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 This talk is partly about physics, but partly about the history of physics. 

While the physics in the talk speaks for itself, the history needs a little 
further explanation. For this reason, I’ve added some annotations at the 
beginning of the talk.  Anything I said out loud I’ve placed in a box. Like 
this. 	

	

	

I should also stress that I’m no historian. What follows is my cartoon 
version of history in the 17th century. 	

	




This is really a talk about the Principia. This is Newton's masterpiece. First 	

published in 1687, it describes the laws of motion, his law of gravity and 	

then goes into great detail deriving various consequences from these 
laws. Not just the obvious stuff like the laws of planetary motion and 
friction, but hugely complicated detail of how the Earth gets squashed as 
it rotates and the precession of the equinoxes and a study of the tides 
and the first look at the three body problem of the Sun-Earth-Moon 
using perturbation theory and all sorts of things. It is rightly viewed as the 
beginning of theoretical physics.	

	

Now Newton didn't just come up with this stuff over night. It’s the 
culmination of more than 20 years work. Most of the big breakthroughs 
were made in 1665 when Cambridge closed due to the plague and 
Newton returned to his home in Grantham. 	

	




Newton’s Principia (1687)	




But Newton wasn't the only one thinking about gravity. In London, three 
extraordinarily smart people were also working on these ideas. This 
group was Edmund Halley (of comet fame), Christopher Wren (of 
Christopher Wren fame) and, most importantly, Robert Hooke. You 
probably know Hooke for that stupid spring law, but he was one of the 
great intellectual forces of the 1600s. 	

	

 By the late 1670s, it seems likely that all three of these guys knew that 
there should be an inverse square law --- that is a force that drops 	

off as 1-over-distance-squared --- that is responsible for gravity.	

	

	




In fact, as I'll show you shortly, it's actually quite easy to see that gravity 	

must follow an inverse-square-law. This is because 50 years earlier, Kepler 
had written down three laws that the describe the motion of the planets. 
The first of these states that all planets move on an ellipse. Laws 2 and 3 
tell you exactly how fast the planets move on an ellipse.  And, it turns out 
that if you think about circular orbits, Kepler's third law is equivalent to 
the inverse-square law for gravity.  All of this will be covered later. 	

	

 But what's hard is to show Kepler's first law: to show that an 	

inverse-square law of gravity means that the planets necessarily move on 
ellipses. That's the tough thing to show.	

	




In 1684, Hooke tells his two friends that he’s figured this out. He claims 
that he can show how the planets move on an ellipse. They, 
understandably, say "show us". Hooke kind of mumbles something and 
says he’s lost the bit of paper and can't do it or won't do it and they leave 
thinking that he’s full of shit.	

 	

But this prompted Halley to come up to Cambridge to meet with 
Newton. Halley tells Newton about Hooke’s claims and Newton says "oh, 
I showed that decades ok". Halley says "show me". Newton kind of 
mumbles and says he can’t find the piece of paper and so on and Halley 	

leaves, probably thinking that Newton is full of shit too.	

 	

Except the next month, Newton sends Halley the proof. It's a short 9 
page paper called "De Motu Corporum in Gyrum", or "The Motions of Bodies 
in Orbit". Halley says "amazing, let's publish". Newton says "well, it's not 
quite ready. Let me add a few things". Those few things took 2 more years 
and the result is the 3 books that make up the Principia.	

	




(There's actually an interesting extra story here. When it's finally done, 
Newton sends it to Halley who had arranged for the Royal Society to 
publish it. Except, with the delay, they've already spent their publication 
budget on another book called, wonderfully, "The History of Fishes".  And 
there's no more money to publish Newton. So Halley pays for publication 
out of his own pocket)	

	

Anyway, there's one key discovery missing from Newton's Principia: that's 
the discovery of calculus. It appears that he developed this back in 1665 
as well. But, for some reason, he decided to keep it secret. Instead, all the 
proofs in the Principia are written using traditional methods of geometry.	




Meanwhile, around the same time that the Principia is published, Leibniz 
in Germany publishes calculus.  And, unlike Newton, Leibniz is really 
excited about this and telling everyone and, of course, everyone else gets 
really excited as well because, after all, it’s brilliant.  And one of the 
obvious challenges is to take all the proofs in the Principia and rewrite 
them using the new methods of calculus. This challenge is taken up 
eagerly by a number of mathematicians and it was very successful; so 
much so that by the time the second edition of the Principia was 
published in 1713, no one is thinking about this in terms of geometry. 	

It's all about calculus.	

	

Of course, Newton is kind of pissed about this. So he's jumping up and 
down shouting that he did it first --- which he probably did, but he should 
have just told someone.  And, in 1715, Newton writes that, of course, he 
had originally proved everything in the Principia using calculus and later 
translated it into geometry so that people could understand it better. As 
far as I can tell, most historians think this is just a lie.	




Anyway, this leaves the Principia as something of an enigma. One of the 
most important scientific books ever written, yet using machinery that 
was out of date before the second edition was published.  There’s a quote 
from William Whewell, an old master of trinity, which sums this up nicely	

	

	




"The ponderous instrument of synthesis, so effective in Newton's hands, 
has never since been grasped by anyone who could use it for such 
purpose; and we gaze at it with admiring curiosity, as some gigantic 
implement of war, which stands idle among the memorials of ancient 
days, and makes us wonder what manner of man he was who could wield 
as a weapon what we can hardly lift as a burden"	


William Whewell on Newton’s geometric proofs, 1847	




So what I want to do here is show you a geometrical proof of Kepler's 
laws in the Newtonian style. This proof is not quite the same as the one 
presented in the Principia. But it's fairly close.  And the proof itself has an 
impressive pedigree. It was first published in a book by Maxwell, who gave 
credit to Hamilton. It was later independently rediscovered by Feynman. 
He gave a lecture on this which was lost apart from an audio recording 
and some scribbled notes.  But in the 1990s, the lecture was 
reconstructed by David and Judith Goodstein and published in a book 
called "Feynman's lost lecture”. If you want to learn more about this, then 
looks at this book.	

	

(If you really want to learn more about this, then the great astrophysicist 
Chandrasekhar has written an annotated version of the Principia. Be 
warned: it’s not easy going). 	




Some Facts About Ellipses	


First…	




Building an ellipse from a piece of string	


P	


F	
F/	


F/P + FP = constant	




There’s an interesting historical fact here. The points F and F/ are the foci 
of the ellipse. Each is called a focus. 	

	

As we will see later, the planets move around the Sun on an ellipse with 
the Sun sitting at one of the focus. And the name focus for this point of 
the ellipse was chosen by Kepler himself. Because it is latin for “fireplace”.  	




Unpinning the string: draw a circle with centre F	


P	


F	
F/	


G	




Draw the perpendicular bisector of F/G	


F	
F/	


G	


P	




F	
F/	


G	


Claim: The perpendicular bisector intersects the line FG at Q=P	


Q	




So distance F/QF is the same as F/G which is the length 	

of the original string         point Q lies on the ellipse	


F	
F/	


G	


Proof: congruent triangles         FQ = QG 	


Q	




FTG > FPG but TG = F/G         FTF/ > FPPF/	


F	
F/	


G	


Moreover…No other point on the perpendicular bisector lies on the ellipse���
	


P	
T	




This means the perpendicular bisector is tangent to the ellipse	


F	
F/	


G	


P	


θ1	

θ2	


θ1=θ2    	

	


(using the fact that there are congruent triangles in F/PG)	

	




A simple physics corollary: an elliptic mirror	


P	


F	
F/	


All light leaving one focus reaches the other	


θ	
 θ	




Punchline to remember!	


F	
F/	


G	


P	


The perpendicular bisector to F/G is tangent to the ellipse at P	




Planetary Orbits	




Kepler’s laws of planetary motion	


1.  The orbits of all planets are ellipses, with the Sun at one focus.                    (1609)	


2.  A planet sweeps out equal areas in equal times.                                          (1619)	


3.  The time, T, of an orbit is related to the distance, R, of the planet by             (1627)	

	


Johannes Kepler	

1571-1630	


Tycho Brahe	

1546-1601	
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Our modern understanding	


1.  The orbits of all planets are ellipses, with the Sun at one focus.    	


2.  A planet sweeps out equal areas in equal times.	


3.  The time, T, of an orbit is related to the distance, R, of the planet by	
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•  Force towards the Sun          Kepler 2 	


•  Really just angular momentum conservation.	


•  Kepler 3 for circular orbits           Inverse square law of gravity.	


•  Inverse square law         Kepler 1.	

	




Force towards the Sun	


A	


B	


•  In time Δt, the planet travels in a straight line AB	


S	




Force towards the Sun	


A	


B	
V	


•  In time Δt, the planet travels in a straight line AB	


•  It then receives an impulse BV towards the Sun	


	


S	




Force towards the Sun	


A	


B	


C/	
C

V	


•  In time Δt, the planet travels in a straight line AB	


•  It then receives an impulse BV towards the Sun	


•  In the next Δt it travels the vector sum of AB + BV.  This takes it to C, instead of C/	


S	


Note: C/C is parallel to BV	




Kepler’s Second Law: Area SAB = Area SBC 	


A	


C/	
C

V	


S	


B	


Note: C/C is parallel to BV	




First show: Area SAB = Area SBC/ 	


A	


C/	
C

B	


S	


Area = ½ base x height	

            ½ SB x same distance	




Then show: Area SAC = Area SBC/ 	


C/	
C

B	


S	


Area = ½ base x height	

            ½ SB x same distance	


A	


This demonstrates Kepler’s second law	




The inverse square law from circular orbits	


R	


v	


v	


v	


v	


•  From Kepler 2, the speed, v, must be constant.	

•  The time taken to make an orbit is	
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Circular Acceleration	
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Claim: the acceleration necessary to move in a circle is	


•  We will now provide a geometric proof of this well-known fact. 	

•  The main idea used in this proof will also help us later 	




The velocity vector also rotates around a circle	


v	


a	


a	


a	


a	




By analogy, the time taken to move around the circle is	


a	
v	


R	
 v	
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•  We can rewrite this as	


•  So, using Newton’s second law, the force must be	


•  Now comparing to Kepler’s third law	


The inverse square law	
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This, of course, is Newton’s famous law of gravity	




Finding ellipses	


Finally, we need to show that the inverse square law 	

implies that all orbits lie on an ellipse	




Take an orbit and divide into equal angles	


A	


B	


C	


D	


E	


F	


θ	


θ	


Equal areas in equal times           Planet goes faster around ABC 	

                                                 and slower around DEF	


S	




How much faster does it go?	


S	


Claim:  Let                   .    Then 	
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a =
R

T 2
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Proof:  Follows because they are similar triangles*. Or, if you prefer, we can flip	

           the triangle SEF and overlay it on SBC	


A	


B	


C	

D	


E	


F	


S	
 B	


C	


F	


E	


*This proof is not quite good enough. 
It assumes that CB is parallel to EF. It’s 
not very hard to show that this is 
assumption is not needed.   	




•  The area of a triangle is proportional to R2	


•  So the time taken to traverse a segment is proportional to	


	

•  But the force is proportional to	


•  Which means that the impulse, or change of velocity, felt 	

     at each corner is constant	


So…	
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The upshot is that, when divided into equal angles…	


A	


B	


C	


θ	
S	


D	


θ	

θ	


v1	


v2	


v3	


Δv	

Δv	


Δv	


Δv	


…the size of the change of velocity, Δv, is the same at each kick	




This means the associated velocity diagram is a regular polygon	


v1	
v2	
v3	


The planet is fastest when 	

closest to the Sun.  Here the 	

velocity arrows are larger	


The planet is slower when further	

from the Sun. Here the velocity 	

arrows are smaller	


O	


Each side has size Δv	




And, in the limit Δt goes to zero, this becomes a circle	


O	


The point O is off-centre	




Now we’re almost done	




Let’s look at the real orbit and velocity orbit side by side	


O	


Real Space	
 Velocity Space	


φ	

C	


φ	

B	
S	


P	

p	


b	
vP	


vP	


Note: the angle φ is the same in both cases. This is simplest to see by returning to the 	

          jerky version of planetary motion and the resulting polygon 	




Rotate the velocity diagram by 90o	


O	


Real Space	
 Velocity Space	


C	


φ	


p	


b	


up	


Because we rotated by 90o, we must have that the two vectors are orthogonal	
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φ	

B	
S	


P	

vP	




Rotate the velocity diagram by 90o	


Real Space	
 Velocity Space	


φ	


p	


b	


up	


•  Goal: Reconstruct the orbit in real space from the motion in velocity space.	


•  At every point P,  the tangent to the orbit, vP, must be perpendicular to uP. 	


φ	

B	
S	


P	

vP	


O	
 C	




But we know how to do this…	


O	
 C	


p	


•  Draw the perpendicular bisector to OP 	

•  Place the planet at the point where it intersects CP	

•  Do this for all points P on the circle and the bisector	

     will always be tanget to the orbit 	




And the orbit of the planet is an ellipse!	


O	


p	




The End	



