A New 5d Non-Supersymmetric Fixed Point?

David Tong
University of Cambridge

My kitchen, April 2020

Based on 2001.00023
with Pietro Benetti Genolini, Masazumi Honda,
Hee-Cheol Kim and Cumrun Vafa

SU(2) Super Yang-Mills

$$\mathcal{L}_{YM} = \frac{1}{2g^2} \operatorname{tr} \left(-\frac{1}{2} F_{\mu\nu} F^{\mu\nu} - \mathcal{D}_{\mu} \phi \mathcal{D}^{\mu} \phi + i \bar{\lambda} \gamma^{\mu} \mathcal{D}_{\mu} \lambda + D^i D^i + i \bar{\lambda} [\phi, \lambda] \right)$$

$$[g^2] = -1$$

Symmetries:
$$SU(2)_R \times U(1)_I$$

Topological current:
$$J_I = \frac{1}{8\pi^2} * \operatorname{tr} F \wedge F$$

The UV Fixed Point

Seiberg, '96

The UV fixed point has: $SU(2)_I \times SU(2)_R$

Deform the UV theory by:

relevant parameter

$$|h| \sim \frac{1}{g^2}$$

scalar operator in triplet of $SU(2)_I$

$$[M^a] = 4$$

The UV Fixed Point

Seiberg, '96

Pick, for example $h^a = (0, 0, h)$

An Aside: (p,q)5-Brane Webs

Aharony, Hanany and Kol, '97

On the Coulomb branch, we can move smoothly from one SYM to the other.

Sometimes called "continuation past infinite coupling", or "UV duality"

Breaking Supersymmetry

The $SU(2)_I$ current multiplet contains two scalar operators

Deform the UV theory by:

$$\delta \mathcal{L} = h^a M^a + d^{ai} \mu^{ai}$$

pick
$$h^a = h\hat{v}^a$$
 and $d^{ai} = \tilde{m}^i\hat{v}^a$

$$\longrightarrow$$
 $SU(2)_R \times SU(2)_I \longrightarrow U(1)_R \times U(1)_I$

Breaking Supersymmetry

$$\delta \mathcal{L} = h^a M^a + d^{ai} \mu^{ai}$$

$$|\tilde{m}| \ll h^2$$

we first flow to SYM, and subsequently break susy. In this case, the deformation in the IR is

$$\delta \mathcal{L} = m^{i} \operatorname{tr} \left(\frac{i}{4} \, \bar{\lambda} \sigma^{i} \lambda + \phi D^{i} \right)$$

i.e. the bosons and fermions are gapped.

The Phase Diagram

Pick, for example $\ \tilde{m}^i = (0,0,\tilde{m})$

The Phase Diagram

What happens in the rest of the phase diagram?

To make progress: the massive fermions sit in a topological phase.

Introduce a background gauge fields: A_R for $U(1)_R \subset SU(2)_R$ $A_I \ \ \text{for} \ \ U(1)_I \subset SU(2)_I$

When the fermions are gapped, there are CS terms for the background gauge fields*

$$S_{CS} = \sum_{a=R,I} \frac{k_a}{24\pi^2} \int A_a \wedge dA_a \wedge dA_a$$

Each *SU(2)* YM theory is dressed with two CS levels.

^{*}There are also mixed CS terms

The Chern-Simons Terms

For $SU(2)_R$ the computation of k_R is straightforward.

Integrate out the gauginos to find:
$$k_R = -\frac{3}{2} \mathrm{sign}(m)$$

Note: half-integer related to 't Hooft anomaly

The Chern-Simons Terms

For $SU(2)_l$ the computation of k_l involves understanding non-perturbative states

But this should be invariant under "UV duality", or $SU(2)_I$ Weyl group

$$h \to -h \quad \text{and} \quad \phi \to \phi + h$$

$$\Longrightarrow \qquad 6\mathcal{F} = 12h\phi^2 + 8\phi^3 - 2h^3$$

The Chern-Simons Terms

$$6\mathcal{F} = 12h\phi^2 + 8\phi^3 - 2h^3$$

$$\implies k_I = -2\operatorname{sign}(h)$$

Given (k_l, k_R) in one quadrant, can use $SU(2)_l$ rotations to compute in others

e.g. at m=0 line, k_R jumps \implies massless fermions

What happens at h=0 line?

Option 1: Massless non-perturbative states?

• Free or interacting?

What happens at h=0 line?

Option 2: Spontaneous breaking of $U(1)_R \times U(1)_I$

Massless Goldstone modes

What happens at h=0 line?

Option 3: First order phase transition

• Spontaneous breaking of h o -h

Summary

- New non-supersymmetric CFT?
- Or spontaneous symmetry breaking?

How can we tell?

Thank you for your attention