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Abstract: I review how discrete structures, embodied in the integers, appear in

the laws of physics, from quantum mechanics to statistical mechanics to the Standard

Model. I argue that the integers are emergent. If we are looking to build the future

laws of physics, discrete mathematics is no better a starting point than the rules of

scrabble.

A History Lesson

“God made the integers, the rest is the work of man” — Leopold Kronecker [1]

I have never really understood this quote. It may be fine for mathematicians, but it

doesn’t seem to gel with how I understand the laws of physics. In part, the purpose of

this essay is to explain why.

I recently learned that it’s not just me who disagrees with Kronecker. At the time,

everyone disagreed with him! This quote is part of a polemic by Kronecker against

developments in mathematics in the late 1800s such as irrational numbers, Cantor’s set

theory and the Bolzano-Weierstrass theorem. Kronecker, an old distinguished mathe-

matician, thought these new developments undignified. He preferred his mathematics

constructive and discrete. Needless to say, it did not make Kronecker a popular man

among his peers.

More than a century later, no mathematician would deny the importance and utility

of the developments that Kronecker railed against. Yet, an informal survey among my

colleagues suggests that many harbour some sympathy for his statement. The integers

hold a special place in the heart of mathematics. Many of the most famous unsolved

conjectures relate to the properties of the primes. More importantly, the integers are

where we start mathematics: they are how we count.
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At the same time that mathematicians were arguing about the building blocks of

numbers, a parallel debate was taking place among physicists concerned with the build-

ing blocks of matter. Although the ancient Greeks discussed the possibility of atoms, it

wasn’t until the 1800s that they became a useful concept. The development of kinetic

theory by Maxwell, Boltzmann and others showed that the laws of thermodynamics

and gases could be derived from Newtonian physics combined with a healthy dose of

statistics. But these arguments were not convincing to everyone. The kinetic theorists

could not offer a “constructive proof” of the existence of atoms. The evidence was only

indirect [2].

While some of the objections to atoms were philosophical, most notably from Mach,

there was also strong opposition among physicists and chemists. In 1882, Planck

proclaimed “atomic theory, despite its great successes, will ultimately have to be aban-

doned in favor of the assumption of continuous matter” [3]. In part, the reluctance

of physicists to accept atoms sprung from an unwillingness to retreat to probabilis-

tic reasoning — an issue that was to reappear even more acutely some decades later.

However, there was also a second argument against atoms, stated most robustly by

Ostwald: Unification. The laws of thermodynamics refer only to continuous quantities

such as energy. Similarly, Maxwell’s theory of electromagnetism describes the motion

of continuous electric and magnetic fields. The writing on the wall in the mid-to-late

1800s was that physics was moving away from the discrete particles postulated by

Newton. The fashion was for the continuous. How wrong they were....

The Integers in Nature

It is not, a priori, obvious that the integers have any role to play in physics. Place

yourself in the shoes of the nineteenth century physicist, struggling to understand

electricity, magnetism, heat and fluid mechanics. Where is the discrete? Try counting

the ripples on a pond or the wisps of steam emitted by a kettle. Would you just

include the big ones? Or admit that these are not really objects that can be placed in

one-to-one correspondence with the integers.

Of course, not everything in Nature is ripple or wisp. There are seemingly discrete

objects. The number of people reading this article will, to good approximation, be

integer. Yet even in situations where it naively seems obvious that integers are impor-

tant, a closer examination often reveals that this is illusory. For example, I was told

at school that there are 9 planets in the solar system. Now there are 8. Or maybe

13. Or, to give the honest answer: it depends. The Kuiper belt contains objects in
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size ranging from a few thousand kilometers to a few microns. You can happily count

the number of planets but only if you first make a fairly arbitrary distinction between

what is a planet and what is just a lump of rock. Ultimately, counting planets is not

very different from counting ripples on a pond: if you want to do it, you’ve got to just

include the big ones.

As this example highlights, the counting that is evident in mathematics is not so

easy in the real world. To find the integers in physics, we need Nature to provide us

with objects which are truly discrete.

Fortunately, such objects exist. While the definition of a planet may be arbitrary,

the definition of an atom, or an elementary particle, is not. Historically, the first place

that the integers appeared was in the periodic table of elements. The integers labelling

atoms – which, we now know, count the number of protons – are honest. Regardless of

what developments occur in physics, I will happily take bets that we will never observe

a stable element with
√

500 protons that sits between Titanium and Vanadium. The

integers in atomic physics are here to stay.

In fact, once we are in the atomic world, the integers are everywhere. This is what

the “quantum” of quantum mechanics means. One of the first examples we learn is

that the energy levels of hydrogen are given by E = −E0/n
2 where E0 is the ground

state energy and n is an integer.

More subtle quantum effects can coax the integers to appear in macroscopic, even

dirty, systems. The quantum Hall effect is a phenomenon that occurs when semi-

conductors are placed in a magnetic field at low temperatures. The Hall conductivity,

which describes how current flows perpendicular to an applied electric field, is given

by

σ = n
e2

h

where e is the electron charge and h is Planck’s constant and, once again, n is an integer

(or, if you do things more carefully, a rational number). These integers have been

measured to an accuracy of one part in a billion, one of the most precise experiments

in all of physics.

3



The Integers are Emergent

The examples above show that discrete objects undoubtedly appear in Nature. Yet

this discreteness does not form the building blocks for our best theories. Quantum

mechanics is not constructed from the integers. The fundamental object is a complex-

valued wavefunction ψ obeying the Schrödinger equation. Nor are there integers in the

Schrödinger equation itself. For example, the Hydrogen atom is governed by

− ~
2

2m
∇2ψ(~x) − e2

4πǫ0r
ψ(x) = Eψ(~x)

The left-hand side contains nothing discrete. The integers appear on the right-hand

side only when we solve this equation. In fact, even that is not ensured. There are

classes of solutions, so called scattering states, for which E takes continuous values.

And there is a second class, the bound states, which require a normalization condition

on ψ and are labelled by integers

E = − me4

32π2~2ǫ2
0

1

n2
n ∈ Z

At least as far as the Hydrogen atom is concerned the lesson is clear: God did not make

the integers. He made the complex numbers and the rest is the work of the Schrödinger

equation. The integers are not inputs of the theory. They are outputs. The integers

are an example of an emergent quantity.

The fact that the integers are emergent is highlighted even more dramatically in the

example of the quantum Hall effect where they arise from the collective dynamics of a

macroscopic number of particles.

Perhaps more surprisingly, the existence of atoms – or, indeed, of any elementary

particle – is also not an input of our theories. Despite what we learn in high school, the

basic building blocks of Nature are not discrete particles such as the electron or quark.

Instead our fundamental laws of physics describe the behaviour of fields, continuous

fluid-like objects spread throughout space. The electric and magnetic fields are familiar

examples, but our best description of reality — the Standard Model — adds to these

an electron field, a quark field, and several more. The objects that we call fundamental

particles are not fundamental. Instead they are ripples of continuous fields, moulded

into apparently discrete lumps of energy by the framework of quantum mechanics

which, in this context, is called quantum field theory. In this way, the discreteness

of the particle emerges. It is conceptually no different from the energy levels of the

Hydrogen atom.
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Wherever the integers arise in Nature, we are led to the same conclusion: the integers

are emergent. They are no more fundamental than the concepts of temperature, smell

or the rules of scrabble.

Searching for Integers in the Laws of Physics

While the quanta of quantum mechanics are emergent, we could also play a more

fundamental version of the “count-the-planets” game, this time trying to find integers

within the laws of physics themselves. Are there inputs in the fundamental equations

that are truly discrete? At first glance, it is obvious that there are; at closer inspection,

it is more murky. I should warn the reader that this small section is substantially more

technical than the rest of the paper and little of the general argument will be lost if it

is skipped.

Let me get the ball rolling by offering some well-known examples of integers in the

Standard Model. There are three generations. Each contains two leptons and two

quarks. The forces are described by the gauge group SU(3) × SU(2) × U(1). The

representations of these gauge groups are labelled by integers. And so on and so on.

Integers, integers everywhere. Or are there? All the examples above are really counting

the number of particles species in the Standard Model, whether fermions or (gauge)

bosons. But this is a famously difficult question to make mathematically precise in

an interacting quantum field theory. The problem is that particles can mutate into

each other and the boundary between them becomes blurred: a neutron can split into

a proton, an electron and a neutrino, but it’s not useful to think of the neutron as

containing these three other particles. Should we count this as one particle or three

particles or four particles?

In fact, it is still an open problem to count the number of degrees of freedom in a

general quantum field theory. But good candidate answers exist: the entropy, or, for

conformal theories, the a and c coefficients of the gravitational anomaly [4]. In each

case, the answer is not an integer1. The counting that gives us the integers in the

Standard Model is merely an artifact of working with free fields.

Here is another example of an integer in the laws of physics: the number of observed

spatial dimensions in the Universe is three. It’s a nice round number. But is it just an

1It is worth noting that the problem of counting degrees of freedom has been solved for quantum
field theories in d = 1 + 1 dimensions by Zamolodchikov’s “c-theorem” [5]. At the fixed points, the
degrees of freedom are counted by the central charge. Again, it is not in general integer valued.
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approximation to something deeper that doesn’t have to be an integer? The answer

is that we don’t yet know, but it’s easy to cook-up scenarios in which this is the case.

Indeed, mathematically the Hausdorff dimension of a set need not be integer and, at

a push, can be used to count dimensions of objects in Nature: the coastline of Great

Britain supposedly has a dimension somewhere around 1.3 [6].

Yet even if the Universe is not a fractal (and there is no compelling reason why it

should be) studies of strongly interacting quantum systems reveal many examples where

the dimension of space in which a theory lives is ambiguous. Perhaps the most striking

is the AdS/CFT correspondence where quantum field theories are entirely equivalent to

quantum gravity theories in higher dimensions [7]. Another example is the relationship

between Calabi-Yau sigma-models and Landau-Ginsberg theories [8], where the smooth

geometry of a background space can smoothly and continuously dissolve, until one is left

with an interacting theory with no hint of a geometric interpretation. The dimensions

of space are not the robust objects that they appear. At heart, the issue is exactly the

same as that described above: the dimensions of space count the number of degrees

of freedom of a particle that lives in it. And, like ripples on the pond, the number of

degrees of freedom is not so easy to count in interacting theories.

Finally, I would like to finish this section with an example where I cannot think of

a way to wriggle out: the laws of physics refer to one dimension of time. It appears to

be much more challenging to replace this particular integer with anything else.

Could the Known Laws of Physics be Fundamentally Discrete?

Above I have argued that the presence of discrete structures in Nature is either

emergent or illusory. Either way, there is no evidence for an underlying digital reality.

But absence of evidence is not evidence of absence. Is it possible, nonetheless, that

Nature is at heart discrete?

It naively appears that there is no obstacle to a discrete reality. While quantum

mechanics moulds discreteness from underlying continuity, there are many places in

physics where continuity emerges from discreteness. Fluid mechanics offers perhaps

the simplest example. The atomic constituents are almost irrelevant for the large

scale description of liquids or gases. The microscopic details affect only a handful of

phenomenological macroscopic parameters such as the virial coefficients in the equation

of state, the viscosity and related transport coefficients.
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One can go yet further. The beautiful story of universality in statistical mechanics

tells us that, at a second order phase transition, even the sparse microscopic informa-

tion hidden in phenomenological parameters can get washed away. This is the subject

of critical phenomena. At the liquid-gas critical point, all information about the prop-

erties of the atoms is lost and one has no way of knowing if the underlying objects are

water molecules or magnetic spins. This is particularly striking in the case of mag-

netic spins (the Ising model) where the microscopic theory lives on a lattice in space,

breaking rotational invariance. Yet there is no hint of this at large distances where

we see only an emergent continuum, the rotational symmetry fully restored. Could a

mechanism of this type perhaps underlie the laws of physics?

Before we get ahead of ourselves and start looking into the unknown, it would seem

prudent to first ask whether the laws of physics that we already have to hand are

compatible with a discrete underlying structure. Such a formulation is not just of

philosophical value. The equations of physics are hard and humans are not very good

at solving hard equations. Computers are much better. To formulate the laws of

physics in a discrete manner means to write them in such a way that they could be

simulated on a computer. Can we simulate the known laws of physics on a computer?

The answer to this question is, at least to me, extremely surprising: no one knows

how to formulate a discrete version of the laws of physics.

At first sight, this seems very strange. All the laws of physics that we learn as

an undergraduate are presented in terms of differential equations and, while it may

be difficult in practice to get reliable numerical results for certain partial differential

equations, there is no problem of principle. One simply needs to replace continuous

derivatives with finite differences. So, although there are very real difficulties in simu-

lating both Einstein’s equations of General Relativity and the Navier-Stokes equations

of fluid dynamics, for the purposes of the present discussion I will say that we under-

stand how to formulate discrete versions of both these theories.

The problem with finding a discrete formulation arises when we turn to quantum

field theory. Here the weapon of choice is not the differential equation, but instead the

path integral2. This is a functional integral, meaning that one doesn’t integrate over a

2One could formulate quantum field theory entirely in terms of differential equations. Now the
trouble arises because the operator acts on an infinite dimensional space, the wavefunctional. Saying
that quantum field theory can be written in terms of differential equations is analogous to saying that
the Schrödinger equation can be written as a matrix eigenvalue equation: formally true, as long as
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domain in, say, the real numbers, but instead over a domain of functions.

Mathematicians have long struggled to make sense of the path integral in all but

simplest cases. The infinities that arise in performing functional integrations are be-

yond the limits of rigorous analysis. Of course, that hasn’t stopped physicists using the

path integral to great effect, both in particle physics and, ironically, in mathematics.

One of the most important tools that has been developed to study path integrals is

a discretised version of the quantum field called lattice field theory. Here the spacetime

continuum is replaced with a discrete lattice structure. When the parameters of the

underlying field theory are tuned to a critical point, the details of the lattice wash out

and, if we only look at large distances, the theory appears once again continuous with

translation and Lorentz invariance intact. This provides the paradigmatic example of

how seemingly continuous physics can emerge from an underlying discrete structure.

However, it is not always so easy to construct a lattice version of a quantum field

theory. The trouble lies with fermions, objects which carry half-integer spin so you

have to turn around twice before you get back to where you started. There is a long

history of headaches associated with lattice fermions, many of them enshrined in the

celebrated “no-go theorem” due to Nielsen and Ninomiya [9]. Important progress in

the 1990s [10] showed how one can circumvent many, but not all, of these problems.

The current state of the art is that there is just a single class of quantum field theories

which physicists do not know how to simulate on a computer [11]. This is the class

in which fermions that spin in an anti-clockwise direction experience different (non-

Abelian) forces from those that spin in a clockwise direction. Such theories are referred

to as chiral.

Chiral theories are interesting and delicate. Subtle effects known as anomalies are

always lurking, threatening to render the theory mathematically inconsistent. For this

reason chiral quantum field theories are rather special. But perhaps the most special

among them is the Standard Model. This is a chiral theory because only fermions that

spin anti-clockwise experience the Weak force. Chirality is one of the most striking

and important features of the Standard Model. Yet, when it comes to constructing a

lattice version of the theory, it has consequence: no one knows how to write down a

discrete version of the Standard Model. Which means that no one knows how to write

down a discrete version of the current laws of physics.

you don’t care too much about taking limits, but practically useless.
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Could the Unknown Laws of Physics be Fundamentally Discrete?

Until now, I have tried to resist speculation, preferring to mostly restrict attention

to a study of the known, confirmed laws of physics. But what does this tell us about

the underlying reality of the world? Are the true laws of physics discrete? Is spacetime

discrete? Should we all be searching for the green digital rain seen by Neo at the end

of the The Matrix?

The first piece of evidence offered in this essay is that the integers are emergent. I

find it striking that the discreteness we see in the world is not sewn into the equations

of physics, but arises only when we solve them. It didn’t have to be this way. Indeed,

the very first attempts to write down a quantum theory placed the discreteness at the

heart of the equations. This is Bohr-Sommerfeld quantization: one takes a classical

phase space and parcels it up into little pieces of area ~. It is often a good first

approximation to understanding a system. But, ultimately, it is not correct. Nature

found a more interesting way: discreteness in the world is simply the Fourier transform

of compactness.

If the history of physics has taught us one thing, it is that we should be careful

in extrapolating results beyond their realm of applicability. But I’m going to do it

anyway. I find it hard to believe that having found one beautiful way to implement

discreteness, Nature would shrug her shoulders at the next level and simply throw it

in by hand. She is surely more subtle than that.

It is not entirely clear what to make of the second piece of evidence presented in this

essay: our inability to simulate the Standard Model on a computer. It is difficult to

draw strong conclusions from a failure to solve a problem and the huge progress made

in this area a decade ago suggests that it is probably just a very difficult issue waiting

to be solved with fairly conventional techniques. I included it in this essay mostly as a

warning shot to those who would insist that it is obvious that Nature is digital. But it

may be worth considering the possibility that the difficulty in placing chiral fermions

on the lattice is telling us something important: the laws of physics are not, at heart,

discrete. We are not living inside a computer simulation.

9



References

[1] Speech at the Berlin meeting of the Society of German Scientists and Doctors in

1886, published in Jahreshericht der Deutschen Mathematiker-Vereinigung. Trans.

obituary of Kronecker by H. E. Weber, Year Book of the German Mathematics

Association, 1893, 19.

[2] The history of kinetic theory is told through the story of one of its creators in the

entertaining biography “Boltzmann’s Atom” by David Lindley. A drier, and more

technical, account of the history can be found in “Ludwig Boltzmann: The Man

Who Trusted Atoms” by Carlo Cercignani.

[3] M. Planck, “Verdampfen, Schmelzen und Sublimiren”, Annalen der Physik und

Chemie, 3 446 (1882).

[4] J. L. Cardy, “Is There a c-Theorem in Four Dimensions?”, Phys. Lett. B 215 749

(1988).

[5] A.B Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group in

a 2-D Field Theory, JETP Lett. 43 730 (1986).

[6] B. Mandelbrot, “How Long Is the Coast of Britain? Statistical Self-Similarity and

Fractional Dimension”, Science, 156 636 (1967).

[7] J. M. Maldacena, “The large N limit of superconformal field theories and super-

gravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [arXiv:hep-th/9711200].

[8] E. Witten, “Phases of N = 2 theories in two dimensions,” Nucl. Phys. B 403, 159

(1993) [arXiv:hep-th/9301042].

[9] H. B. Nielsen and M. Ninomiya, “Absence Of Neutrinos On A Lattice. 1. Proof

By Homotopy Theory,” Nucl. Phys. B 185, 20 (1981) [Erratum-ibid. B 195, 541

(1982)].

[10] D. B. Kaplan, “A Method for simulating chiral fermions on the lattice,” Phys.

Lett. B 288, 342 (1992) [arXiv:hep-lat/9206013]; H. Neuberger, “Exactly massless

quarks on the lattice,” Phys. Lett. B 417, 141 (1998) [arXiv:hep-lat/9707022].

[11] Very clear introductions to the pitfalls and successes of placing chiral fermions

on the lattice can be found in the lecture notes by M. Lüscher, “Chiral Gauge
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