Holography with Large N=4

David Tong

Based on arXiv:1402.5135

Neve Shalom, April 2014




Holography with Small N=4

DI1/D5 System Near horizon limit:

—> AdSs x S x M

M =T2*or K3

Q; Db5-branes: 012345
Q, Dl-branes: 05



Holography with Small N=4

AngXSSXM M=T%or K3

Boundary CFT The central charge is: C = 6Q5Q1

The R-symmetry becomes a current algebra

Boundary theory has small N=4 superalgebra and is well understood



Holography with Large N=4

AdS3 x S3 x S x S!

Supported by fluxes Q? and Ql

Elitzur, Feinerman, Giveon and Tsabar (1998)
de Boer and Skenderis (1999)
Gukov, Martinec, Moore and Strominger (2004)



Holography with Large N=4

The R-symmetry is now:

SO(4)” x SO(4)T 2 SU(2); x SU(2)7 x SU(2)f x SU(2)%

* There are two SU(2) current algebras.
* There is also a U(/) coming from S! factor of the geometry

Boundary theory has large N=4 superalgebra. But what is the theory?!

Elitzur, Feinerman, Giveon and Tsabar (1998)
de Boer and Skenderis (1999)
Gukov, Martinec, Moore and Strominger (2004)



Some Strange Properties of Large N=4



Central Charge

AdS3 x S3 x S x S!

supported by fluxes Q5i and Ql

c=60Q)

Q3 Qs

Q

5

+ Q5

Sevrin, Troost,Van Proeyen (1988)



BPS Bound

Ang X Si_ X SS_ X S1 supported by fluxes Q5i and ()4

- Qs + Q; _ 1
h = [ [
- +QF o +0r. o0+ Q5

\_ ]

(1T =17)* +u?]
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\ /

Representation under SU(2)* Charge under U(!)

* The bound is non-linear.
* There is no chiral ring!

* The non-linearities are “1/N” suppressed.
* They are not seen in supergravity



How to Build the Boundary Field Theory



A Tantalising D-Brane Configuration

6,7,89
A X

XS

/ > X234

Q" D5-branes: 012345
Qs D5'-branes: 056789
Q, Dl-branes: 05



Taking the Near Horizon Limit

Q." D5-branes: 012345
Qs D5'-branes: 056789
Q, Dl-branes: 05

Smear Dl-branes along 1234 and 6789. The near horizon limit is:

AdS3 x S3. x S% xR

™~

How should we interpret this?!

Basic Idea: Study this D-brane configuration anyway!



The Low-Energy Dynamics of D-Branes

Q.* D5-branes: 012345 DI-DI strings: U(Q,) vector multiplet

Qs- DSI'braneS: 056789 ° N=(8,8) supersymmetry
Q, Dl-branes: 05  Gauge field and four complex, adjoint scalars



The Low-Energy Dynamics of D-Branes

Q5+ D5-branes: 012345 D1-D5 strings: Q;* fundamental hypermultiplets

Qs- DSI'braneS: 056789 ° N=(4,4) supersymmetry
Q, Dl-branes: 05 * two complex fundamental scalars



The Low-Energy Dynamics of D-Branes

D5/ <trines: O - : :
Q5+ D5-branes: 012345 DI1-D5' strings: Q; fundamental (twisted) hypermultiplets

Qs D5'-branes: 056789 * N=(4,4) supersymmetry (but a different one!)
Q, Dl-branes: 05 * two complex fundamental scalars



The Low-Energy Dynamics of D-Branes

Q.* D5-branes: 012345 D5-D5/ strings: Q;*Q,s” Fermi multiplets
5 :

Qs D5'-branes: 056789 +  N=(0,8) supersymmetry
Q, Dl-branes: 05 * only left-moving fermions



The Low-Energy Dynamics of D-Branes

* All branes together preserve N=(0,4) supersymmetry
* The only question: how do chiral fermions couple to the other fields?
* Surprising answer: the coupling is fixed by supersymmetry



A Brief Explanation of Supersymmetry

Use N=(0,2) superfields. Scalar potential terms are built using Fermi multiplets.

U = —0YG — 010 (Dy + Dy )_ — 0T E(¢;) + 9+9+—¢¢+z

E-Terms D, .V, = E,(®;)

Holomorphic functions of chiral superfields

\

JTerms  S; = / Prdot Y U,JY(P;) + he.

The scalar potential is: |/ = Z |Ea‘2 + ‘Ja|2 + D?
a

But there is only N=(0,2) supersymmetry if. F -.J = Z E,J=0.

a



The Coupling of the Chiral Fermions

The D5-D5/ strings are needed to ensure that E.J=0

I~ _, 1~
I 1~
JX — 5(1)/(13 ‘]>~( — 5(13(1),



N=(0,4) U(Q,) Gauge Theory

* Q" fundamental hypermultiplets
* Qs fundamental twisted hypermultiplets
* Q;"Qs neutral Fermi multiplets

Flavour symmetry: SU(Q;) X SU(Q5_)

Also:  SO(4)™ x SO(4)T = SU(2)7 x SU(2)7 x SU(2)T x SU2)H

/N \ /

(Z,Z) n (22) (Y,Y) in (2.2) These are N=(0,4) R-symmetries

Finally, the theory has a global flavour symmetry which
rotates hypers, twisted hypers and Fermi multiplets



The Scalar Potential

To write it in a way in which the symmetries are manifest, define:

w(?) w/<¢/>
ot @/T

and
Dy =17, 2' 77 + w'dw Dy = ij;Y'V7 + ' 5/
/ / Self-dual Pauli matrices
In 3 of SU(2);* In 3 of SU(2)y ‘t Hooft matrices

V=T (BZ Dy + Dy - BY) + WYY+ W2 200 + T [V, 272 + Tr (wT cww'T -w/)

QF Q5
last term = Z Z <(¢2¢§))(¢;T¢a) + (cga ~;T)(Q~5§)¢~52) + (¢! ~2T)(§Bg¢a) + (éaqﬁé)(qﬁ%l))

a=1 b=1



Vacuum Moduli Space

V=Tr(Dy-Dy+ Dy - Dy) + 'Y Ywt /1220 + T [V, 272+ Tr (0l ww'T- o)

o w=w =0 with Z* and Y* mutually commuting.

e D,=0and Y= =0

e Dy =0and Z! = w = 0

But in fact, we’ll be interested in modes which appear to localise at the origin...



Flowing to the Infra-Red



Computing the Central Charge of N=(0,2) Theories

The OPE of the right-moving R-current includes the term

But this is the anomaly. Which means that the central charge can be computed in the ultra-violet

cr = 3Tr R?

AN
N\

Sum over right-moving fermions, minus left-moving fermions




Computing the Central Charge of N=(0,2) Theories

cr = 3Tr R?

There’s one small catch: you have to identify the right R-current in the UV. The requirement is:

Tr FR=0 Silverstein and Witten (1993)

{

Any U(I) global symmetry F

This can be repackaged as “c-extremization”

Adams, Tong and Wecht
Benini and Bobev (2012)



Computing the Central Charge of N=(0,4) Theories

Right-moving R-current is: SU(Q)];L X SU(2)E

* No mixing for non-Abelian symmetries
* But N=(0,2) R-current is some combination of

R* C su(2)5

Both are good N=(0,2) R-currents. But there is one combination that is an N=(0,2) flavour symmetry

U=R"—R"
We must have
TrTUR =0
TrUR™ = —201Q5 s - 5 +
| > R = — R~ + — R
TrURY = +20Q:QF Qs + Qs Qs + Qs



Computing the Central Charge of N=(0,4) Theories

cr=3TrR* [—) c=6Q1——2—
" Q3 + Qs

In agreement with the result from supergravity



Other Anomalies

Each symmetry in the gauge theory has an anomaly. These all agree with the levels of the large N=4 algebra

Tr (RT)* =Tr (L1)? = Q1Q7

Tr(R™)* = Tr(L™)? = (105

But....

* There is no symmetry corresponding to the S/ action of the geometry.

* The gauge theory has more degrees of freedom.
* These show up in the SU(Q:*) and SU(Q;) flavour symmetries

Tr(F7)*=Q; Tr(F )" =@

and the left-moving central charge

cr, = cr +2Q7 Q5

SU(2);* and SU(2),*

SU(2);~ and SU(2),"



Proposal

N=(0,4) Gauge Theory

—>

Large N=4 CFT dual to AdS;xS3xS3xS'

+ decoupled left-moving fermions




Where does this CFT live?

Right-moving R-symmetries cannot act on scalars in asymptotic (semi-classical) parts of moduli space. But....

R[Y] = RY] = — %5 Rz - @
V=R = s RA =Rz = %
5 5

CFT degrees of freedom are
localised at the origin.

* This is surprising in d=1+1 (Mermin-VWagner theorem)
* But related things happen in N=(4,4)
* Decoupling of Higgs and Coulomb branches



What happened to the Chiral Modes!?

An interesting story was found in the absence of D |-branes.This configuration is called the |-brane

5-brane dynamics

—>

* Chiral modes are pushed away from the intersection.
* The intersection has a mass gap
* lItalso has d=2+1| dimensional symmetry!

Itzhaki, Kutasov and Seiberg (2005)



Work in Progress: Decoupling from d=1+1

An (old) idea: Integrate out hyermultiplets. Focus on DI-DI fieldsY and Z

912 + 23_ ) (dz* + y*(d3)?)

2 _ 1 Qg— 2 2 +\2
A = (o ) (0 +Pe])?) +
2

— QF (‘% + (dﬂ;ff) + Q5 (

d 2
% + (dﬂg)2>

Z

There are also torsion terms and background dilaton charge.

g Aharony and Berkooz (1999)

The chiral fermions survive this integrating out. They have action

log(y?/2%)\ _
£ch1ra,1 — (1 + 2( /2 ) X_8_|_X_ +
ys — 2
log(y?/2°) log y y—0
2 _ 2 — y—12 y=2z—0

Work with Kenny Wong



Summary and Open Problems

N=(0,4) Gauge Theory :> Large N=4 CFT dual to AdS;xS*xS3xS!

+ decoupled left-moving fermions

* Understand decoupling of chiral fermions from perspective of d=1+1 dimensional gauge theory

* Compare chiral primaries
* Marginal Operators
* Any sign of non-linear BPS bound?

* Regimes of parameters where c scales linearly.
* Relationship to higher spin theories?

Q3 Qs

=0
SN s




Thank you for your attention



The Algebra

GO ()G (w) = %(Z i“’;} - 87043554”(%0)(2 f(i})—z g A (w)

Ao 0AT (W) +4(1 - y)agy 04 (w) | 20 L(w)
S r—w

Q*(2)Q"(w) = (k;(j fuzf“b oo

U(2)U (w) = —2’2 ff};z b

ARG w) =7 (kikif—tb) (Cibiwu)))z &jii? Zw)

AR (2)Q(w) = “ff%w) +o

0% ()G (1) — 204:5@'14*”(@0; ia;giA”(w) N 5?(@1:) .

U(2)G%(w) = (fi(32 T

k= Q1Q5



