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Instantons are composed of partons.

1. Introduction

It is both an honour and a great pleasure to deliver this talk as part of
the celebrations for Misha Shifman’s 60th birthday. As a graduate student,
I learned about instantons and supersymmetry from Misha’s beautifully
written reviews. This therefore seems like the perfect place to revisit an old
idea related to instantons, but with a slightly novel supersymmetric twist.!

The old idea that I would like to talk about is that instantons can be
thought of as containing constituent objects.? This idea has been mooted
both for instantons in Yang-Mills theories and instantons in sigma-models.
In both cases, the first hint at the existence of underlying constituents
comes from simply counting the number of collective coordinates:

e Instantons in Yang-Mills theories. In SU(N) Yang-Mills theory,
the instanton has four translational modes, a single scaling mode,
and 4N — 5 orientation modes. This gives a total of 4N collective
coordinates.

e Instantons in sigma models. In the CPY ™! sigma-model, the in-
stanton has 2 translation modes, a single scaling mode, and 2N — 3
orientation modes. This gives a total of 2N collective coordinates.

For each of these solutions the collective coordinates are Goldstone modes,
arising from the action of symmetries on an instanton. However, the nu-
merology suggests that there may be a different interpretation of the col-
lective coordinates: as the positions of N partons which comprise the in-
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stanton.

The conjecture that instantons should be thought of as containing N par-
tonic objects is usually framed in the context of d = 3 + 1 dimensional
Yang-Mills theories and d = 1 + 1 dimensional sigma-models. In both these
cases, the physics is strongly coupled in the infra-red. The hope is that in
the partons — which are objects localized in (Euclidean) spacetime — are
somehow liberated and the vacuum is best thought of as a correlated soup
of these objects. This is then invoked to explain low-energy phenomena
such as confinement or chiral symmetry breaking. Interesting ideas along
these lines were presented by Zhitnitsky at the Shifmania conference and a
good review can be found in.3

In this talk, I would like to examine the parton conjecture in the context of
d = 4+ 1 dimensional Yang-Mills theories and d = 2+ 1 dimensional sigma-
models. These theories are now weakly coupled in the infra-red, but strongly
coupled in the ultra-violet. They are to be thought of as non-renormalizable
effective field theories which require a UV completion. Moreover, the instan-
ton solutions are now particle-like solitons, carrying finite energy as opposed
to finite action. The parton conjecture becomes slightly better defined: it is
the idea that the instanton should be thought of as a multi-particle state.
Is this the right interpretation of the instanton in these models? And, if so,
how can we tell?

2. Five-Dimensional Yang-Mills

It is known from the work of Seiberg and others that there exists a UV
completion of certain Yang-Mills theories in d = 4 4+ 1 dimensions, at least
when endowed with A" = 1 or N = 2 supersymmetry.* However, we don’t
know a whole lot about the details of this UV theory.

The story is particularly interesting in the case of N' = 2 supersymmetry.
(This means 16 supercharges). Here it is known that the UV completion of
d = 4+ 1 dimensional SU(N) Yang-Mills is really a conformal field theory
in d = 5+1 dimensions, usually referred to as the (2, 0) theory.® This theory
is compactified on a circle of radius R, which is related to the 5d Yang-Mills
coupling by R = e?/872. Little is known about the dynamics of the (2,0)
theory and, in particular, there is no known Lagrangian formulation. What
little knowledge we do have comes from the gauge-gravity correspondence.
Most strikingly, it can be shown that the (2,0) theory has ~ N3 degrees of
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freedom.% This is many more than the ~ N? degrees of freedom that are
seen in the infra-red Yang-Mills theory. This means that if we're looking
for the UV completion of the theory, then we need to find a lot of states!
Understanding how these N3 degrees of freedom arise is likely to tell us
something important about the degrees of freedom of M-theory.

The instanton in d = 4 + 1 dimensional Yang-Mills plays an important
role in this story: it is the Kaluza-Klein mode coming from the theory in
d = 541 dimensions. This can be seen already in the classical mass formula,

872 1
Minst - 6_2 = E (1)
The proposal that I would like to explore is the following: The instanton
ind=4+1 dimensional Yang-Mills should be thought of as an N particle
state. Moreover, the N partons are to be thought of as the remnant of the
UV degrees of freedom which comprise the (2,0) theory.

Let’s look at some circumstantial evidence for this proposal. Firstly, we
can compute the free energy in the infra-red and ultra-violet and ask: at
what energy does the scaling change from ~ N2 to ~ N3? We can attack
this calculation using the supergravity dual,” but the correct result also
follows simply from assuming a second order phase transition and equating
the two free energies at the critical point,

F ~ N?T5 ~ RN3T® (2)
from which we learn that the cross-over happens at the critical temperature
1 1
T~ —n~—— 3
NR  e2N )

The factor of 1/N is all-important here. It tells us that, whatever the new
degrees of freedom are, they come in at the energy scale below the Kaluza-
Klein scale. Indeed, this had to be the case: the 5d theory becomes strongly
coupled at the energy scale E ~ 1/e?N and it is here that new UV degrees
of freedom are required to render the theory well-defined in the UV. This
is 1/N*" the mass of an instanton. These are our conjectured partons.

There is more circumstantial evidence for the partonic nature of the in-
stanton. There is a refinement in the count of the number of degrees of
freedom that comes from looking at the anomaly coefficient. For G = ADFE
gauge group, the coefficient is,3*

c2(G) x |G| (4)
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where ¢3(G) is the dual Coxeter number (equal to c(G) = N for
G = SU(N)) while |G| is the dimension of the gauge group (equal to
|G| = N(N —1) for G = SU(N)). For G = SU(N), this reproduces the
leading order scaling, but also gives the subleading contribution: N2 — N.
However, for arbitrary G = ADE gauge group, this formula has an in-
teresting interpretation in terms of the partonic nature of instantons for
G = ADE gauge group. This is because the dimension of the instanton
moduli space is known to be 4co(G). If the anomaly coefficient is a good
measure of the number degrees of freedom, it is suggesting that each parton
itself transforms in the adjoint of the gauge group G. Making sense of this
statement would go a long way towards understanding the parton picture
of instantons.

Finally, the partonic interpretation of instantons naturally resolves a puz-
zle that arises upon quantization: the scaling mode of the instanton gives
rise to a continuous energy spectrum above Mi,st. This is very peculiar
behaviour for a one-particle state in quantum field theory. However, it is
entirely natural for a multi-particle state.

The upshot of the above discussion is that the partonic interpretation
of instantons would explain several known features of the UV behaviour
of 5d Yang-Mills theories. However, there are lots of questions that remain
unanswered. Most pertinent among these is: why are the partons confined to
live within the instanton? This is not confinement as we know it in QCD.
The existence of the instanton moduli space means that the partons are
individually free to wander R*. Nonetheless, there are interactions between
them which mean that are denied an existence on their own. What is the
cause of these interactions? And how can we understand the nature of the
partons given that we only have access to the low-energy physics of Yang-
Mills theories.

I have not been able to answer these questions in the context of Yang-Mills.
Rather, in the rest of this talk I will retreat and discuss a simple toy model
which contains many of the same problems, but in a context where we can
completely understand the relevant physics. In fact, the toy-model is very
familiar to everyone who got stuck with QCD and looked for inspiration in
something simpler: it is the CPY ! sigma-model. Since we are interested
in an analogy for Yang-Mills theory in d = 4 4+ 1 dimensions, we will look
at the sigma-model in d = 2 + 1 dimensions.



June 16, 2009 13:47 WSPC - Proceedings Trim Size: 9in x 6in  innards

3. Three Dimensional Sigma Models

The toy model that we consider in a supersymmetric sigma model in d =
2-+1 dimensions. Specifically, we will consider A = 4 supersymmetry (which
means eight supercharges). While the low-energy physics will be a sigma-
model, in contrast to the case of Yang-Mills theory, we will also stipulate
the UV completion: it is a gauge theory first discussed by Intriligator and
Seiberg.'® We first describe this gauge theory and then explain how the
sigma model emerges in the infra-red. We construct the gauge theory out
of vector multiplets and hypermultiplets. These contain the following fields:

e Vector multiplet: V' = (A, ¢;, fermions), ¢; are real scalars with
1=1,2,3.

e Hypermultiplet: @Q = (g, ¢, fermions). ¢ and ¢ are both complex
scalars.

The gauge theory that we consider is U(1)" with N hypermultiplets. The
charges of the matter multiplets are best summarized by the following
quiver diagram in which each node corresponds to a gauge group and each
link to a hypermultiplet.

Fig. 1. The quiver diagram for the UV gauge theory.

We will need to introduce a couple of parameters for this theory. Each
gauge group is assigned coupling constant g?. Each matter multiplet is
assigned bare mass m. However, the physical mass, M,, a = 1,..., N of
the N*® matter multiplet also depends on the expectation value of the
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scalars in the vector multiplets in the a'" and (a + 1) gauge group?,
M®=¢*— ¢ +m (5)

While the quiver gauge theory happily describes the UV physics, our real
interest is in the infra-red. At low energies, we integrate out the massive
hypermultiplets and seek an effective theory describing the massless vector
multiplets: these are 3N scalar fields ¢{ together with 3/V photons, each of
which can be dualised in favour of a periodic scalar field,

Fi, ~ G2 €p0,0" (6)

Integrating out the hypermultiplets induces derivative interactions between
the vector multiplet fields. The resulting physics is a low-energy sigma-
model on the Coulomb branch with target space'®

R? x 8! x T*CcPN ! (7)

The fields ¢¢ and o provide coordinates on this space. We won’t go through
the derivation of this sigma-model, but it will be useful to sketch how it
works in the simple example of N = 2. In this case, the quiver has just
two nodes. The diagonal U(1) gauge field has nothing charged under it
and decouples (it will give rise to the R? x S! factor of the target space).
Meanwhile, the axial U(1) couples to two hypermultiplets with charge +1
and —1. The discussion is simplest if we ignore two of the scalars in the
vector multiplet (these will give rise to the cotangent bundle T*) and focus
just on a single scalar ¢ and the dual photon o. The low-energy dynamics
for these fields is given by

1

L = —(09)* + g2g(00)? (8)
Yot

where the effective coupling constant gets one-loop contributions from each

of the hypermultiplets,

1 1 1 1

¢ 92 m—¢ m+o

9)

The target space for |¢| < |m| is drawn in the figure below. Topologically,
it is a sphere CP'. For finite g2, the space has the shape of a rugby ball:
it has a squashed metric with only U(1) isometry. In the limit g2 — oo,

2This expression actually describes a triplet of masses for each hypermultplet, corre-
sponding to the triplet of scalars in a vector multiplet. For details of how this works,
and why it’s not important for the following discussion, see.!
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the target spcae becomes round, like a football®, and the isometry of the
metric is enhanced to SU(2).
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Fig. 2. The target space for the low-energy sigma model.
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The Soliton

The low-energy sigma-model has a soliton. It is the sigma-model lump,
a.k.a. the sigma-model instanton that we discussed in the introduction. In
d = 2+ 1 dimensions, this is a particle-like state. For target space CP!
(either with a squashed or round metric), the spatial variation of the fields
is governed by the first-order Bogomolnyi equation

Oud = ggﬁeuvava (10)

Similar first order equations hold for the soliton in CP™ 1,

What does this soliton correspond to in the microscopic theory? There
are a few clues. Firstly, it is a BPS state. Secondly, its mass is Nm. In
fact, this is enough to identify the microscopic origin of this soliton: it is an
N-particle state constructed from taking a hypermultiplet field from each
link of the quiver ring:'' Q1Q5 ... Qn. Now we see the importance of this
three-dimensional example. It is an explicit model in which the partonic
nature of the soliton is realised. A single soliton in the low-energy theory is
indeed interpreted as a multi-particle state in the UV. Our goal now is to
ask the question in reverse: given only access to the IR physics, what can we
learn about the UV physics by studying the soliton? Of course, hindsight is
a wonderful thing and we intend to employ it to its full extent in our study.
Nonetheless, the answer is rather surprising. By studying the properties of
the soliton, we will be able to reconstruct the full UV physics. In particular,

PThis sporting analogy is to be taken in the European sense.
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this means resolving the quantum numbers of the partons that lurk inside
the soliton. In the rest of this talk, we will see how this comes about.

The Partons

Let’s first ask how we can see the partons inside the soliton in this model
more explicitly. As we mentioned in the introduction, the counting of col-
lective coordinates is certainly suggestive of an interpretation in terms of
the positions of N objects on the plane. However, if we simply plot the
energy configuration of a single soliton, it just looks like a round blob with
no hint of any internal structure. How do we reconcile these statements?

In fact, the UV theory is already telling us the right place to look. Recall
that the round Fubini-Study metric on cpV! only arises in the limit g% —
oo. If, instead, we study the sigma-model at finite g2, then the metric is
squashed with only a U(1)N~! isometry. The full 2N collective coordinates
of a single soliton survive at finite g2 (they are protected by index theorems),
but they are no longer Goldstone modes. They now explicitly determine the
positions of the partons. For example, the figure below shows the energy
profile for a single soliton for a CP! target space. We see that the two
partons dramatically reveal themselves as the target space is squashed.
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Fig. 3. The two partons inside a CP! lump for m/g? =0, 1 and 2.

A similar phenomenon happens for target space CP !, Here is the
example of CP?, where the single soliton decomposes into three partons. A
similar mechanism to see the partons was described in the talk at Shifmania
by Ken Konishi.'?
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Fig. 4. The three partons inside a CP? lump as the target space is squashed.

We can also see explicitly that the collective coordinates change the
positions of the partons. For example, we could keep the “scale size” fixed
and change the “orientation” modes of the soliton. For a round target space,
this would leave the energy profile unchanged. However, with the squashed
target space, the orientation modes govern the relative positions of the
partons. For example, here’s some plots showing the single lump in Cp?
with different values of the collective coordinates.

Fig. 5. Moving the partons inside a CP? lump.

Let’s now turn to the question of confinement. Why must the partons sit
together inside a lump even though they are free to roam? The answer from
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the microscopic theory is simple: any electrically charged state gives rise to
an electric field which asymptotically goes like E ~ 1/r. This gives rise to
a logarithmically divergent contribution to the energy. Only gauge singlet
states have finite mass, and this is the reason that the partons are bound
together in the state @Q1,...Qn. Moreover, this log-divergence re-appears
in the low-energy effective theory once we ask the partons to move: it is
seen as a log-divergence in the metric on the soliton moduli space.

We have seen above that squashing the sigma-model allows us to graphi-
cally see the partons that sit inside the instanton. But how do we see their
quantum numbers? Here we explain this for solitons in CP*'. The Bogo-
molnyi equation for the soliton is given in (10). The & soliton has a moduli
space of solutions of dimension 2k. Using the duality transformation (6),
we can rewrite this equation as

Fou = 0,6 (11)
These are the dual Bogomolnyi equations. In contrast to (10), they have
no smooth solutions. But this is entirely expected: after a duality trans-
formation, solitons become fundamental excitations. These should not be
associated to smooth solutions, but rather to solutions of equations with
sources.

aﬂ< F0H> Z5z—z —6(z—z7) (12)

One can show that solutions to ( 12) and (11) coincide with smooth solutions

o (10). The positions of the sources z;* become coordinates on the moduli
space of the soliton. This provide a very simple and explicit map between
fundamental excitations and solitons in a field theory.

The construction of the dual Bogomolnyi equation also works for solitons
in CPY 1. It allows us to determine the quantum numbers of the partons.
In this way, we can reconstruct the quiver diagram of the UV theory, details
which one might have reasonably expected were lost to the winds of the
renormalization group by the time we restriced ourselves to the low-energy
physics. Details of this can be found in the longer paper.

4. Summary: Questions, not Answers

Our toy model in d = 2 + 1 dimensions did all that we hoped. It provides
an explicit setting where the single soliton has the interpretation of an N-
particle state. The partons inside the soliton are identified with the degrees
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of freedom necessary to form a UV completion of the sigma-model. More-
over, by studying the properties of this soliton we were able to reconstruct
the quantum numbers of these partons and therefore the UV physics.

All of this is heartening. However, the real question remains: can we do
the same for Yang-Mills instantons in d = 4 4+ 1 dimensions? What is
the confinement mechanism that keeps these partons trapped inside an

instanton and what is this telling us about the microscopic dynamics of the
(2,0) theory? I don’t yet have answers to these questions but I hope that
further study of the Yang-Mills instanton will provide some vital clues.
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