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This talk is partly about physics, but partly about the history of physics.
While the physics in the talk speaks for itself, the history needs a little
further explanation. For this reason, I've added some annotations at the

beginning of the talk. Anything | said out loud I've placed in a box. Like
this.

| should also stress that I’'m no historian.VWhat follows is my cartoon
version of history in the |7%" century.




This is really a talk about the Principia. This is Newton's masterpiece. First
published in 1687, it describes the laws of motion, his law of gravity and
then goes into great detail deriving various consequences from these
laws. Not just the obvious stuff like the laws of planetary motion and
friction, but hugely complicated detail of how the Earth gets squashed as
it rotates and the precession of the equinoxes and a study of the tides
and the first look at the three body problem of the Sun-Earth-Moon
using perturbation theory and all sorts of things. It is rightly viewed as the
beginning of theoretical physics.

Now Newton didn't just come up with this stuff over night. It’s the
culmination of more than 20 years work. Most of the big breakthroughs
were made in 1665 when Cambridge closed due to the plague and
Newton returned to his home in Grantham.




Newton’s Principia (1687)
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But Newton wasn't the only one thinking about gravity. In London, three
extraordinarily smart people were also working on these ideas. This
group was Edmund Halley (of comet fame), Christopher Wren (of
Christopher Wren fame) and, most importantly, Robert Hooke.You
probably know Hooke for that stupid spring law, but he was one of the
great intellectual forces of the 1600s.

By the late 1670s, it seems likely that all three of these guys knew that
there should be an inverse square law --- that is a force that drops
off as |-over-distance-squared --- that is responsible for gravity.




In fact, as I'll show you shortly, it's actually quite easy to see that gravity
must follow an inverse-square-law. This is because 50 years earlier, Kepler

had written down three laws that the describe the motion of the planets.
The first of these states that all planets move on an ellipse. Laws 2 and 3
tell you exactly how fast the planets move on an ellipse. And, it turns out
that if you think about circular orbits, Kepler's third law is equivalent to
the inverse-square law for gravity. All of this will be covered later.

But what's hard is to show Kepler's first law: to show that an
inverse-square law of gravity means that the planets necessarily move on

ellipses. That's the tough thing to show.




In 1684, Hooke tells his two friends that he’s figured this out. He claims
that he can show how the planets move on an ellipse. They,
understandably, say "show us". Hooke kind of mumbles something and
says he’s lost the bit of paper and can't do it or won't do it and they leave
thinking that he’s full of shit.

But this prompted Halley to come up to Cambridge to meet with
Newton. Halley tells Newton about Hooke’s claims and Newton says "oh,
| showed that decades ok". Halley says "show me". Newton kind of
mumbles and says he can’t find the piece of paper and so on and Halley
leaves, probably thinking that Newton is full of shit too.

Except the next month, Newton sends Halley the proof. It's a short 9
page paper called "De Motu Corporum in Gyrum", or "The Motions of Bodies
in Orbit". Halley says "amazing, let's publish". Newton says "well, it's not
quite ready. Let me add a few things". Those few things took 2 more years

and the result is the 3 books that make up the Principia.




(There's actually an interesting extra story here.When it's finally done,
Newton sends it to Halley who had arranged for the Royal Society to
publish it. Except, with the delay, they've already spent their publication
budget on another book called, wonderfully, "The History of Fishes". And
there's no more money to publish Newton. So Halley pays for publication

out of his own pocket)

Anyway, there's one key discovery missing from Newton's Principia: that's
the discovery of calculus. It appears that he developed this back in 1665

as well. But, for some reason, he decided to keep it secret. Instead, all the
proofs in the Principia are written using traditional methods of geometry.




Meanwhile, around the same time that the Principia is published, Leibniz
in Germany publishes calculus. And, unlike Newton, Leibniz is really
excited about this and telling everyone and, of course, everyone else gets
really excited as well because, after all, it’s brilliant. And one of the
obvious challenges is to take all the proofs in the Principia and rewrite
them using the new methods of calculus. This challenge is taken up
eagerly by a number of mathematicians and it was very successful; so
much so that by the time the second edition of the Principia was
published in 1713, no one is thinking about this in terms of geometry.

It's all about calculus.

Of course, Newton is kind of pissed about this. So he's jumping up and
down shouting that he did it first --- which he probably did, but he should
have just told someone. And,in | 715, Newton writes that, of course, he
had originally proved everything in the Principia using calculus and later
translated it into geometry so that people could understand it better. As
far as | can tell, most historians think this is just a lie.




Anyway, this leaves the Principia as something of an enigma. One of the
most important scientific books ever written, yet using machinery that
was out of date before the second edition was published. There’s a quote
from William Whewell, an old master of trinity, which sums this up nicely




"The ponderous instrument of synthesis, so effective in Newton's hands,
has never since been grasped by anyone who could use it for such
pburpose; and we gaze at it with admiring curiosity, as some gigantic
implement of war, which stands idle among the memorials of ancient
days, and makes us wonder what manner of man he was who could wield

as a weapon what we can hardly lift as a burden”

William Whewell on Newton’s geometric proofs, 1847



So what | want to do here is show you a geometrical proof of Kepler's
laws in the Newtonian style. This proof is not quite the same as the one
presented in the Principia. But it's fairly close. And the proof itself has an
impressive pedigree. It was first published in a book by Maxwell, who gave
credit to Hamilton. It was later independently rediscovered by Feynman.
He gave a lecture on this which was lost apart from an audio recording
and some scribbled notes. But in the 1990s, the lecture was
reconstructed by David and Judith Goodstein and published in a book
called "Feynman's lost lecture”. If you want to learn more about this, then
looks at this book.

(If you really want to learn more about this, then the great astrophysicist
Chandrasekhar has written an annotated version of the Principia. Be
warned: it’s not easy going).




First...

Some Facts About Ellipses




Building an ellipse from a piece of string

F'P + FP = constant



There’s an interesting historical fact here.The points F and F' are the foci
of the ellipse. Each is called a focus.

As we will see later; the planets move around the Sun on an ellipse with
the Sun sitting at one of the focus. And the name focus for this point of
the ellipse was chosen by Kepler himself. Because it is latin for “fireplace”.




Unpinning the string: draw a circle with centre F




Draw the perpendicular bisector of F/G




Claim: The perpendicular bisector intersects the line FG at Q=P

F F



Proof: congruent triangles = FQ = QG

So distance F/QF is the same as F'G which is the length
of the original string = point Q lies on the ellipse



Moreover...No other point on the perpendicular bisector lies on the ellipse

FTG > FPG but TG = FIG = FTF > FPPF



This means the perpendicular bisector is tangent to the ellipse

(using the fact that there are congruent triangles in F/PG)



A simple physics corollary: an elliptic mirror

All light leaving one focus reaches the other



Punchline to remember!

The perpendicular bisector to F/'G is tangent to the ellipse at P
v



Planetary Orbits




Kepler’s laws of planetary motion

|. The orbits of all planets are ellipses, with the Sun at one focus. (1609)

2. A planet sweeps out equal areas in equal times. (1619)

3. The time, T, of an orbit is related to the distance, R, of the planet by (1627)
T ~ R3/?

Tycho Brahe el : i
1546-1601 1571-1630

Johannes Kepler



Our modern understanding

. The orbits of all planets are ellipses, with the Sun at one focus.
. A planet sweeps out equal areas in equal times.

. The time, T, of an orbit is related to the distance, R, of the planet by

T ~ R3/2

Force towards the Sun ——) Kepler 2

* Really just angular momentum conservation.
Kepler 3 for circular orbits ¢<=> Inverse square law of gravity.

Inverse square law —) Kepler I.



Force towards the Sun

In time At, the planet travels in a straight line AB




Force towards the Sun

In time At, the planet travels in a straight line AB

It then receives an impulse BY towards the Sun




Force towards the Sun

* In time At the planet travels in a straight line AB
* |t then receives an impulse BV towards the Sun

* In the next At it travels the vector sum of AB + BV. This takes it to C, instead of C

Note: C'C is parallel to BV



Kepler’s Second Law: Area SAB = Area SBC

Note: C'C is parallel to BV



First show: Area SAB = Area SBC

Area = !> base x height
'/2 SB x same distance



Then show: Area SAC = Area SBC

Area = !> base x height
'/2 SB x same distance

This demonstrates Kepler’s second law




The inverse square law from circular orbits
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* From Kepler 2, the speed, v, must be constant.
* The time taken to make an orbit is

2T R

U

T =




Circular Acceleration

Claim: the acceleration necessary to move in a circle is

* We will now provide a geometric proof of this well-known fact.
* The main idea used in this proof will also help us later



The velocity vector also rotates around a circle




By analogy, the time taken to move around the circle is

4 a




The inverse square law

R

* We can rewrite thisas a = —

T2

* So, using Newton’s second law, the force must be

This, of course, is Newton’s famous law of gravity



Finding ellipses

Finally, we need to show that the inverse square law
implies that all orbits lie on an ellipse



Take an orbit and divide into equal angles

Equal areas in equal times ——) Planet goes faster around ABC
and slower around DEF



How much faster does it go?

E
Claim: Let S—E — x . Then Area(SEF) — 72
SB Area(SBC)

Proof: Follows because they are similar triangles™. Or, if you prefer, we can flip
the triangle SEF and overlay it on SBC

F

“This proof is not quite good enough.

It assumes that CB is parallel to EF. It’s
5 B E not very hard to show that this is

assumption is not needed.




So...

The area of a triangle is proportional to R’

So the time taken to traverse a segment is proportional to

At ~ R?

But the force is proportional to

1
FN?

Which means that the impulse, or change of velocity, felt
at each corner is constant

Av = FAt = constant



The upshot is that, when divided into equal angles...

...the size of the change of velocity, Ay, is the same at each kick



This means the associated velocity diagram is a regular polygon
The planet is fastest when -
closest to the Sun. Here the
velocity arrows are larger
‘V’ Each side has size Av
The planet is slower when further
from the Sun. Here the velocity

arrows are smaller -



And, in the limit At goes to zero, this becomes a circle

The point O is off-centre



Now we’re almost done



Let’s look at the real orbit and velocity orbit side by side

Real Space Velocity Space

R ——— - S —— D~

Note: the angle ¢ is the same in both cases. This is simplest to see by returning to the
jerky version of planetary motion and the resulting polygon



Rotate the velocity diagram by 90°

Real Space Velocity Space

Because we rotated by 90°, we must have that the two vectors are orthogonal

up - Up =0



Rotate the velocity diagram by 90°

Real Space Velocity Space

* Goal: Reconstruct the orbit in real space from the motion in velocity space.

* At every point P, the tangent to the orbit, vp, must be perpendicular to u.



But we know how to do this...

* Draw the perpendicular bisector to OP

* Place the planet at the point where it intersects CP

* Do this for all points P on the circle and the bisector
will always be tanget to the orbit



And the orbit of the planet is an ellipse!




The End



