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The Two Phases of a 2d Majorana Fermion

Consider a 2d Majorana fermion on a Riemann surface X with spin structure r

familiar results about bosonization and c = 1 conformal field theories. We will also explicitly

map out the space of c = 1 CFTs that depend on a spin structure. Of course, the study of

c = 1 CFTs is a very well trodden path. Nonetheless, we believe there is value in walking this

path in unfamiliar shoes, and seeing connections that were not previously apparent. We also

include two appendices: one where we describe a number of properties of the Arf invariant,

and the other reviewing the partition function of a compact boson.

2 Majorana Fermions and the Ising Model

Dualities beget further dualities. The purpose of this section is to explore this begetting,

starting from the relationship between a Majorana fermion and the Ising model in d = 1 + 1

dimensions.

2.1 The Majorana Fermion

Before we introduce the dualities, we need a few simple facts about the life of a Majorana

fermion in two dimensions. For the most part, we work in Euclidean signature on a general

Riemann surface X. We take the gamma matrices to be �1 = �1 and �2 = �3 so that

�3 = �1�2 = �i�2 is real and anti-symmetric.2

To specify a theory of fermions requires a choice of spin structure on X. For our purposes,

this spin structure tells us whether the fermions are periodic or anti-periodic around each

cycle. We denote this spin structure by ⇢. This will play an important role in what follows,

so we write the Dirac operator as /D⇢, with the subscript labelling the choice of spin structure.

The action for a massive Majorana spinor is

SMaj =

Z

X

i�̄ /D⇢�+ im�̄�3� (2.1)

The Majorana fermion has two distinct phases, depending on the sign of the mass. The

clearest physical manifestation of this di↵erence arises when we consider the theory on a

Lorentzian signature spacetime with time-like boundary, a situation which is the continuum

limit of the Kitaev Majorana chain [52]. For a given choice of boundary condition, one finds

a fermion zero mode localised on the boundary for one sign of the mass, but not the other.

Here we are interested on manifolds X without boundary. Nonetheless, there is a subtle

remnant of the topological phase. The partition function for the Majorana fermion is

ZMaj[⇢;m] = Pf( /D⇢ +m�3)

2
Later, we will also have cause to work in Lorentzian signature. Here the gamma matrices are �0

= i�2

and �1
= �1

, so that �3
= �0�1

= �3
.
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There are two phases:  • m > 0
• m < 0

Most simply detected by looking at manifold with boundary                SPT phase 



The Two Phases of a 2d Majorana Fermion

Consider a 2d Majorana fermion on a Riemann surface X with spin structure r

What happens as the mass changes sign? 

If there are zero modes, the partition function changes sign:  
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The Pfa�an of the Dirac operator is real. However, there is no natural choice of sign. For a

given m > 0, we are at liberty to define the sign to be positive. The question then becomes:

can the sign of the Pfa�an change as we vary m?

The Pfa�an changes sign when eigenvalues of the Dirac operator cross zero. This can only

occur when m = 0 where the massless Dirac operator /D⇢ may have zero modes. Such zero

modes always come in chiral pairs, labelled by the eigenvalue ±1 under the chiral operator

i�3. Restricted to a pair of zero modes, we have

Pf( /D⇢ +m�3)
���
zero mode

= Pf

 
0 �m

m 0

!
= m

which clearly changes sign as m varies from positive to negative.

We learn that our partition function does indeed change sign whenever there are an odd

number of pairs of zero modes of /D⇢. This, in turn, depends on the spin structure ⇢ and is

determined by the mod 2 index of the Dirac operator, restricted to modes of a given chirality.

We denote this as

I[⇢] = Index( /D⇢) 2 Z2

We will discuss more properties of this mod 2 index shortly. For now, it su�ces to point out

that for spin structures for which I(⇢) = 1, the partition function has a di↵erent sign for

m > 0 and m < 0 [53],

ZMaj[⇢;�m] = (�1)I[⇢] ZMaj[⇢;m] (2.2)

In the context of the Kitaev Majorana chain, this relation dates back to [47] (see also [54])

where the mod 2 index is replaced by an equivalent object known as the Arf invariant. The

relation between these will be elaborated upon below.

The transformation (2.2) can be viewed as an anomaly in the discrete chiral symmetry.

This takes slightly di↵erent forms in Euclidean and Lorentzian signature3:

Z2 :

(
� 7! i�3� Euclidean

� 7! �3� Lorentzian

This Z2 chiral transformation leaves the kinetic term in (2.1) invariant, but flips the sign of

the mass and therefore maps Z2 : ZMaj[⇢,m] 7! ZMaj[⇢,�m]. The transformation (2.2) tells

us that, for certain spin structures ⇢, even the partition function for a massless Majorana

fermion may not be invariant under the chiral transformation. This is the sense in which it

3
The extra factor of i in Euclidean signature may look strange since it does not respect the reality of the

Majorana fermion. However, as explained in [53], the reality conditions on fermions and their symmetries

should be imposed in Lorentzian signature, where the chiral symmetry is quite sensible. Upon Wick rotation,

we pick up an extra factor of i from �0
. Indeed, without the factor of i in Euclidean space, the kinetic term

in the action changes sign under this symmetry.
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The Pfa�an of the Dirac operator is real. However, there is no natural choice of sign. For a
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can the sign of the Pfa�an change as we vary m?
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zero mode
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m 0

!
= m

which clearly changes sign as m varies from positive to negative.
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with

is anomalous. In a slight abuse of notation, we will say that the e↵ective Euclidean action

transforms under the discrete chiral symmetry as

Z2 :

Z

X

i�̄ /D⇢ � 7!
Z

X

i�̄ /D⇢ �+ i⇡ I[⇢] (2.3)

2.2 Properties of the Mod 2 Index

The mod 2 index of the chiral Dirac operator will play a key role in what follows and it is useful

to review a few of its properties. As we described above, the spin structure ⇢ specifies whether

fermions are periodic (P) or anti-periodic (AP) around a given cycle. (In string theory, these

are referred to as Ramond and Neveu-Schwarz boundary conditions respectively.) The number

of di↵erent, inequivalent spin structures is given by |H1(X,Z2)| which, for us, is 22g with g

the genus of X.

For example, when X = T
2, there are four inequivalent spin structures, given by a choice

of P or AP around each of the two cycles. Choosing the flat metric on the torus, a Majorana

zero mode of the Dirac operator is simply a constant spinor. This is admissible only when

the spin structure has periodic boundary conditions around both cycles. The mod 2 index is

then given by

I[⇢] =
(
1 ⇢ = PP

0 ⇢ = AP,PA,AA
(2.4)

More generally, on a Riemann surface of genus g, there are 2g�1(2g � 1) spin structures

which have an odd number of zero modes (typically one) for which I[⇢] = 1, and there are

2g�1(2g + 1) spin structures which have an even number of zero modes (typically none) for

which I[⇢] = 0. This follows from the fact that the number of chiral zero modes mod 2 is a

bordism invariant, meaning that it is additive when we glue together Riemann surfaces. So,

for example, we can construct a g = 2 Riemann surface with I[⇢] = 0 by gluing together two

g = 1 Riemann surfaces, both of which have the same value of I[⇢]. There are 1⇥1+3⇥3 = 10

ways of doing this. A pedagogical physics discussion of these issues can be found in [55].

Our real interest in this paper is in matter – both fermions and scalars – coupled to Z2

gauge fields s 2 H1(X,Z2). These Z2 gauge fields are specified by the holonomy around each

cycle of X. (We will also discuss disorder operator in these theories which can be viewed as

inserting Z2 flux.)

There is close relationship between Z2 gauge fields and spin structures. As we have seen,

the latter already determine whether a fermion is periodic or anti-periodic around a given

cycle �. Meanwhile, a Z2 gauge connection s has holonomy
R
�
s 2 {0, 1} around each cycle.

When
R
�
s = 0 this does nothing, but when

R
�
s = 1, the holonomy shifts the boundary

conditions from periodic to anti-periodic, and vice versa. This means that, given a spin

structure ⇢ and a Z2 gauge connection s, we can construct a new spin connection which we

– 5 –

e.g. on the torus,



A ‘t Hooft Anomaly in Chiral Symmetry

Consider a 2d Majorana fermion on a Riemann surface X with spin structure r

We can use chiral symmetry to induce a sign of the mass

E ⇠ p
#

E ⇠ p

SMaj =

Z

X

i�̄ /@�+ im�̄�
3
� (1.2)

i⇡

Z
S [ T

Ising = Majorana

Zchiral
2 : ZMaj[⇢;m = 0] 7! (�1)I[⇢] ZMaj[⇢;m = 0]

Zchiral
2 : � 7! �

3
�
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This acts as 

E ⇠ p
#

E ⇠ p

SMaj =

Z

X

i�̄ /@�+ im�̄�
3
� (1.2)

i⇡

Z
S [ T

Ising = Majorana

Zchiral
2 : ZMaj[⇢;m] 7! ZMaj[⇢;�m] = (�1)I[⇢] ZMaj[⇢;m]

Zchiral
2 : � 7! �

3
�

8X

i=1

i�̄i /Ds;h�i + i⇡

Z
s [ S + h [H

�
 !

8X

i=1

i¯̃�
i
/DH+S;S�̃i

Z1
2 : �i 7! ��i

Z2
2 : �i 7! �

3
�i

Z
i�̄1 /D(s+S)·⇢�1 + i�̄2 /D(s+S+C)·⇢�2 + i⇡Arf[s · ⇢]  !

Z
1

2⇡
(DS;C✓)

2

ZS

2 : ✓ 7! ✓ + ⇡

11



Introducing the Arf Invariant

denote as s · ⇢. The mod 2 index of the new spin structure I[s · ⇢] obeys a number of useful

properties:

Claim 1: The first property arises when we combine Z2 gauge fields. We have

I[(s+ t) · ⇢] = I[s · ⇢] + I[t · ⇢] + I[⇢] +
Z

s [ t (2.5)

where the equality holds mod 2. (No harm will come to you if you prefer to think of the cup

product as
R
s ^ S.) A proof of this identity can be found in [56].

Algebraically, the expression (2.5) looks very much like a quadratic function on H1(X,Z2),

with the cup product playing the role of the cross-term. Indeed, such a function is sometimes

referred to as a quadratic refinement of the cup product. This underlies the fact that the

mod 2 index can be identified as a quadratic invariant of ⇢ known as the Arf invariant [56]:

I[⇢] = Arf[⇢] (2.6)

More details on this relation can be found in the appendix. For the purposes of this paper,

we will use the notation I[⇢] and Arf[⇢] interchangeably. In particular, when discussing

dualities below we use the notation Arf[⇢], following the usage in earlier papers on the subject

[43, 47, 48, 54].

The second result involves summing over all possible Z2 gauge fields. When the background

space X has genus g, the correct normalisation of the path integral for the sum over a Z2

gauge field s is

1

2g

X

s

To see this, first note that if a Z2 gauge field appears linearly in the path integral, then it

acts as a Lagrange multiplier, with

1

2g

X

s

(�1)
R
s[t =

(
2g if t = 0

0 otherwise
(2.7)

The normalisation of 1/2g then ensures that the trivial theory

1

2g

X

s

1

2g

X

t

(�1)
R
s[t = 1

is indeed trivial. The second result that we need is then

Claim 2:

1

2g

X

s

(�1)I(s·⇢)+I[⇢]+
R
s[t = (�1)I[t·⇢] (2.8)
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[Proof of equivalence by Atiyah]

Integrate out a massive Majorana fermion • nothing if m > 0

• ip Arf[r] if m < 0

Kapustin, Thorngren, Turzillo and Wang, ’14



Attempting a Duality

Ising = Majorana

except...



A New Ingredient: A Z2 Gauge Field

Consider a scalar field, s. We take our theory to have a Z2 symmetry 
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�
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8X

i=1

i�̄i /DH+S;S

Z1
2 : �i 7! ��i

Z2
2 : �i 7! �

3
�i

Z
i�̄1 /D(s+S)·⇢�1 + i�̄2 /D(s+S+C)·⇢�2 + i⇡Arf[s · ⇢]  !

Z
1

2⇡
(DS;C✓)

2

ZS

2 : ✓ 7! ✓ + ⇡

ZC

2 : ✓ 7! �✓

Z
i�̄1 /DS·⇢ �1 + i�̄2 /D(S+C)·⇢ �2  ! 1

2⇡
(Ds+S;C✓)

2 + i⇡Arf[s · ⇢]

Z2 : � 7! ��

11

We can gauge this symmetry. We introduce a Z2-valued gauge field s. 

ZC

2 : ✓ 7! �✓

Z
i�̄1 /DS·⇢ �1 + i�̄2 /D(S+C)·⇢ �2  ! 1

2⇡
(Ds+S;C✓)

2 + i⇡Arf[s · ⇢]

Z2 : � 7! ��

� ⌘ ��

Z

�

s 2 {0, 1}
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Duality 1: Majorana = Ising/Z2

dynamical Z2 gauge field

The correct statement is a fermionic duality:

Kapustin, Thorngren, Turzillo and Wang, ’14; Senthil, Son, Wang and Xu ‘18; Tachikawa (unpublished)
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Z

�

s 2 {0, 1}

s · ⇢

Z
i�̄ /DS·⇢ �  !

Z
(Ds�)

2 + �
4 + i⇡

h
Arf[s · ⇢] + Arf[⇢] +

Z
s [ S

i

Z
i�̄ /D⇢ �  !
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(Ds�)

2 + �
4 + i⇡

h
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i
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a new spin structure

The gauge symmetry acts as 

There is also a global symmetry:                                

[This is also known as (-1)F.]
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Duality 1: Majorana = Ising/Z2

To show this, we start by noting that

X

s

(�1)I[s·⇢] = 2g�1(2g + 1)� 2g�1(2g � 1) = 2g

But, from Claim 1, we also have

X

s

(�1)I[s·⇢] =
X

s

(�1)I[(s+t)·⇢] = (�1)I[t·⇢]
X

s

(�1)I[s·⇢]+I[⇢]+
R
s[t

Combining these yields the desired result. Both (2.5) and (2.8) will be invoked frequently in

what follows.

2.3 Majorana = Ising/Z2

We now turn to the main topic of the paper: dualities. We will construct a number of dualities

which relate bosonic and fermionic matter, coupled to Z2 gauge fields. We will adopt the

convention that lower-case Z2 connections, such as s and t, are dynamical, while upper-case

Z2 connections, such as S and T , are background.

We start with a seed duality. Roughly speaking, this is the equivalence between a single

Majorana fermion and the Ising model. Here the “roughly speaking” refers to the way that

various Z2 gauge fields appear and will be at the heart of our story. The duality can be traced

back to the Jordan-Wigner transformation [44], which is a change of variables that provides

rather simple solutions to a number of 2d spin systems, including the Ising model [58, 59].

In the continuum, this duality takes a rather more subtle form, as first explained in [47] (see

also [43]) and can be schematically written as

Z
i�̄ /DS·⇢ �  !

Z
(Ds�)

2 + �4 + i⇡
h
Arf [s · ⇢] + Arf [⇢] +

Z
s [ S

i
(2.9)

We have introduced two Z2 gauge connections: the fermion is coupled to a background gauge

connection S, while the scalar is coupled to a dynamical Z2 gauge connection s. These are

associated to the respective Z2 symmetries

Z
S

2 : � 7! �� and Z
s

2 : � 7! ��

Note that Z
S
2 is better known as (�1)F and coincides with a 2⇡ rotation in space. On the

scalar side of the theory, these gauge fields are coupled together through the cup product.

The �4 coupling on the right-hand-side should be taken to mean that we flow to the Ising

fixed point, and subsequently gauge the Z2 symmetry.

Here is an obvious point: both sides of the duality, including the scalar theory, require the

existence of a spin structure ⇢ in order to be defined. In this sense, the right-hand side is,

despite appearances, not a bosonic quantum field theory.
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Duality 1: Matching Phases

To show this, we start by noting that

X

s

(�1)I[s·⇢] = 2g�1(2g + 1)� 2g�1(2g � 1) = 2g

But, from Claim 1, we also have

X

s

(�1)I[s·⇢] =
X

s

(�1)I[(s+t)·⇢] = (�1)I[t·⇢]
X

s

(�1)I[s·⇢]+I[⇢]+
R
s[t

Combining these yields the desired result. Both (2.5) and (2.8) will be invoked frequently in

what follows.

2.3 Majorana = Ising/Z2

We now turn to the main topic of the paper: dualities. We will construct a number of dualities

which relate bosonic and fermionic matter, coupled to Z2 gauge fields. We will adopt the

convention that lower-case Z2 connections, such as s and t, are dynamical, while upper-case

Z2 connections, such as S and T , are background.

We start with a seed duality. Roughly speaking, this is the equivalence between a single

Majorana fermion and the Ising model. Here the “roughly speaking” refers to the way that

various Z2 gauge fields appear and will be at the heart of our story. The duality can be traced

back to the Jordan-Wigner transformation [44], which is a change of variables that provides

rather simple solutions to a number of 2d spin systems, including the Ising model [58, 59].

In the continuum, this duality takes a rather more subtle form, as first explained in [47] (see

also [43]) and can be schematically written as

Z
i�̄ /DS·⇢ �  !

Z
(Ds�)

2 + �4 + i⇡
h
Arf [s · ⇢] + Arf [⇢] +

Z
s [ S

i
(2.9)

We have introduced two Z2 gauge connections: the fermion is coupled to a background gauge

connection S, while the scalar is coupled to a dynamical Z2 gauge connection s. These are

associated to the respective Z2 symmetries

Z
S

2 : � 7! �� and Z
s

2 : � 7! ��

Note that Z
S
2 is better known as (�1)F and coincides with a 2⇡ rotation in space. On the

scalar side of the theory, these gauge fields are coupled together through the cup product.

The �4 coupling on the right-hand-side should be taken to mean that we flow to the Ising

fixed point, and subsequently gauge the Z2 symmetry.

Here is an obvious point: both sides of the duality, including the scalar theory, require the

existence of a spin structure ⇢ in order to be defined. In this sense, the right-hand side is,

despite appearances, not a bosonic quantum field theory.
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• m > 0 gives the trivial phase

• m < 0 gives ip Arf [S.r] 

Add mass M2 for scalar 

Add mass m for fermion 

• M2 < 0 then Z2 gauge symmetry is Higgsed
• Theory sits in trivial phase

• M2 > 0 then we have Z2 gauge theory 

Matching Phases

We will now proceed to explore various aspects of the duality. This will allow us to better

understand the role played by the Arf[s ·⇢]+Arf[⇢] term and cup product terms in the scalar

theory.

We start by studying the phases of the two sides. To do this, we deform away from the

fixed point by adding a mass m for the fermion, as in (2.1). We expect this to be dual to a

mass M2�2 for the boson.

We described the partition function for the fermion in the previous section. The theory

lies in a trivial, gapped phase when m > 0. In contrast, when m < 0 the theory lies in a

topological phase. Upon integrating out the fermion, this is seen by the e↵ective action (2.2)

Se↵ = i⇡Arf[S · ⇢] (2.10)

The fact that a Majorana fermion in the non-trivial phase of the Kitaev chain has an e↵ective

action given by the Arf invariant (or, equivalently, the mod 2 index) was first explained in

[47], and was elaborated upon in [54]. As stressed in [43], this is reminiscent of the manner

in which Chern-Simons terms are generated in three dimensions depending on the sign of the

fermion mass. Indeed, the analogy between the Arf invariant and Chern-Simons terms will

develop further as we go along.

Now we can match this to the bosonic theory. When we take M2 > 0, we can simply

integrate out the scalar to leave ourselves with the theory of the dynamical Z2 gauge field,

Zscalar =
X

s

exp

✓
i⇡


Arf [s · ⇢] + Arf [⇢] +

Z
s [ S

�◆
⇠ exp

⇣
i⇡Arf[S · ⇢]

⌘
(2.11)

where, in the final equality, we used the relation (2.8). Note that this coincides with the

low-energy fermionic theory (2.10) when m < 0.

In contrast, when M2 < 0, the scalar condenses and breaks the Z2 gauge symmetry,

ensuring that s = 0 in the ground state. In this case, Arf[s · ⇢] + Arf[⇢] = 0 (recall, the Arf

invariant is defined mod 2) and so the low-energy e↵ective action is independent of the fiducial

spin structure and background field S. This coincides with the trivial fermionic theory m > 0.

We see that the two phases match if the fermionic and bosonic masses are related by

m  ! �M2 (2.12)

Matching States

It is also useful to understand how the Hilbert spaces of the two theories map into each other.

For this, we rotate to Lorentzian signature and work on X = R⇥S
1. The duality should hold

for any choice of the fiducial spin structure ⇢ which, for us, is now the question of whether
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Matching States
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Duality 2: Majorana/Z2 = Ising

To show this, we start by noting that

X

s

(�1)I[s·⇢] = 2g�1(2g + 1)� 2g�1(2g � 1) = 2g

But, from Claim 1, we also have

X

s

(�1)I[s·⇢] =
X

s

(�1)I[(s+t)·⇢] = (�1)I[t·⇢]
X

s

(�1)I[s·⇢]+I[⇢]+
R
s[t

Combining these yields the desired result. Both (2.5) and (2.8) will be invoked frequently in

what follows.

2.3 Majorana = Ising/Z2

We now turn to the main topic of the paper: dualities. We will construct a number of dualities

which relate bosonic and fermionic matter, coupled to Z2 gauge fields. We will adopt the

convention that lower-case Z2 connections, such as s and t, are dynamical, while upper-case

Z2 connections, such as S and T , are background.

We start with a seed duality. Roughly speaking, this is the equivalence between a single

Majorana fermion and the Ising model. Here the “roughly speaking” refers to the way that

various Z2 gauge fields appear and will be at the heart of our story. The duality can be traced

back to the Jordan-Wigner transformation [44], which is a change of variables that provides

rather simple solutions to a number of 2d spin systems, including the Ising model [58, 59].

In the continuum, this duality takes a rather more subtle form, as first explained in [47] (see

also [43]) and can be schematically written as

Z
i�̄ /DS·⇢ �  !

Z
(Ds�)

2 + �4 + i⇡
h
Arf [s · ⇢] + Arf [⇢] +

Z
s [ S

i
(2.9)

We have introduced two Z2 gauge connections: the fermion is coupled to a background gauge

connection S, while the scalar is coupled to a dynamical Z2 gauge connection s. These are

associated to the respective Z2 symmetries

Z
S

2 : � 7! �� and Z
s

2 : � 7! ��

Note that Z
S
2 is better known as (�1)F and coincides with a 2⇡ rotation in space. On the

scalar side of the theory, these gauge fields are coupled together through the cup product.

The �4 coupling on the right-hand-side should be taken to mean that we flow to the Ising

fixed point, and subsequently gauge the Z2 symmetry.

Here is an obvious point: both sides of the duality, including the scalar theory, require the

existence of a spin structure ⇢ in order to be defined. In this sense, the right-hand side is,

despite appearances, not a bosonic quantum field theory.
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Start with the first duality:

add                      to both sides, and then promote S to a dynamical gauge field. 
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linearly and so, using (2.7), acts as a Lagrange multiplier setting s = T mod 2, leaving us

with
Z

i�̄ /Dt·⇢ �+ ⇡

Z
t [ T  !

Z
(DT�)

2 + �4 + i⇡
h
Arf [T · ⇢] + Arf [⇢]

i

This is now a duality between the Ising model and a Z2 gauge theory coupled to a Majorana

fermion. The Arf invariants involve only the background fields, so we are at liberty to take

them over to the other side of the duality. Renaming some of the gauge fields, we have

Z
i�̄ /Ds·⇢ �+ i⇡


Arf [S · ⇢] + Arf [⇢] +

Z
s [ S

�
 !

Z
(DS�)

2 + �4 (2.17)

Note that, despite appearances, the fermionic theory does not depend on the choice of fiducial

spin structure ⇢. To see this, write ⇢ = R · ⇢0 for some Z2 connection R and spin structure

⇢0. Then a few manipulations show that the left-hand-side of (2.17) takes the same form, but

with ⇢ replaced by ⇢0.

We can once again match both phases and Hilbert spaces. First, the phases. The theory

on the right hand side is the Ising model. It has two phases as we vary the mass M2�2,

but neither of them are topological. Instead the two phases are distinguished in the infinite

volume limit in the usual Landau fashion by the symmetry Z2.

We can see how this is matched in the duality. Turn on a mass m for the fermion, and

integrate it out. For m < 0 we generate an extra term in the low-energy e↵ective action,

Arf[s · ⇢]. Summing over the holonomies of s transforms this into Arf[S · ⇢] using (2.8), but

we already have such a term on the left hand side and 2Arf[S · ⇢] = 0. (Because two ’arfs

make an ’ole.) We learn that for m < 0 we sit in the trivial phase.

What about m > 0? After integrating out the fermion, we are left with the
R
s[S term in

the e↵ective action. For S = 0 the sum over s gives rise to the two ground states seen on the

bosonic side in the infinite volume limit. Meanwhile, when S 6= 0, the cup product requires

that gauge invariant states must have an odd number of fermions excited. In other words,

the vacuum has energy ⇠ m. This matches the Z2 broken phase of the Ising model where,

for S 6= 0, we sit in the twisted sector and the ground state corresponds to the domain wall.

Once again, we find the map m ! �M2 between the masses on the two sides of the duality.

We can make the matching between states more precise by considering the theory on

X = R⇥ S
1. When S = 0 we have the usual Ising model in the untwisted sector. What are

the corresponding states in the fermionic side? The dynamical Z2 gauge field allows for either

periodic or anti-periodic boundary conditions. However, in the absence of the Arf invariant

coupling for the dynamical gauge field, both sectors have even fermion parity. We have that

[48]

BR = F+
R
� F+

NS
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Duality 3: Kramers-Wannier Duality

Start with the second duality:
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the e↵ective action. For S = 0 the sum over s gives rise to the two ground states seen on the

bosonic side in the infinite volume limit. Meanwhile, when S 6= 0, the cup product requires

that gauge invariant states must have an odd number of fermions excited. In other words,

the vacuum has energy ⇠ m. This matches the Z2 broken phase of the Ising model where,

for S 6= 0, we sit in the twisted sector and the ground state corresponds to the domain wall.

Once again, we find the map m ! �M2 between the masses on the two sides of the duality.

We can make the matching between states more precise by considering the theory on
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Once again promote the background Z2 to a dynamical field. You will find.. 

Meanwhile, when S 6= 0, we have the twisted sector of the Ising model. In the fermionic

theory, the
R
s [ S term obliges us to excite a single fermion, giving us

BNS = F+
R
� F�

NS

The fermionic parity in the Ramond sector is flipped relative to our earlier duality. (This

option was also noted in a footnote in [48].)

2.5 Kramers-Wannier Duality

We can combine the bosonization dualities above to derive a purely bosonic duality. We work

with the duality in the form (2.17) and again promote the background field S to a dynamical

field which we call t. We have
Z

i�̄ /Ds·⇢ �+ i⇡


Arf [t · ⇢] + Arf [⇢] +

Z
(s+ T ) [ t

�
 !

Z
(Dt�)

2 + �4 + i⇡

Z
t [ T

On the left-hand side, we use the expression (2.8) to get

Z
i�̄ /Ds·⇢ �+ i⇡Arf[(s+ T ) · ⇢]  !

Z
(Dt�)

2 + �4 + i⇡

Z
t [ T

At this point we use the identity (2.5) for the Arf invariant, giving the duality

i�̄ /Ds·⇢ �+ i⇡


Arf[s · ⇢] + Arf [T · ⇢] + Arf [⇢] +

Z
s [ T

�
 ! (Dt�)

2 � �4 + i⇡

Z
t [ T

Note that the right hand side is not a theory that we’ve previously encountered: it is Ising/Z2

but, in contrast to our duality (2.9) there is no Arf[s · ⇢] for the dynamical gauge field.

Meanwhile, on the left-hand side we have a sector that looks like Majorana/Z2 with an Arf

invariant for the dynamical field. But this is precisely the form that appears in the chirally-

transformed duality (2.19). Invoking this gives the scalar-scalar duality

Z
(DS�)

2 + �4  !
Z

(Dt�̃)
2 + �̃4 + i⇡

Z
t [ S (2.20)

This is Kramers-Wannier duality.

The derivation above closely mimics that of 3d particle-vortex duality from bosonization

[1, 2]. In the 3d case, the bosonization duality had a hidden time-reversal invariance; in

the present case that role is played by the discrete chiral transformation. The relationship

between the Jordan-Wigner transformation and Kramers-Wannier duality was previously
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The left-hand side can be viewed as the chiral transform of our original theory!
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Or Ising = Ising/Z2

If we follow through the matching of masses, we find

Schroer and Truong ’79

the twisted sector (when S = 1). In contrast, with M2 < 0 the global Z2 symmetry is

spontaneously broken (at least on a non-compact manifold) resulting in two light states in

the limit of large |M2|.

Let’s see how this is repeated on the right-hand side. We can add a mass M̃2 for the

scalar. When M̃2 > 0, we may integrate out the scalar, leaving ourselves with the trivial Z2

gauge theory Se↵ = i⇡
R
s [ S. To count the states in the Hilbert space we can look at the

partition function on a torus (i.e. g = 1). Using the normalisation (2.7), we have Z = 2 when

S = 0 and Z = 0 otherwise, revealing again the existence of two light states. In contrast,

when M̃2 < 0, the Z2 gauge symmetry is broken. In this case, there is a unique ground state.

The mapping is therefore

M2  ! �M̃2

which, in the statistical mechanics context, is the statement that Kramers-Wannier duality

maps high temperatures to low temperatures.

We can also match the Hilbert spaces on the two sides, giving BR = B̃+
R
� B̃+

NS
and

BNS = B̃�
R
� B̃�

NS
. Comparing these two expressions gives us the relation

B�
R
= B̃+

NS
(2.21)

where this is an equality about the spectrum of the Hamiltonian on X = R ⇥ S
1 acting on

these Hilbert spaces. This is the result previously advertised in (2.15).

The Chiral Transformation is Kramers-Wannier Duality

To end this section, we return to the question of how the discrete chiral transformation acts

on our seed duality (2.9)

i�̄ /DS·⇢ �  ! (Ds�)
2 + �4 + i⇡

h
Arf [s · ⇢] + Arf [⇢] +

Z
s [ S

i
(2.22)

As we have seen, the left-hand-side has an anomalous discrete chiral symmetry under which

the action picks up an Arf invariant I[S · ⇢]. The discussion above suggests that this should

be realised as a Kramers-Wannier duality on the right-hand-side. It is simple to check that

this is indeed the case. Performing a Kramers-Wannier duality gives

i�̄ /DS·⇢ �  ! (Dt�̃)
2 + �̃4 + i⇡

h
Arf [s · ⇢] + Arf [⇢] +

Z
s [ (S + t)

i

 ! (Dt�̃)
2 + �̃4 + i⇡Arf[(S + t) · ⇢]

where the final expression arises from (2.8). Now, using (2.5), we have

i�̄ /DS·⇢ �  ! (Dt�̃)
2 + �̃4 + i⇡

h
Arf [t · ⇢] + Arf [⇢] +

Z
t [ S +Arf[S · ⇢]

i

which coincides with our starting point (2.22), except for the extra anomalous Arf[S ·⇢] term,

matching the anomalous chiral transformation of the fermions.
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Further Dualities



Coleman’s Bosonization

Coleman, ‘75

Dirac Fermion = Compact Boson



Coleman’s Bosonization

A more accurate phrasing: Dirac/Z2 = Compact Boson
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Coleman’s Bosonization

Alternatively: Dirac = Compact Boson/Z2
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This is a fermionic CFT It is not modular invariant

It lies in a topological phase when gapped

[Aside: can use these methods to map out space of c=1 non-modular invariant CFTs]



RNS = GS

An important duality in string theory:

8 Majorana fermions  =  8 Majorana fermions  =  8 Majorana fermions

8V 8S 8C

This also plays a key role in condensed matter physics (Fidkowski and Kitaev)



RNS = GS

A better phrasing:

8 Majorana fermion coupled to  Z2 x Z2 gauge field  =  8 Majorana fermions

8V
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E ⇠ p
#

E ⇠ p

SMaj =

Z

X

i�̄ /@�+ im�̄�
3
� (1.2)

i⇡

Z
S [ T

Ising = Majorana

Zchiral
2 : ZMaj[⇢;m = 0] 7! (�1)I[⇢] ZMaj[⇢;m = 0]

Zchiral
2 : � 7! �
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�

8X

i=1
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Z
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�
 !

8X

i=1

i�̄i /DH+S;S
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and

[We also need a further duality, involving Arf, to generate full triality]

E ⇠ p
#

E ⇠ p

SMaj =

Z

X

i�̄ /@�+ im�̄�
3
� (1.2)

i⇡

Z
S [ T

Ising = Majorana

Zchiral
2 : ZMaj[⇢;m = 0] 7! (�1)I[⇢] ZMaj[⇢;m = 0]

Zchiral
2 : � 7! �

3
�

8X

i=1

i�̄i /Ds;h�i + i⇡

Z
s [ S + h [H

�
 !

8X

i=1

i¯̃�
i
/DH+S;S�̃i

Z1
2 : �i 7! ��i

Z2
2 : �i 7! �

3
�i

Z
i�̄1 /D(s+S)·⇢�1 + i�̄2 /D(s+S+C)·⇢�2 + i⇡Arf[s · ⇢]  !

Z
1

2⇡
(DS;C✓)

2

ZS

2 : ✓ 7! ✓ + ⇡
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work in progress with Carl Turner



Summary

There are some subtle Z2 gauge symmetries in 2d dualities

But once you fix one of them, you can get them all.



Thank you for your attention


