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It’s no secret that there is a close connection 
between geometry and physics. Probably the 
most famous example is the theory of General 

Relativity, in which the force of gravity is recast 
in terms of the geometry of space and time. Th e 
purpose of this article, however, is not to wax po-
etic about geometry in Nature. Instead, I’d like to 
describe how things work the other way round, 
when Nature gets into geometry. I will try to ex-
plain how we can use ideas from physics to give 
new insight into mathematics. 

To tell the story, we’ll need two simple ideas: one 
from maths and one from physics. From maths, 
the main character is a manifold. If you haven’t 
heard of this before, then you should have in the 
back of your mind a curved, closed surface, like 
that of a sphere or a torus. A manifold is a gener-
alisation of this shape to higher dimensions. Th e 
purpose of geometry is to understand the prop-
erties of diff erent manifolds, the relationships be-
tween them and the language we need to describe 
them. Meanwhile, from physics, the only object 
that we’ll need to begin with is the humble parti-
cle. Our plan is as follows: we’ll place the particle 
on the manifold and let it roam around. By under-
standing the behaviour of the particle, we’ll try to 
infer various properties of the underlying space.

To start, we’ll think about a particle obeying the 
laws of classical mechanics. Here there are few 
surprises and the particle does exactly what you 
would expect: it rolls around, guided by the con-
tours of the space. Th e path it takes has some 
special mathematical properties and is called a 
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geodesic. But the particle is too limited to know 
anything very deep about the underlying mani-
fold. Its perspective is too parochial; it knows only 
about the small region in its immediate neigh-
bourhood and has little to tell us about the global 
properties of the manifold.

Geometry and Quantum     
Mechanics
Th ings get more interesting when we turn to 
quantum mechanics. In the quantum world, the 
particle no longer has a defi nite position. Instead, 
things are more uncertain and we have to talk in 
the language of probabilities. Th e mathematical 
description of a quantum particle is in terms of 
a wavefunction, ψ(x). Th is is a complex valued 
function, with x a set of coordinates which label 
points on the manifold. Th e probability of fi nding 
a particle at the point x is proportional to |ψ(x)|2.
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Th e fact that the quantum particle spreads out in 
a wave of uncertainty gives it more power. It can 
feel its way all over the manifold. It knows about 
the global structure of the space. Th e state of the 
particle is described by the Schrödinger equation
                                                                  (1)
You’ve probably seen the symbol  before. It’s 
called the Laplacian. Roughly speaking, it means 
that you should diff erentiate ψ twice with respect 
to every coordinate that it depends upon. Th e fi rst 
time you see the Laplacian is usually in the con-
text of fl at R3, where x = (x,y,z) and

Th ere is an obvious generalisation of this to dif-
ferent dimensions. But, most importantly, there 
is also a generalisation of the Laplacian to mani-
folds that are curved. In this case, the Laplacian 
depends on the metric on the manifold which 
means that the symbol contains within it infor-
mation about the distances between diff erent 
points on the manifold.

Th e E in equation (1) is just a real number. Physi-
cists would identify it with the energy of the parti-
cle. Th e key idea is that the Schrödinger equation 
doesn’t admit solutions ψ(x) for any value of E. 
Instead, there are only solutions when the energy 
E takes certain, discrete values. Moreover, because 

 depends on the underlying space, so too does 
the list of allowed energies. Th is provides a very 
diff erent way of thinking about geometry. You 
give me a manifold and specify its shape and cur-
vature (or, more precisely, its topology and met-
ric). With that information, I solve the Schröding-
er equation and hand you back a list of numbers E. 
Th at list of numbers is called the spectrum of the 
Laplacian and it contains, encoded with it, much 
of the information about the manifold. Th is way 
of thinking is called spectral geometry.

Th ere is a more down-to-earth version of spectral 
geometry, made famous by the mathematician 
Mark Kac in an article called "Can One Hear the 
Shape of a Drum?". Th e frequencies at which a 
drum beats are again governed by the equation 
(1), now with particular boundary conditions im-
posed by the shape of the rim of the drum. Th e 
question is: if you know all the frequencies, can 
you fi gure out the shape? Th e answer, it turns out, 
is no, but you can extract a lot of information. 
Similarly, it is known in geometry that the spec-

trum is not necessarily suffi  cient to determine 
uniquely the underlying manifold. Nonetheless, 
the study of spectral geometry is a rich subject, 
with diff erent properties of the manifold encoded 
in the spectrum in interesting ways.

It will be useful to work through a (very) simple 
example of spectral geometry: the one-dimen-
sional circle. We will label the position along 
the circle by the coordinate x. If the circle has 
radius R, we should identify . Th e 
Schrödinger equation now reads

Th e solutions are simply ψ = einx/R. Th e informa-
tion that the space is a circle arises through the 
requirement that ψ is single valued, so that ψ(x) = 
ψ(x + 2πR). Th is tells us that we must have n ∈ Z . 
Th e spectrum of the circle is therefore just a tower 
of numbers

                                       
n ∈ Z

We’ll return to this shortly.

Although I introduced spectral geometry by 
thinking about quantum physics, the subject 
wasn’t discovered by physicists. Nonetheless, it’s 
pleasing that it sits so naturally in the framework 
of quantum mechanics and there are many fur-
ther related connections between the two subjects. 
For example, a more complicated quantum me-
chanical Hamiltonian which has a property called 
supersymmetry naturally captures the de Rahm or 
Dolbeault cohomology of the manifold. In this 
way, many of the great results from diff erential ge-
ometry can be recast in the language of quantum 
mechanics. However, rather than exploring these 
directions here, I would instead like to tell you 
about something novel and surprising that came 
out of thinking about geometry in the language 
of physics.

Geometry and String Theory
String theory is currently the best guess that we 
have for a unifi ed theory of gravity and quantum 
mechanics. Th e basic idea is, on the face of it, 
slightly daft : string theory postulates that, at the 
fundamental level, if you look deep inside every 
particle, you will see a tiny vibrating loop of string. 
At the moment there is no experimental evidence 
for string theory. Nonetheless, it is a powerful 
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mathematical framework. Here we’re going to 
bring that framework to bear on questions in ge-
ometry. We use the same strategy that we’ve seen 
above and ask: what is the energy spectrum of a 
string moving on a manifold?

Let’s return to our example of the circle. Now 
there are two diff erent things that the string can 
do. First, the string can form a little loop which 
then moves around the circle. Because, from afar, 
this loop of string looks like a particle, it shouldn’t 
be too much of a surprise to learn that the en-
ergy spectrum is identical to that of a particle:
E = n2/R2 with n ∈ Z . But the string can also do 
something that the particle can’t: it can stretch 
itself all around the circle. You can think of the 
string as an elastic band; stretching it costs energy 
and a string which winds m times around the 
circle has energy E = (2πmR)2, with  Th is 
means that the energy spectrum of a string mov-
ing on a circle consists of two towers of numbers

But there’s something interesting here. Th is set of 
numbers remains the same if we swap
                                                        
                   (2)

Th is means that, if all you’re given is this list of 
numbers, then you can’t tell the diff erence be-
tween very big circles of size R and very small cir-
cles of size 1/2πR. As far as the string is concerned, 
these circles look exactly the same! Of course, 
we’ve only discussed the energy spectrum of the 
string but it turns out that all properties of the 
string remain invariant under the interchange (2). 
Strings really can’t tell the diff erence between big 
circles and small circles. Th is beautiful fact has a 
rubbish name: it is called T-duality.

Th e confusion of strings extends to other mani-
folds as well. Roughly speaking, manifolds come 
in pairs. Although particles view these pairs very 
diff erently, to a string they look identical. (Th is is 
literally true of a special class of manifolds called 
Calabi-Yau and there is a slightly generalised ver-
sion of the statement for other manifolds). But 
these two manifolds are not related in a simple 
way like the big and small circles. Instead, at fi rst 
sight, the two manifolds seem to have nothing to 
do with each other. Typically, they don’t even have 
the same topology (i.e. the same number of holes). 

Th is pairing between manifolds is called mirror 
symmetry. Th e string’s inability to distinguish be-
tween these two manifolds turns out to be a great 
strength. For a start, we learn that there’s a very 
surprising and unexpected relationship between 
manifolds. Moreover, it turns out that mathema-
ticians were oft en able to say a lot about one of 
these manifolds, but almost nothing about the 
other. Yet, according to string theory, the two 
manifolds should be identical; you just have to 
look at them in the right way. Any question that 
you can answer about the fi rst manifold is telling 
you something interesting about the other. (Tech-
nically, questions in complex geometry for the fi rst 
manifold are turned into questions in symplectic 
geometry for the second). Mirror symmetry then 
becomes a powerful tool which allows you to re-
interpret properties of one manifold to provide 
answers to previously unsolved questions about 
the other. 

Mirror symmetry was discovered almost 25 years 
ago. In the intervening time, it has become one 
of the most vibrant areas of research in geometry, 
with insight coming from both mathematicians 
and physicists. Th ere is, admittedly, a diff erence 
in the style of research. Physicists tend not to be 
overly consumed with matters of rigour, relying 
instead on an intuition for how Nature should 
work to build conjecture upon conjecture. Math-
ematicians, of course, are not content until each 
conjecture becomes a proof. Yet this is one of an 
increasing number of areas in which mathemati-
cians and physicists fi nd themselves exploring the 
same questions hand in hand. It is a relationship 
which has enriched both communities.
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