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Question

What symmetries are broken when fermions get a mass?
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Vector symmetry survives, chiral symmetry broken 



The Real Obstacle: the 't Hooft Anomaly

A global symmetry G has a ‘t Hooft anomaly. 

• The symmetry G is spontaneously broken

• There exist massless fermions to saturate the anomaly
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What if the 't Hooft Anomaly Vanishes?

Consider the following examples:

In each case, can we give a mass to the fermions without breaking G?

• G = SU(N) with            and N+4

• G = SU(N) with         and N-4

• G = SU(3) x SU(2) x U(1) with 15 fermions carrying the 
quantum numbers of quarks and leptons in the Standard Model



How to Gap Chiral Fermions

The Rules of the Game

• Start from free massless fermions realising a non-anomalous chiral symmetry G

Add extra degrees of freedom and flow to the IR. The goal is to gap everything while preserving G.
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How to Gap Chiral Fermions

The Rules of the Game

• Start from free massless fermions realising a non-anomalous chiral symmetry G

Add extra degrees of freedom and flow to the IR. The goal is to gap everything while preserving G.

• Scalars. 
• These can be charged under G (but you better make sure that they don’t condense)

• Fermions. 
• If these are charged under G, they must come in left/right conjugate pairs.

• Gauge Fields.
• These gauge a different symmetry H providing

• [H,G] = 0
• There are no mixed anomalies with G.
• There are scalars that allow a phase in which H is Higgsed.   



The Basic Idea

Gauge dynamics of H with global symmetry G

RG

Confinement without chiral symmetry breaking

Find H such that:
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G = SU(N) with            and N+4

Gauge H = SU(N+4).  Must also add: • Additional fermion in       of H.

• Scalars that can Higgs H.

• Scalars condense              auxiliary fields heavy and decouple 

• Scalars heavy             have to understand dynamics of strongly coupled H gauge theory
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Gauge H = SU(N+4).  Must also add: • Additional fermion in       of H.

• Scalars that can Higgs H.

Under G x H, we have (          ,1) + (     ,     ) + (1,      )  

H is expected to confine without breaking chiral symmetry G.
The low-energy spectrum us believed to be a massless composite fermion

in (         , 1) 

Georgi ’79; Dimopoulos, Raby and Susskind ’80; Eichten, Peccei, Preskill and Zeppenfeld, ‘85 
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Add in the UV 

RG This gaps the fermions, 
preserving G.
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Example 2

G = SU(N) with        and N-4

Gauge H = SU(N-4).  Must also add: • Additional fermion in          of H.

• Scalars that can Higgs H.

Under G x H, we have (      ,1) + (     ,     ) + (1,         )  

What now happens to H? A simple guess is that it again confines without breaking
chiral symmetry, with a massless composite fermion:

in (       , 1) 

Eichten, Peccei, Preskill and Zeppenfeld, ‘85 

Very likely at large N. But….not true for H = SU(2)



• H confines without breaking chiral symmetry G with massless

• Fermion bilinears condense, breaking G

The Case of H = SU(2)

G = SU(6) with        and 2

Gauge H = SU(2). It has 6 doublets and an adjoint = 

Now H is a vector-like gauge theory. And this changes things.

Possibilities: 



G = SU(6) with        and 2

Gauge H = SU(2). It has 6 doublets and an adjoint = 

Use Weingarten inequalities. Look at the propagator for 

Integral over gauge field with 

positive definite measure

Propagators for quarks in background gauge field

Weingarten ‘83; 

Aharony, Sonnenschein, Peskin, Yankielowicz, ‘95

The Case of H = SU(2)



G = SU(6) with        and 2

Gauge H = SU(2). It has 6 doublets and an adjoint = 

Use Weingarten inequalities. Look at the propagator for 

at most a constant

Weingarten ‘83; 
Aharony, Sonnenschein, Peskin, Yankielowicz, ‘95

The Case of H = SU(2)



Supersymmetry to the Rescue

H = SU(2) with 6 doublets and an adjoint Weyl fermion

• Non-supersymmetric              likely to break G = SU(6)

• Supersymmetric theory            confinement without chiral symmetry breaking 

Seiberg ‘94

Note: presence of scalars means the measure is not positive definite.

Many other examples of supersymmetric theories known

Csaki, Schmaltz and Skiba ’96



fermions that sit in vector-like representations of G. We write the original fermions in black
(omitting their names), with three additional pairs of fermions in red,

(1,2)�3 (3̄,2)+1 (1,1)+6 (3,1)�4 (3,1)+2 (1,1)0

(1,2)�3 (3,1)+2 (1,1)0

(1,2)+3 (3̄,1)�2

Crucially, the additional fermions sit in vector-like representations of G; it is trivial to give
masses to each of the pairs without breaking G. Note that we have added two fermions that
are singlets under G; one of these can play the role of the right-handed neutrino.

The additional fermions mean that we have three pairs with the same quantum numbers:
these are the fermions that sit in the first two lines above. The next step is to introduce an
SU(2) gauge symmetry (not to be confused with the SU(2) global symmetry in G) under
which these pairs of fermions transform as a doublet. The upshot is that we have a collection
of fermions transforming as

Fermion SU(2)gauge SU(3) SU(2) U(1)

l 2 1 2 �3
l0 1 1 2 +3
q 1 3̄ 2 +1
e 1 1 1 +6
u 1 3 1 �4
d 2 3 1 +2
d0 1 3̄ 1 �2
⌫ 2 1 1 0

At this stage, we introduce yet more fields to give a supersymmetric extension of this model.
These are scalar superpartners for each fermion listed above, a gaugino in the adjoint of
SU(2)gauge. The end result is a collection of chiral multiplets, transforming as

Field SU(2)gauge SU(3) SU(2) U(1) U(1)A U(1)R
L 2 1 2 �3 0 0
L0 1 1 2 +3 3 2
Q 1 3̄ 2 +1 �1 4/3
E 1 1 1 +6 0 2
U 1 3 1 �4 �2 2/3
D 2 3 1 +2 1 2/3
D0 1 3̄ 1 �2 2 4/3
N 2 1 1 0 �3 0

– 11 –
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• Add three further pairs of fermions
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• Add three further pairs of fermions

• Gauge the H = SU(2) symmetry
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• Add three further pairs of fermions

• Gauge the H = SU(2) symmetry

• Supersymmetrize. 

• Add scalar superpartners for all fermions, and a H = SU(2) gaugino
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Seiberg ‘94

• The H = SU(2) gauge theory is coupled to six doublets.

• This confines without breaking the global symmetry. 

• The low-energy physics consists of 15 free mesons:

where the additional fields from supersymmetry mean that the theory enjoys two further
symmetries, U(1)A and U(1)R. The R-symmetry acts on the fermions in L, Q, E, U and D
as the familiar B � L symmetry of the Standard Model.

All the symmetries listed are preserved by the gauge invariant superpotential

WUV = ✏abL
aLbE + ✏ijkD

iDjUk + ✏abL
aDiQb

i + ✏abL
aNL0b +DiND0

i (2.4)

where now a, b = 1, 2 are indices for SU(2) ⇢ G and i, j = 1, 2, 3 and indices for SU(3) ⇢ G.
It is simple to check that each of these terms is invariant under G.

From hereon, the story is familiar. The strong coupling dynamics consists of an SU(2)
supersymmetric gauge theory coupled to six doublets. This theory is know to exhibit s-
confinement [12, 13] and, in the infra-red is described by a collection of 15 meson fields,

Ẽ = ✏abL
aLb , Ũk = ✏ijkD

iDj , Q̃i
b = ✏abL

aDi , L̃b = ✏abL
aN , D̃i = DiN

The superpotential (2.4) descends to the infra-red where it becomes,

WUV = ẼE + ŨkU
k + Q̃i

bQ
b
i + L̃bL0b + D̃iD

0
i

This gaps all fields, preserving G.

2.4 Further Generalisations

Connoisseurs of supersymmetric gauge theories will have no problems generalising these re-
sults to many other chiral, anomaly free models. A useful list of s-confining theories, together
with the representations under the global symmetries in both UV and IR, can be found in
[29].

Another simple example arises with the global symmetry group G = SU(N), with a
Weyl fermion �̃ transforming in the symmetric representation and N + 4 Weyl fermions
 , each transforming in the anti-fundamental representation ⇤. The ’t Hooft anomaly again
vanishes, courtesy of

A ( ) = N + 4

In addition to G = SU(N), this collection of fermions admits an H = SU(N + 4) symmetry.
We gauge the SO(N + 4) ⇢ H. After supersymmetrisation, we have the field and symmetry
content

Field SO(N + 4) SU(N) U(1)R
Q N+ 4 ⇤ �2/N
M̃ 1 4/N

We subsequently add the superpotential

WUV = M̃ijQ
iQj

– 12 –

where the additional fields from supersymmetry mean that the theory enjoys two further
symmetries, U(1)A and U(1)R. The R-symmetry acts on the fermions in L, Q, E, U and D
as the familiar B � L symmetry of the Standard Model.

All the symmetries listed are preserved by the gauge invariant superpotential

WUV = ✏abL
aLbE + ✏ijkD

iDjUk + ✏abL
aDiQb

i + ✏abL
aNL0b +DiND0

i (2.4)

where now a, b = 1, 2 are indices for SU(2) ⇢ G and i, j = 1, 2, 3 and indices for SU(3) ⇢ G.
It is simple to check that each of these terms is invariant under G.

From hereon, the story is familiar. The strong coupling dynamics consists of an SU(2)
supersymmetric gauge theory coupled to six doublets. This theory is know to exhibit s-
confinement [12, 13] and, in the infra-red is described by a collection of 15 meson fields,
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k + Q̃i

bQ
b
i + L̃bL0b + D̃iD

0
i

This gaps all fields, preserving G.

2.4 Further Generalisations

Connoisseurs of supersymmetric gauge theories will have no problems generalising these re-
sults to many other chiral, anomaly free models. A useful list of s-confining theories, together
with the representations under the global symmetries in both UV and IR, can be found in
[29].

Another simple example arises with the global symmetry group G = SU(N), with a
Weyl fermion �̃ transforming in the symmetric representation and N + 4 Weyl fermions
 , each transforming in the anti-fundamental representation ⇤. The ’t Hooft anomaly again
vanishes, courtesy of

A ( ) = N + 4

In addition to G = SU(N), this collection of fermions admits an H = SU(N + 4) symmetry.
We gauge the SO(N + 4) ⇢ H. After supersymmetrisation, we have the field and symmetry
content

Field SO(N + 4) SU(N) U(1)R
Q N+ 4 ⇤ �2/N
M̃ 1 4/N

We subsequently add the superpotential

WUV = M̃ijQ
iQj

– 12 –

where the additional fields from supersymmetry mean that the theory enjoys two further
symmetries, U(1)A and U(1)R. The R-symmetry acts on the fermions in L, Q, E, U and D
as the familiar B � L symmetry of the Standard Model.

All the symmetries listed are preserved by the gauge invariant superpotential

WUV = ✏abL
aLbE + ✏ijkD

iDjUk + ✏abL
aDiQb

i + ✏abL
aNL0b +DiND0

i (2.4)

where now a, b = 1, 2 are indices for SU(2) ⇢ G and i, j = 1, 2, 3 and indices for SU(3) ⇢ G.
It is simple to check that each of these terms is invariant under G.

From hereon, the story is familiar. The strong coupling dynamics consists of an SU(2)
supersymmetric gauge theory coupled to six doublets. This theory is know to exhibit s-
confinement [12, 13] and, in the infra-red is described by a collection of 15 meson fields,
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quarksleptons electron up quark down quark neutrino



fermions that sit in vector-like representations of G. We write the original fermions in black
(omitting their names), with three additional pairs of fermions in red,

(1,2)�3 (3̄,2)+1 (1,1)+6 (3,1)�4 (3,1)+2 (1,1)0

(1,2)�3 (3,1)+2 (1,1)0

(1,2)+3 (3̄,1)�2

Crucially, the additional fermions sit in vector-like representations of G; it is trivial to give
masses to each of the pairs without breaking G. Note that we have added two fermions that
are singlets under G; one of these can play the role of the right-handed neutrino.

The additional fermions mean that we have three pairs with the same quantum numbers:
these are the fermions that sit in the first two lines above. The next step is to introduce an
SU(2) gauge symmetry (not to be confused with the SU(2) global symmetry in G) under
which these pairs of fermions transform as a doublet. The upshot is that we have a collection
of fermions transforming as

Fermion SU(2)gauge SU(3) SU(2) U(1)

l 2 1 2 �3
l0 1 1 2 +3
q 1 3̄ 2 +1
e 1 1 1 +6
u 1 3 1 �4
d 2 3 1 +2
d0 1 3̄ 1 �2
⌫ 2 1 1 0

At this stage, we introduce yet more fields to give a supersymmetric extension of this model.
These are scalar superpartners for each fermion listed above, a gaugino in the adjoint of
SU(2)gauge. The end result is a collection of chiral multiplets, transforming as

Field SU(2)gauge SU(3) SU(2) U(1) U(1)A U(1)R
L 2 1 2 �3 0 0
L0 1 1 2 +3 3 2
Q 1 3̄ 2 +1 �1 4/3
E 1 1 1 +6 0 2
U 1 3 1 �4 �2 2/3
D 2 3 1 +2 1 2/3
D0 1 3̄ 1 �2 2 4/3
N 2 1 1 0 �3 0

– 11 –

Example 3: The Standard Model
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G = SU(3)⇥ SU(2)⇥ U(1)
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quarksleptons electron up quark down quark neutrino

If we add the superpotential

where the additional fields from supersymmetry mean that the theory enjoys two further
symmetries, U(1)A and U(1)R. The R-symmetry acts on the fermions in L, Q, E, U and D
as the familiar B � L symmetry of the Standard Model.

All the symmetries listed are preserved by the gauge invariant superpotential

WUV = ✏abL
aLbE + ✏ijkD

iDjUk + ✏abL
aDiQb

i + ✏abL
aNL0b +DiND0

i (2.4)

where now a, b = 1, 2 are indices for SU(2) ⇢ G and i, j = 1, 2, 3 and indices for SU(3) ⇢ G.
It is simple to check that each of these terms is invariant under G.

From hereon, the story is familiar. The strong coupling dynamics consists of an SU(2)
supersymmetric gauge theory coupled to six doublets. This theory is know to exhibit s-
confinement [12, 13] and, in the infra-red is described by a collection of 15 meson fields,

Ẽ = ✏abL
aLb , Ũk = ✏ijkD

iDj , Q̃i
b = ✏abL

aDi , L̃b = ✏abL
aN , D̃i = DiN

The superpotential (2.4) descends to the infra-red where it becomes,

WUV = ẼE + ŨkU
k + Q̃i

bQ
b
i + L̃bL0b + D̃iD

0
i

This gaps all fields, preserving G.

2.4 Further Generalisations

Connoisseurs of supersymmetric gauge theories will have no problems generalising these re-
sults to many other chiral, anomaly free models. A useful list of s-confining theories, together
with the representations under the global symmetries in both UV and IR, can be found in
[29].

Another simple example arises with the global symmetry group G = SU(N), with a
Weyl fermion �̃ transforming in the symmetric representation and N + 4 Weyl fermions
 , each transforming in the anti-fundamental representation ⇤. The ’t Hooft anomaly again
vanishes, courtesy of

A ( ) = N + 4

In addition to G = SU(N), this collection of fermions admits an H = SU(N + 4) symmetry.
We gauge the SO(N + 4) ⇢ H. After supersymmetrisation, we have the field and symmetry
content

Field SO(N + 4) SU(N) U(1)R
Q N+ 4 ⇤ �2/N
M̃ 1 4/N

We subsequently add the superpotential

WUV = M̃ijQ
iQj

– 12 –

But, in the infra-red, this becomes

15 meson fields,

eE = ✏abL
aLb , eUk = ✏ijkD

iDj , eQi
b = ✏abL

aDi , eLb = ✏abL
aN , eDi = DiN

The superpotential (2.5) descends to the infra-red where it becomes a collection of mass terms.

WIR = eEE + eUkU
k + eQi

bQ
b
i + eLbL0b + eDiD

0
i

All fields are gapped, preserving G.

2.4 Further Generalisations

Connoisseurs of supersymmetric gauge theories will have no trouble generalising these results
to other chiral, anomaly free models using the many known s-confining theories [26–31]. Here
we briefly describe a few examples.

At heart, the example of the Standard Model described above was constructed by em-
bedding chiral representations of SU(3)⇥ SU(2)⇥ U(1)Y into

G = SU(6) with and 2 ⇤

through the more familiar grand unified embedding into SU(5) ⇢ SU(6). Symmetric mass
generation was then realised by viewing G as the global symmetry of an SU(2) gauge theory
with six fundamental chirals and its (conjugate) singlet mesons. A slightly more complicated
route realises G through an Sp(n) gauge theory, with six fundamentals and a traceless anti-
symmetric, again accompanied by its mesons. This theory is known to s-confine and, for
n � 2, preserves an G = SU(6)⇥ U(1) symmetry [27, 28].

Another interesting, anomaly free chiral representation is given by

G = SU(N) with and and 8 ⇤

In addition toG, the fermions have anH = SU(8) symmetry that acts on the anti-fundamentals.
For N = 5, we may gauge a G2 ⇢ SO(7) ⇢ H symmetry. that acts on 7 of the 8 anti-
fundamentals After suitable supersymmetrisation, the theory s-confines, yields a meson spec-
trum consisting of a , a , and a ⇤, which can then be paired with the gauge singlet
fermions to gap the system [29].

Relatedly, forN = 6 we may gauge a Spin(7) ⇢ H symmetry, with the 8 anti-fundamentals
transforming in the spinor representation. This results in a meson spectrum consisting of

and , which again can be paired with the gauge singlets [29].

– 12 –



Comments on Domain Wall Fermions

(in the continuum and on the lattice)



Lattice Fermions

Naïve attempts to put chiral fermions on the lattice result in doublers
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Figure 41: The dispersion relation for a

right-handed fermion in the continuum

Figure 42: A possible deformation to

keep the dispersion periodic in the Bril-

louin zone (with a = 1).

|k| = ⇡/a. We then identify the states at k = ±⇡/a. Although this seems rather mild,

it’s done something drastic to the chiral symmetry. If we take, say, a right-moving

excitation with k > 0 and accelerate it, it will eventually circle the Brillouin zone and

come back as a left-moving excitation. This is shown graphically by the fact that the

blue line connects to the orange line at the edge of the Brillouin zone. (This is similar

to the phenomenon of Bloch oscillations observed in cold atom systems; see the lectures

on Applications of Quantum Mechanics.) Said another way, to get such a dispersion

relation we must include an interaction term between  + and  �. This means that,

even without introducing gauge fields, there is no separate conservation of left and

right-moving particles: we have destroyed the chiral symmetry. Note, however, that

we have to excite particles to the maximum energy to see violation of chiral symmetry,

so it presumably survives at low energies.

Suppose that we insist that we wish to preserve chiral symmetry. In fact, suppose

that we try to be bolder and put just a single right-moving fermion  + on a lattice.

We know that the dispersion relation E(k) crosses the E = 0 axis at k = 0, with

dE/dk > 0. But now there’s no other line that it can join. The only option is that

the dispersion relation also crosses the E = 0 at some other point k 6= 0, now with

dE/dk < 0. An example is shown in right hand figure above. Now the lattice has

an even more dramatic e↵ect: it generates another low energy excitation, this time a

left-mover. We learn that we don’t have a theory of a chiral fermion at all: instead

we have a theory of two Weyl fermions of opposite chirality. Moreover, once again

a right-moving excitation can evolve continuously into a left-moving excitation. This

phenomenon is known as fermion doubling.

You might think that you can simply ignore the high momentum fermion. And, of
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Eichten and Preskill ’86

An Old Idea:   Find a way to gap the doublers, leaving the original fermions untouched

Challenges: • Ensure that only the mirror fermions experience the interactions

• Find interactions that gap chiral fermions
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right-handed fermion in the continuum

Figure 42: A possible deformation to

keep the dispersion periodic in the Bril-

louin zone (with a = 1).
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Eichten and Preskill ‘86, Golterman, Petcher and Rivas ‘93; Creutz, Rebbi, Tytgat, Xue ’96; 
Poppitz and Shang ’10; Chen, Giedt and Poppitz ‘12; Wen ‘13; Wang and Wen ’13; Kikukawa ’17’; Wang and Wen ‘18

Lmass = m †
L
 R

SU(N)L ⇥ SU(N)R �! SU(N)diag

h †
L i
 Rji ⇠ ⇤

3 �ij

�L ! ��L

�R ! �R

L4�fermi ⇠ �L�L�R�R

L4�fermi ⇠     

19

Most attempts work with irrelevant multi-fermion operators, cranked up to the lattice scale

Sadly, so far, to no avail.



Can we use continuum gapping mechanisms to help us?



Gapping Domain Wall Fermions

• Put gauge field that you care about everywhere in the fifth dimension. 
• e.g. G= SU(3) x SU(2) x U(1)
• It couples to chiral fermions + their conjugates in a vector-like manner
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Gapping Domain Wall Fermions

x5

chiral
fermions

chiral
fermions

• Put gauge field that you care about everywhere in the fifth dimension. 
• e.g. G= SU(3) x SU(2) x U(1)
• It couples to chiral fermions + their conjugates in a vector-like manner

• Put the auxiliary gauge field everywhere. 
• e.g. H = SU(2)
• It too couples to chiral fermions and their conjugates

• Add Higgs fields for H with a profile in the fifth dimension.
• Add extra fermions coupled to H

x5

Waveguide region



Gapping Domain Wall Fermions
Pitfall 1:

• What if chiral fermion are in anomalous representation of G?
• Then H dynamics can’t gap them!

• What if chiral fermions are in anomalous representation of H?

H

H H

The phase of the Higgs field then fails to decouple on the interface. 
We get a Wess-Zumino term living at the interface.

by anomaly



Gapping Domain Wall Fermions
Pitfall 2:

To make H anomaly free, we typically need to add extra fermions (singlets or vector-like under G).

• H is a chiral gauge theory, with new additional chiral fermions.
• This feels like a vicious circle!

• H is a vector-like gauge theory (e.g. supersymmetric)
• Can gap doublers with Majorana mass without breaking H

In the latter case, we have a continuum description of chiral gauge theory G. 

No obstacle to discretization (albeit with a sign problem and significant fine tuning.)

The examples we’ve seen fall into two categories:

Extra H fermions needed here
Now unwanted doublers
show up here



Lattice Domain Wall Fermions

A 5d Dirac fermion                       . We discretize it in the 5th dimension with Wilson parameter r = 1

4d kinetic terms 5d hopping terms masses

Left-handed zero
mode localized here

Right-handed zero
mode localized here

Kaplan ’92; Shamir ‘93



Lattice Domain Wall Fermions

gauged

Add a 5d gauge field in waveguide region. At low-energies, only 4d gauge field survives

New dynamical field needed here:               .   This is the Wess-Zumino term on the interface

Golterman, Jansen, Petcher, Vink ’93; Golterman and Shamir ‘94



Lattice Domain Wall Fermions

Golterman, Jansen, Petcher, Vink ’93; Golterman and Shamir ‘94

Result:    Neither       nor the two neighbouring fermions are gapped.

• Seen at small y, large y, and in quenched simulations.

A practical necessity due to sign problem!



Comparing Domain Wall Fermions

In the continuum:

Nothing fishy at the interface provided that H gauge theory is anomaly free.
But the gauge theory will necessarily have a sign problem.

Challenging to check what happens because the theory has a sign problem!!

On the lattice:



Thank you for your attention


