The real number line is a good model for the physical continuum

David Tong
University of Cambridge

The Punchline

No one knows how to write down a discrete version of the laws of physics

Quantum Field Theory

$$\phi(x) \qquad \psi_{\alpha}(x) \qquad A_{\mu}(x)$$

The Trouble: Chiral Fermions

$$\{\gamma^5, D\} = 0$$

$$\psi_L = P_+ \psi$$

$$\psi_R = P_- \psi$$

$$P_{\pm} = \frac{1}{2}(1 \pm \gamma^5)$$

- A massive fermion needs both chiralities
- A massless fermion needs only one

Anomalies

Symmetries that act differently on fermions of opposite chirality often don't exist in the quantum theory.

An Example in d=1+1

d=1+1 dimensional Maxwell coupled to a massless Dirac fermion

An Example in d=1+1

Turn on an electric field E(t) for some time \longrightarrow momenta shift

Extra right-moving particles

Extra left-moving anti-particles

Axial charge is violated

Anomalies

Where did the extra charge come from?

From infinity!

The anomaly is an effect arising from the continuum

Gauge Anomalies

Anomalies in global symmetries are merely interesting.

Anomalies in gauge symmetries are fatal.

Chiral Gauge Theories

A Discrete World

- Replace the continuum with a discretized lattice
- Now quantum field theory = quantum mechanics
- No infinities. No anomalies.

Anomalies on the Lattice

Anomalous global symmetries are explicitly broken by the discretization procedure.

What about gauge symmetries?

Fermions on the Lattice

$$S = \int d^4x \; \bar{\psi} (i\partial_\mu \gamma^\mu - m) \psi$$

$$= \int_{-\pi/a}^{\pi/a} d^4p \; \left[\frac{i}{a} \sin(p_\mu) \gamma^\mu - m \right] \bar{\psi}_{-p} \psi_p$$
 BZ

- This is fermion doubling.
- Try to naively discretize a chiral theory and you get a non-chiral theory

Nielsen-Ninomiya Theorem

You can't do it*.

^{*} up to certain assumptions

Overlap Fermions

Kaplan, Neuberger, Narayan, Luscher, late 1990s

Project onto left/right fermions with

$$\hat{\gamma}_5 = \gamma_5 \left(1 - a \not\!\!D \right)$$

depends on momentum and gauge field.

with
$$\{\gamma_5, \not\!\!D\} = a \not\!\!D \gamma^5 \not\!\!D$$

Just One Last Thing...

Is this definition of chirality gauge invariant? (i.e. does the theory exist?)

Abelian Theories

Yes, if and only if the continuum theory is non-anomalous.

Non-Abelian Theories

No one knows.

The Punchline

The Standard Model is a non-Abelian chiral gauge theory.

No one knows how to write down a discrete version of the Standard Model.