dual \SU(2) gauge
group are massless. The masses of the vector multiplets in SU(2) are proportional to
the vertical side of the rectangle in Figure 1 and the masses of the vector multiplets
in \SU(2) are proportional to the horizontal side of the rectangle. Moreover, when
both gauge groups are massless in addition we get tensionless strings (which, on the
Coulomb branch, arise as solitonic monopole strings). The tension of this string is
proportional to the area of the rectangle in Figure 1. Note that when the SU(2) gauge
groups become massless, there are massless gluinos carrying SU(2)R charge. Similarly,
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Sometimes called “continuation past infinite coupling”, or “UV duality”



Breaking Supersymmetry

The SU(2)I current multiplet contains two scalar operators.

These can be constructed by acting with the supercharge Q on the superconformal
primary µ

ia, yielding [22–24]
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Here i = 1, 2, 3 is an SU(2)R index. The fermionic operators Â also carry an m = 1, 2
SU(2)R index, now in the fundamental, as well as the – spinor index. Both the current
and the scalar operator M are SU(2)R singlets. The operators µ, Â and (M, J) have
dimension � = 3, 3.5 and 4 respectively. In what follows we will make use of both the
relevant scalar operators µ and M to deform the theory.

The deformation by the the scalar operator M
a is well studied. We add

”L = h
a
M

a (2.1)

This can be thought of as weakly gauging the SU(2)I flavour symmetry and giving
an expectation value h to the real scalar in the vector multiplet. Importantly, this
deformation preserves supersymmetry, but breaks SU(2)I æ U(1)I . The E1 fixed
point then flows to supersymmetric Yang–Mills with gauge group SU(2) and vanishing
discrete theta angle. The low-energy physics is given by

LYM = 1
g2 tr

3
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µ‹ ≠ Dµ„Dµ

„ ≠ i⁄̄“
µDµ⁄ + D
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D

i + i⁄̄[„, ⁄]
4

(2.2)

Here ⁄ is a symplectic Majorana spinor; we describe properties of this spinor in Ap-
pendix A. The scale of the IR gauge coupling is set by the relevant perturbation in the
UV: |h| = 1/2g

2

The surviving U(1)I µ SU(2)I symmetry is identified as the topological current in
the low-energy theory,

J
top = 1

8fi2 ú tr F · F (2.3)

The fact that this topological symmetry is enhanced to SU(2)I at the fixed point was
first noted in [8], and has since been verified through analysis of instanton zero modes
[23], the superconformal index [25], and the Nekrasov partition function [26]. Indeed,
the existence of such symmetry enhancement in the ultra-violet is a recurring theme in
five dimensional gauge theories [27–44].

The enhanced SU(2)I symmetry at the fixed point means that we flow to SU(2)
super-Yang–Mills regardless of the direction of the parameter h

a in (2.1). In particular,
if we fix a direction – say h

a = h”
a3 – then for both h > 0 and h < 0 we flow to SU(2)

super-Yang–Mills and, ultimately, to the free theory.
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Deform the UV theory by:

when \SU(2) is massless the vector multiplet states carry SU(2)I charge. So, at the
conformal point, we have massless modes carrying both SU(2)R and SU(2)I charges.

We will soon break supersymmetry and, in doing so, lift the Coulomb branch. But
the parameter h which controls the coupling 1/g

2 will continue to be important, as will
the enhanced SU(2)I symmetry at the UV fixed point. We will provide evidence that,
even after supersymmetry breaking, massless modes carrying both U(1)R µ SU(2)R

and U(1)I µ SU(2)I charges persist at infinite coupling.

3 Breaking Supersymmetry

The superconformal current multiplet contains a second relevant scalar operator, µ,
with dimension �[µ] = 3. We can turn this on to flow away from the E1 fixed-point,
but only at the expense of breaking supersymmetry. This can be viewed as weakly
gauging the SU(2)I flavour symmetry and giving an expectation value to the D-term
in the vector multiplet.

Our primary interest in this paper lies in the RG flows that result from turning on
both relevant operators at once2,

”L = h
a
M

a + d
ai

µ
ai with h

a = hv̂
a and d

ai = m̃
i
v̂

a (3.1)

where v̂
a is a unit 3-vector. These deformations preserve a U(1)I µ SU(2)I as well as

as the subgroup U(1)R µ SU(2)R. We will be interested in the phase structure of the
theory as we vary h and m̃.

When |m̃| π h
2, we first flow to SU(2) super-Yang–Mills (2.2) and subsequently turn

on a further mass deformation that breaks supersymmetry. This mass deformation can
be easily identified since it corresponds, up to a proportionality factor, to a turning on
a D-term in a background U(1)I vector multiplet. The action (2.2) is deformed by

”L = m
i tr

3
i

4 ⁄̄‡
i
⁄ + „D

i
4

(3.2)

where the IR deformation m
i is proportional to the UV deformation m

i ≥ m̃
i; we will

see below, and in the appendix, that this proportionality factor includes a sign, so that
m

i = sign(h) m̃
i. This gives a mass to „, lifting the Coulomb branch, as well as to the

adjoint fermion ⁄. (The parameter m
i has dimension 2; the physical mass of both the

scalar and the fermion is g
2
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i.e. the bosons and fermions are gapped.



The Phase Diagram

SYMSYM h

m YM

YMYM

YM

Yang–Mills in the infra-red. We can, however, glean more information by studying the
topological phase of the fermions. As we will see, this will ultimately allow us to also
say something about the strongly coupled phase h

2 π |m̃|.

3.1 Topological Phases
To make progress, we first make a choice for the supersymmetry-breaking masses, say

m̃
i = (0, 0, m̃) (3.3)

This picks a specific choice of unbroken U(1)R µ SU(2)R. We then introduce back-
ground gauge fields for our two global symmetries: AR for U(1)R µ SU(2)R and AI for
U(1)I µ SU(2)I . After integrating out the gapped fermions, we wish to determine the
e�ective Chern–Simons term for these background fields

SCS =
ÿ

a=R,I

ka

24fi2

⁄
Aa · dAa · dAa (3.4)

There can also be mixed Chern–Simons terms which we will discuss later in this sub-
section.

Our goal is to determine the levels kR and kI in various parts of the phase diagram,
labelled by h and m̃. This phase diagram is shown in Figure 2 and naturally splits into
quadrants, depending on the sign of h and m̃. At a generic point in the phase diagram,
the global symmetry of the theory is U(1)R ◊U(1)I ; this is enhanced to SU(2)R ◊U(1)I

along the h-axis, except at the origin where it is further enhanced to SU(2)R ◊SU(2)I .

Crucially, if we determine the Chern–Simons levels in one quadrant — say, h > 0 and
m̃ > 0 — then we can determine them in all regions. This follows from the existence
of a Z2 ◊ Z2 symmetry acting on the moduli space of the theory, in which we act
with SU(2)I and SU(2)R to continuously rotate the vector v̂

a and m̃
i in (3.1) to their

negative values. Acting with SU(2)I results in the map

(h, m̃) æ (≠h, ≠m̃); AI æ ≠AI ; (kI , kR) æ (≠kI , kR); (3.5)

Acting with SU(2)R gives

(h, m̃) æ (h, ≠m̃); AR æ ≠AR; (kI , kR) æ (kI , ≠kR); (3.6)

In particular, combining these two operations we learn that, for a fixed m̃, as we cross
the h axis from h > 0 to h < 0 both levels flip sign: (kI , kR) æ (≠kI , ≠kR). Our task
now is to evaluate these Chern–Simons levels.
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Figure 2. Phase diagram for 5d SU(2) SYM; the subscripts denote the levels (kI , kR) of the
background Chern–Simons terms. The dark blue point at the origin is the strongly-coupled
UV fixed point with enhanced global symmetry. Turning on relevant deformations triggers
RG flows with di�erent endpoints which, at weak coupling, coincide with pure Yang–Mills.
(Strictly speaking, the labels YM and SYM tell us about the physics close to the fixed point;
the fixed point itself is free.) The Z2 ◊Z2 symmetry of the diagram is due to the “UV duality.”

The Chern–Simons term for AR can be determined by a simple perturbative calcu-
lation in the weakly coupled regime h

2 ∫ |m|. We work in the regime h > 0. The
symplectic Majorana fermion ⁄ decomposes into fermions which carry charge ±1 under
U(1)R. Integrating out these fermions3 induces the AR Chern–Simons term in (3.4)
with

kR = ≠3
2sign(m) (3.7)

The familiar sign(m) term is consistent with the expectation (3.6) based on symmetry.
The factor of 3 arises because ⁄ transforms in the adjoint of the SU(2) gauge group.
The half-integer value for kR reflects the fact that SU(2)R su�ers a non-perturbative
anomaly [11]; with SU(2)R broken to U(1)R, this non-perturbative Z2 anomaly mani-
fests itself as the familiar parity anomaly.

Next we turn to the background Chern–Simons terms for U(1)I . There are no per-
turbative states carrying these quantum numbers so we learn nothing from simply

3This result is the same as for a massive Dirac fermion charged under U(1). Details of the calculation
for a Dirac fermion can be found, for example, in [45]. The computation for a symplectic Majorana
fermion is broadly similar, di�ering only in minor points.
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Integrate out the gauginos to find:

m

Note: half-integer related to ‘t Hooft anomaly



The Chern-Simons Terms

For SU(2)I the computation of kI involves understanding non-perturbative states

The prepotential is:

�̂+
1

2ĝ2

[µ] = 3

SU(2)R ⇥ SU(2)I �! U(1)R ⇥ U(1)I

6F = 12h�2
+ 8�3 � 2h3

15

tree-level one-loop = CS term for dynamical gauge field

But this should be invariant under “UV duality”, or SU(2)I Weyl group

integrating out the massive gluino. Nonetheless, there is a simple argument that fixes
the level kI . This follows from the requirement that the supersymmetric prepotential
F is invariant under the UV duality (2.4), which sends

h æ ≠h and „ æ „ + h (3.8)

This tells us that the prepotential (when m̃ = 0) takes the form4

6F = 12h„
2 + 8„

3 ≠ 2h
3

where the first term arises from the tree-level action, the second from a one-loop com-
putation, and the final term is fixed by the duality. (The lack of an h

2
„ can be argued

as follows: any fermion charged under U(1)I must come with ± charges under U(1)gauge
and therefore contributes schematically as |h + „| + |h ≠ „|. But, at weak coupling,
h ∫ „, this implies there is no h

2
„ term. Moreover, there is no transition as the prepo-

tential is extended to h = 0.) The h
3 term in the prepotential contains the information

about the U(1)I Chern–Simons term, which we learn is

kI = ≠2 sign(h) (3.9)

The fact that the level depends on the sign of h is consistent with (3.5).

Evidence for a Non-Supersymmetric CFT
As we pass from one quadrant to another in the (h, m̃) plane, the background Chern–
Simons levels jump. This ensures that something interesting happens on each of the
coordinate axes.

This “something interesting” could come in di�erent flavours. Perhaps the least
interesting something is that a symmetry is spontaneously broken. For example, there
could be a phase at strong coupling in which the U(1)R and U(1)I symmetries are
spontaneously broken. Alternatively, the Z2 symmetry which maps h æ ≠h may be
spontaneously broken at h = 0, resulting in a first order phase transition. We cannot
rule out such scenarios.

Nonetheless, under the assumption that the various global symmetries survive, the
jump in the Chern–Simons levels signifies the existence of new massless modes, charged
under the corresponding global symmetry. Such behaviour is seen if we fix h, and vary

4The prepotentials of rank 1 and rank 2 5d SCFTs with mass deformations are obtained in [46] by
using UV symmetries as we did here. The prepotential presented in (2.6) in [46] for the E1 theory
agrees with our prepotential after the replacement m0 æ 4h.
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See also Closset, Del Zotto and Saxena, ‘18
Hayashi, Kim, Lee and Yagi ‘19
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SYMSYM

YM

YM

YM (-2,-3/2)

(-2,+3/2)

(+2,+3/2)

m

(+2,-3/2)YM

Given (kI,kR) in one quadrant, can use SU(2)I rotations to compute in others

h



Topological Phases

SYMSYM

YM

YM

YM (-2,-3/2)

(-2,+3/2)

(+2,+3/2)

m

(+2,-3/2)YM

h

Jump in Chern-Simons term               something interesting happens

e.g.    at m=0 line, kR jumps               massless fermions  



Topological Phases

SYMSYM

YM

YM

YM (-2,-3/2)

(-2,+3/2)

(+2,+3/2) m

(+2,-3/2)YM

h

What happens at h=0 line? 

Option 1: Massless non-perturbative states?
• Free or interacting?

New CFT?



�̂+
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2ĝ2

[µ] = 3

SU(2)R ⇥ SU(2)I �! U(1)R ⇥ U(1)I
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Topological Phases

SYMSYM

YM

YM

YM (-2,-3/2)

(-2,+3/2)

(+2,+3/2)

(+2,-3/2)YM

What happens at h=0 line? 

Option 2: Spontaneous breaking of
• Massless Goldstone modes



Topological Phases

SYMSYM

YM

YM

YM (-2,-3/2)

(-2,+3/2)

(+2,+3/2)

(+2,-3/2)YM

What happens at h=0 line? 

Option 3: First order phase transition 
• Spontaneous breaking of 



Summary

SYMSYM

YM

YM

YM (-2,-3/2)

(-2,+3/2)

(+2,+3/2) m

(+2,-3/2)YM

h

• New non-supersymmetric CFT?

• Or spontaneous symmetry breaking?

New CFT?

How can we tell?
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