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Abstract: I present an open-string description of solitonic domain walls in a semi-

classical field theory. I speculate on the possibility for an open-closed string duality in

this setting.



Introduction

Everybody loves a good D-brane. These objects have underpinned much of the progress

in high-energy theoretical physics for the past ten years, culminating in the miraculous

AdS/CFT correspondence which, at its heart, relies on the equivalence of open and

closed string descriptions of D-brane dynamics. The purpose of this talk is to describe

semi-classical D-brane objects in simple field theories, by which I mean gauge fields

interacting with scalars and fermions, decoupled from the complications of gravity. I

will then explain how, in certain regimes, an open-string description of the dynamics

becomes viable [1].

So what is a D-brane? If we simply define it to be a dynamical
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surface on which strings can end, then Nature offers several examples,

most notably in the arena of fluid dynamics. For example, the AB-

interface in superfluid 3He is a D-brane on which a vortex string may

end. More prosaically, one may view a cumulonimbus cloud base

as a D-brane on which a tornado or a water spout may terminate.

You can learn more about this system at the twistor session of this

conference.

However, there is one crucial feature that these D-branes do not

share with those found in string theory: there is no regime in which

an open-string description holds. One would have a very hard time convincing a mete-

orologist that, as two clouds approach, their dynamics is governed by quantum effects

of virtual tornadoes stretched between them. Yet this is precisely what happens for

D-branes in string theory. Indeed, it is the key feature that governs many of the fas-

cinating properties of D-branes. And, as we shall see, it is also what happens for the

solitons in this talk.

The Field Theory and its Spectrum

Since we are working with common-or-garden field theories, both the strings and the

D-branes must appear as solitonic objects. We will consider a theory in d = 3 + 1

dimensions that contains both vortex strings and domain walls in its solitonic spectrum.

The simplest example is a U(1) gauge theory, coupled to N complex scalar fields qi,

i = 1, . . . , N , each of charge +1. There is also a single, real, neutral scalar field φ. The

scalar potential is given by

V =
e2

2
(

N∑

i=1

|qi|
2 − v2)2 +

N∑

1=1

(φ − mi)
2|qi|

2 (1.1)
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This is the truncation of a theory with N = 2 supersymmetry. While the bosonic

action above will suffice to describe the classical solitons, when we come to the open

string description we will work with the full N = 2 theory, complete with fermions.

When the masses mi are distinct, the theory (1.1) has N isolated vacua given by

φ = mi and |qj|2 = v2δij for i = 1, . . . , N . Excitations around each vacuum are gapped.

The photon has a mass Mγ = ev, where e2 is the gauge coupling. The complex scalars

have a mass Mq = |mi − mj | for i 6= j. The quantum theory also has another, more

nefarious, scale: it is the Landau pole Λ ∼ ev exp(+1/e2N), above which the theory

ceases to make sense. In the following we will take the limit e2 → ∞1. The strong

coupling limit e2 → ∞ is usually considered sick in theories not displaying asymptotic

freedom because Λ → Mγ . To avoid these problems we simply take the UV cut-off of the

theory to lie in the region v, mi ≪ µUV ≪ Mγ. This means that we ignore all dynamics

of the massive photon, and the theory should really be thought of as a proxy for the

massive sigma-model of interest. In this limit, the classical theory reduces at energies

E ≪ Mγ to a bunch of interacting massive scalars, described by a sigma-model with

potential. Sigma-models in four-dimensions are, of course, non-renormalizable; this is

the price we’ve paid for eliminating the Landau pole. At energies E ≪ v the theory

is weakly coupled. We will implicitly assume an ultra-violet completion at energies

E ≫ v.

The Solitons

Our theory admits both string and domain wall solitons. Let’s start with the strings

which are vortices of the type introduced into high-energy physics over 30 years ago

by Nielsen and Olesen[3]. The vortices are supported by the phase of the condensed

scalar qi, which winds around the z = x1 + ix2 plane transverse to the string. They

are 1/2-BPS, with tension Tvort = 2πv2 and width Lvort = 1/ev. Notice that in the

sigma-model limit e2 → ∞, the vortex becomes singular as befits a fundamental string.

The second soliton is a domain wall whose existence is guaranteed by the multiple,

isolated vacuum states. We impose the vacuum φ = mi at x3 = −∞ and φ = mj at

x3 = +∞. The tension of the wall is Twall = v2∆m where ∆m = |mi − mj |. In the

e2 → ∞ limit of interest, the width of the wall is Lwall = 1/∆m. From now on we order

the masses m1 > m2 > . . . > mN .

1It is not clear if this limit is necessary, but it evades certain subtleties regarding boojums [2] —

energy associated to the end point of the open string — which scale as 1/e2 and must otherwise be

treated with care when quantizing the open string.
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A single domain wall, interpolating between neighboring vacua φ = mi and φ = mi+1,

has a collective coordinate X3, describing the center of mass. However, the domain wall

also has a second, internal, collective coordinate [4]. To see this note that the original

theory is invariant under a U(1)N−1 flavor symmetry, in which the phases of the qi

fields are rotated independently. In each vacuum, only a single qi 6= 0, and the rotation

qi → eiσqi coincides with the gauge action and does not lead to any new physical state.

However, in the center of the domain wall both qi and qi+1 are non zero, and the global

action qi → eiσqi with qi+1 → e−iσqi+1 does now sweep out a new physical configuration.

The center of mass X3 and the phase collective coordinate σ parameterize the domain

wall moduli space R×S1. The low-energy dynamics of the domain wall is determined

by promoting the collective coordinates to dynamical degrees of freedom in order to

describe long wavelength fluctuations of the position and internal phase orientation.

Wall Dynamics: Bulk Description

We now consider the scattering of two parallel domain walls using the classical equations

of motion. We call this the “bulk description”.

In order to have two walls (as opposed to a wall and anti-wall) we need at least three

vacua. We therefore choose N ≥ 3 and set φ = mi−1 at x3 = −∞ and φ = mi+1 at

x3 = +∞. With these boundary conditions there are domain wall solutions which have

the profile of two domain walls, separated by an arbitrary distance [7] R. In between

the two walls, the fields lie exponentially close to the middle vacuum configuration

φ = mi.

The system with two walls has 4 collective coor-
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dinates, arising from the position and phase degree

of freedom for each wall. The moduli space naturally

factors into the center of mass and relative degrees

of freedom: M2−wall
∼= R× (S1 ×Mcigar)/Z2, where

Mcigar is a cigar like manifold describing the rela-

tive position and phase of the wall. The asymptotic,

cylindrical regime of the cigar corresponds to far separated domain walls; the tip of

the cigar corresponds to the configuration in which the domain walls sit on top of each

other.

The low-energy scattering of the domain walls is described by a sigma-model on

Mcigar. The metric may be computed explictly [8], but is not required to understand

what happens when two walls collide. Geodesics on the moduli space simply round the

tip of the cigar, corresponding to two walls approaching and rebounding in finite time,

3



with their relative phase shifted by π. In particular, the key feature of the dynamics is

so obvious that it is almost not worth stating: our domain walls cannot pass.

We need to analyze the regime of validity of this bulk calculation. Since the compu-

tation was purely classical, we must ensure that quantum effects can be consistently

ignored. Higher order quantum corrections to the classical action will appear as an

expansion in derivatives (∂/v). For domain walls of width Lwall = 1/∆m, these may

be consistently ignored when ∆m/v ≪ 1.

Wall Dynamics: Open String Description

We will now present a very different, dual, perspective on domain wall scattering,

which we call the “open string description”. Recall that the d = 2 + 1 dimensional

worldvolume of the domain wall houses a periodic scalar σ. We may exchange this

in favor of a photon using the duality map is ∂ασ ∼ ǫαβγF
βγ. In these variables, the

low-energy effective action for the walls is a d = 2 + 1 U(1) gauge theory. Including

the fermion zero modes, this theory has N = 2 supersymmetry (4 supercharges).

The existence of a U(1) gauge field living
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Figure 3:

on the domain wall is strikingly reminiscent

of D-branes in string theory. But, so far, the

derivation of the gauge field is rather cheap

because nothing is charged under it. In fact,

one can show that the vortex string can ter-

minate on the domain wall, where its end is

electrically charged [5, 6]. There are a number

of ways to see this. One is to write down the

explicit solution for the string ending on the

domain wall which can be found analytically in e2 → ∞ limit [5]. Another is to study

the “BIon’ spike solution emanating from the wall [5, 6]. Finally, one may find numer-

ical solutions describing multiple strings ending on multiple walls; an example, taken

from [9], is shown in the figure.

In the “open string description” of domain wall scattering, we will not consider

the classical profile of the domain walls in four-dimensions, nor the bulk field theory

interactions between them as they overlap. Instead we will treat the two domain walls

as free objects, each described by a U(1) gauge theory, and each free to roam along the

x3 line. In particular, they may move past each other unimpeded. The only interaction

between the two walls comes from the quantum effects of open vortex strings stretched

between the walls. Note that the quantum open string effects must be very powerful
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for they must, ultimately, stop the domain walls from passing each other. Let us see

how this occurs. (Full details can be found in [1]).

To study the effect of open strings, we must first ask what state the stretched open

string gives rise to. The lowest open string mode has electric charge (+1,−1) under

the two gauge fields on the domain walls, and bare mass2 TvortR. We also know that

the stretched open string is 1/2 BPS in the domain wall worldvolume, ensuring that

the lowest mode lies in a short representation of the supersymmetry algebra. There

are two possibilities: a vector multiplet or a chiral multiplet. We are used to seeing

light vector multiplets, and the associated non-abelian gauge symmetry enhancement,

appearing in string theory when two identical branes coincide. However, this cannot

be the case for us since our domain walls are not identical. For example, they have

different tensions. So we conclude that the lowest mode of the open string gives rise to

a charged chiral multiplet in d = 2 + 1 dimensions.

I therefore claim that the relative dynamics of two domain walls is governed by a

d = 2+1, N = 2 supersymmetric U(1) gauge theory coupled to a single chiral multiplet.

However, there is a subtlety. Integrating out a charged chiral multiplet in d = 2 + 1

dimensions induces a Chern-Simons coupling. Integrating in a charged chiral multiplet

must also therefore induce a Chern-Simons coupling, κA ∧ F , where κ = −1/2.

The Chern-Simons term gives a mass to the gauge field on the
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wall. By supersymmetry, it also gives a mass to the separation of

the walls R. This suggests that, in this open string description,

the walls cannot be separated. But, of course, we must look at

the quantum theory and, in particular, the effect of integrating

out the open string mode. This gives a finite renormalization:

κ → κeff = −1
2
+ 1

2
sign (R), where sign (R) is the sign of the mass of

the fermion in the chiral multiplet. We learn that we can separate

the walls in the positive R > 0 direction at no cost of energy. Of

course, this is not surprising: we have simply integrated in the

chiral multiplet, and immediately integrated it out again, leaving us with no effective

Chern-Simons coupling. But if we try to pass the domain walls through each other and

separate them in the opposite direction R < 0, the Chern-Simons coupling bites, and

the flat direction is lifted. The final effect of the quantum open strings on the domain

wall dynamics is best summarized in the famous words of Gandalf: you cannot pass.

One may study the low-energy dynamics of the Chern-Simons theory in more detail.

After transforming the dual photon σ, one finds that the long wavelength interactions
2As stressed in [10], the physical mass of the state is infinite due to a logarithmic divergence

associated to both the gauge field and the wall separation R. This is the familiar infra-red divergence

in d = 2 + 1 dimensions that occurs also for the D2-brane dynamics in string theory. It means that

we cannot excite the modes of the open string on-shell, but this does not concern us here. Rather we

are interested in the virtual effect of these states on the dynamics of the massless brane modes. And,

as we shall see, these are perfectly finite.
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of the massless modes R and σ are again described by a sigma-model with target space

given by the cigar.

Finally, let us decide when the open-string approach is valid. We have integrated

in the lightest mode of an open stretched string, and ignored the tower of higher

excitations. This requires TvortR ≪ ∆m, where ∆m is the excitation gap for internal

modes of the string. If we also require that R ≫ Lwall = 1/∆m, then we are left with

the condition for the validity of the open string description: ∆m/v ≫ 1. This is the

opposite regime to where we performed the classical bulk computation3.

Discussion

What are the implications of a field theory soliton whose dynamics admit both a bulk

and open string description? Let me start by addressing what is, perhaps, the most

familiar aspect of D-branes. Ask the average man on the street what characterizes a D-

brane and he will answer that the tension goes as the inverse string coupling, T ∼ 1/gs.

Is this true for our D-branes? In fact, it’s hard to tell since we don’t have a good handle

on the string coupling gs in these theories. We may evocatively write the tension of

the domain wall as Twall = (∆m/v) (1/α′3/2) with α′ = 2π/Tvortex, suggesting that the

string coupling is gs = v/∆m. Is this plausible? For gs ≪ 1, the closed loop of string

appears to be the lightest object in the field theory. However, it is precisely in this

regime that the sigma-model breaks down and one must study the UV completion of

the theory, including potential renormalization to closed loops of string. It certainly

seems possible that there exists a 4d little string theory completion of the theory. In

this case, the relationship gs = v/∆m is very reasonable and is entirely analogous to

similar expressions that appear in 6d little string theories in the double scaled limit.

In fact, the question of a UV completion has bearing on a more important issue. I

referred to the classical scattering of domain walls as the“bulk calculation” rather than

the more familiar “closed string” regime. Is this latter phrase appropriate? Can the

bulk sigma-model fields be thought of as quantized loops of closed vortex string? I

don’t know the answer, but only if a UV completion exists can we think of the two

descriptions of the domain wall dynamics as reflecting an underlying open-closed string

duality, with the two methods above corresponding to suitable lowest-mode truncations

of a modular invariant annulus partition function.

3Indeed, the two calculations differ in the details. For example, in the classical computation, inter-

actions are exponentially suppressed in the separation exp(−R∆m), while the open string approach

has power-law interactions 1/R. In fact, the latter is not to be trusted: the infinite tower of higher

open string modes may possibly sum to produce an exponential suppression after all.
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If such an open-closed string duality is indeed at play for our solitonic vortex strings,

one may try to be more ambitious and study an AdS/CFT-like correspondence in

theories without gravity. On a practical level, Maldacena’s big breakthrough can be

thought of as introducing a factor of N , the number of D-branes, to allow two, seemingly

mutually exclusive, regimes of validity to overlap. In the present case it seems difficult

to implement this. On a trivial level, our domain walls are not identical objects and

bringing many of them together does not improve the validity of the bulk calculation.

On a more fundamental level, questions of entropy matching between the two sides

appear much more of a hurdle in theories without gravity and the associated thinning

of degrees of freedom.
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