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1. Introduction: A Collection of Dualities

Many quantum field theories in d = 2+1 dimensions enjoy a beautiful property known

as particle-vortex duality. This relates two di↵erent theories, with the fundamental

fields of one theory mapped to vortices – or, more precisely, monopole operators –

of the other. The duality has proven to be a powerful tool in a number of di↵erent

settings, ranging from condensed matter physics to string theory.

Particle-vortex duality for bosonic systems was established long ago [1, 2]. In the

simplest version, the duality relates the theory of a complex scalar field (the XY model)

S =

Z
d

3

x |(@µ � iAµ)�|2 � V (�) (1.1)

to the Abelian-Higgs model

S =

Z
d

3

x |(@µ � iaµ)�|2 � Ṽ (�) +
1

2⇡
✏

µ⌫⇢
Aµ@⌫a⇢ (1.2)

In the actions above, Aµ is a background gauge field. Its coupling to the currents in

the two theories reveals that the particle density of � in (1.1) is equated to the flux

density f/2⇡ = da/2⇡ in (1.2). This is the essence of particle-vortex duality.
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Theory A: 

Theory B: 

Peskin ’78, Dasgupta and Halperin ‘81 

dynamical gauge field background gauge field 

one should think of mirror symmetry more as a bosonization, with bosonic currents in

one theory mapped to fermionic currents in the other. We discuss this in Section 4.

2. Bosonisation in d = 2 + 1

We start in this section by describing the relativistic generalisations of flux attachment

that we will need. These were first proposed for large N gauge theories in [14, 15, 16].

Here we require a particularly straightforward version of this duality involving U(1)

gauge fields. Despite it’s simplicity, to the best of our knowledge this duality was first

spelled out in detail only very recently [17], following an earlier suggestion of [27].

2.1 Building Blocks

Throughout this paper, we will work with three types of fields: complex scalars �, two-

component Dirac spinors  and Abelian gauge fields. The latter fall into two categories:

background gauge fields, which we will initially denote as Aµ and dynamical gauge fields

aµ. In the condensed matter context, Aµ is usually to be thought of as electromagnetism

while aµ is an emergent gauge field.

All gauge fields, whether background or dynamical, are compact. This means that

the fluxes are quantised. It will be somewhat easier to discuss this flux quantisation if

we take our spatial slices to be S2, rather thanR

2, The precise choice of the quantisation

condition will be an important part of the story and we will specify it afresh for each

theory. For now, we recall the standard story of Dirac quantisation: if fundamental

fields have unit charge, then the flux is quantised as

Z

S2

F

2⇡
2 Z (2.1)

where F = dA.

Z
f = 2⇡

We will insist that our partition functions are gauge invariant. Of course, this has to

be the case for the dynamical gauge fields a; however, we will also insist that our parti-

tion functions are gauge invariant for the background gauge field A. This is particularly

4

Monopole operator Boson 



Particle-Vortex Duality for Fermions 

Theory A: 

Theory B: 

Son; Wang and Senthil; Metlitski and Vishwanath ‘15 

More recently, an analogous duality was proposed for fermions. The free Dirac

fermion with action

S =

Z
d

3

x i ̄�

µ(@µ � iAµ) (1.3)

is conjectured to be dual to QED
3

with a single species of fermion

S =

Z
d

3

x i ̄�

µ(@µ � iaµ) +
1

4⇡
✏

µ⌫⇢
Aµ@⌫a⇢ (1.4)

This is more subtle, not least because a single Dirac fermion in d = 2 + 1 dimensions

flirts with the parity anomaly. This is avoided in the above theories by changing the

flux quantisation conditions of the gauge field. (We will review this in some detail later

in the paper.)

The proposed fermionic particle-vortex duality lies at the heart of a number of inter-

related topics in condensed matter physics. The duality first arose in Son’s suggestion

that the correct description of the half-filled Landau level involves an emergent (“com-

posite”) Dirac fermion [3]. Shortly afterwards, it was realised that the duality plays

an important role in describing the surface states of interacting topological insulators

[4, 5]. These ideas have subsequently been extended in a number of di↵erent directions

[6, 7, 8, 9, 10], including a derivation of the duality starting from an array of d = 1+ 1

dimensional wires [11].

Flux Attachment

There is a second, seemingly unrelated, operation that one can perform in d = 2 + 1

dimensions. This is statistical transmutation of particles through flux attachment [12].

Attaching a single quantum of flux to a particle turns a boson into a fermion and vice

versa, while adding two quanta of flux leaves the statistics unchanged. This process

underlies the original concept of composite fermions as emergent particles in the lowest

Landau level [13].

The idea of flux attachment is usually applied to non-relativistic particles. More

recently, there has been a revival of this idea in the context of relativistic field theories.

The result is a class of proposed dualities, relating bosonic field theories to fermionic

theories [14, 15, 16, 17]. These dualities are sometimes referred to as 3d bosonization.

The most concrete evidence for 3d bosonization comes from exploring U(N) gauge

theories in the large N limit. (See, for example, [18, 19, 20] for a number of very

impressive confirmations of the duality.) However, there also exists a compelling story
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Parity anomaly means that theory really makes sense only on boundary of topological insulator 



Some notation 

relevant in the presence of Chern-Simons terms1

SCS[a] =
1

4⇡

Z
d

3

x ✏

µ⌫⇢
aµ@⌫a⇢ (2.2)

This appears in the path integral as e

ik SCS [A] where the coe�cient k is referred to as

the level. If A obeys the standard quantisation condition (2.1) then gauge invariance

requires

k 2 Z

Since this argument is important, let us remind ourselves of the key elements. We

work on Euclidean spacetime S

1 ⇥ S

2. This allows us to introduce a new ingredient:

large gauge transformations of the form g = e

i✓, where ✓ 2 [0, 2⇡) is the coordinate of

the S

1. When evaluated on a flux background, the Chern-Simons action shifts under

such a large gauge transformation: �SCS[A] = 2⇡
R
S2 F/2⇡. With the usual Dirac

quantisation condition (2.1), we learn that eikSCS [A] is gauge invariant only when k 2 Z

as advertised.

We also need a coupling between di↵erent Abelian gauge fields. This is achieved by

a mixed Chern-Simons term, also known as a “BF coupling”,

SBF [a;A] =
1

2⇡

Z
d

3

x ✏

µ⌫⇢
aµ@⌫A⇢ (2.3)

The coe�cient is chosen so that a flux
R
F = 2⇡, has unit charge under a. The same

arguments given above show that, if both f = dA and F = dA have canonical nor-

malisation (2.1), then the BF-coupling must also come with integer-valued coe�cient.

Note that, up to a boundary term, SBF [a;A] = SBF [A; a].

The action for the scalar fields takes the usual form

S

scalar

[�;A] =

Z
d

3

x |(@µ � iAµ)�|2 + . . . (2.4)

where . . . denote possible potential terms. We will focus our attention on critical

(gapless) theories. That leaves two choices: we could work with a free scalar, or we

could work with a Wilson-Fisher scalar, viewed as adding a �

4 deformation and flowing

1For all gauge fields, we only write the Chern-Simons terms explicitly. For dynamical gauge fields,
there is also an implicit Maxwell term 1

g2 fµ⌫f
µ⌫ . We neglect this as we are ultimately interested in

the infra-red limit g2 ! 1. Nonetheless, we should remember that in the presence of an ultra-violet
cut-o↵ ⇤UV , we keep g

2 ⌧ ⇤UV as this limit is taken.
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to the infra-red while tuning the mass to zero. Both of these possibilities will arise

below.

S =

Z
d

3

x |(@µ � iaµ)�|2 +
1

4⇡
✏

µ⌫⇢
aµ@⌫a⇢ +

1

2⇡
✏

µ⌫⇢
Aµ@⌫a⇢

S =

Z
d

3

x i ̄�

µ(@µ � iAµ) � 1

2

1

4⇡
✏

µ⌫⇢
Aµ@⌫A⇢

The fermion is governed by the Dirac action

S

fermion

[ ;A] =

Z
d

3

x i ̄�

µ(@µ � iAµ) + . . . (2.5)

We are interested in gapless fermions which, again, leaves two choices. One of these

is a free fermion. The other is best thought of as introducing an auxiliary field � and

adding the term � ̄ to the action, tuning the mass to zero. (One can play the same

game to reach the Wilson-Fisher fixed point for the boson.)

Now comes the rub: if A is taken to obey the standard quantisation condition (2.1)

then the partition function involving the action (2.5) for a single Dirac fermion is not

gauge invariant. This is the parity anomaly [38, 39]. One way to see this is to give the

fermions a mass m ̄ . Integrating them out then results in the Chern-Simons term

1

2
sign(m)SCS[A]

But, as described above, Chern-Simons terms are only gauge invariant with integer

coe�cients.

Alternatively, we can see the lack of gauge invariance directly when m = 0. Consider

the background in which we insert a single unit of flux (2.1) through a spatial S2. The

Dirac fermion has a single, complex zero mode, �. This means that the monopole has

two ground states,

|0i and �

†|0i (2.6)

Because  has charge 1, the charge of these two states must di↵er by +1. But, by CT

symmetry the magnitude of the charge should be the same for the two states. The net

result is that we have a simple example of charge fractionalisation and the states have

charge Q = ±1

2

. This means that, in the presence of an odd number of background

fluxes, the gauge charge is not integer valued. This is in contradiction with our original

Dirac quantisation condition which assumed unit fundamental charge. Something has

to break. That something is gauge invariance.
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The upshot of these arguments is that we must amend the action (2.5) in some way

in order to preserve gauge invariance. There are (at least) two remedies. The first

is to retain the quantisation condition (2.1) but include a compensating half-integer

Chern-Simons action SCS[A]. The second is to change the quantisation condition (2.1).

Both remedies will appear in di↵erent places below.

2.2 Attaching Flux to Scalars

With these building blocks in place, we can now describe the simple dual from which

all else follows. We consider a scalar coupled to a dynamical gauge field a with unit

Chern-Simons coe�cient. This, in turn, is coupled to a background field A. The full

partition function takes the form

Z

scalar+flux

[A] =

Z
D�Da exp

⇣
iS

scalar

[�; a] + iSCS[a] + iSBF [a;A]
⌘

(2.7)

Here the path integral over gauge fields implicitly includes the relevant gauge fixing

terms. Both f = da and F = dA are taken to have canonical normalisation (2.1).

If we turn o↵ the background source, so F = 0, then the equation of motion for a
0

reads

⇢

scalar

+
f

2⇡
= 0 (2.8)

where ⇢
scalar

is the charge density of �. Clearly this attaches one unit of flux to each

� particle. In analogy with the familiar non-relativistic results [12],we should expect

the resulting object to be a fermion.

To see this explicitly, we need to look at the monopole operator [40]. (Once again,

this is simplest if we work on S

2 rather than R

2.) A single monopole operator hasR
f = 2⇡. The constraint (2.8) means that we must excite a single mode of the scalar

in this background. However, the scalar monopole harmonics carry half-integer angular

momentum [43], ensuring that the monopole operator does indeed carry half-integer

spin. The monopole is a fermion.

With this in mind, we define the fermionic path integral

Z

fermion

[A] =

Z
D exp

⇣
iS

fermion

[A]
⌘

As we explained previously, this is not gauge invariant. To restore gauge invariance, we

dress this partition function by a Chern-Simons term for the background gauge field

with half-integer coe�cient, e.g. e�
i
2SCS [A]. Such a term results in contact interactions

between currents [41].
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and 

and 



Something Simple…Flux Attachment 

= 
Boson + flux  Fermion 

Wilczek, Jain and many others 
  



Relativistic Flux Attachment 

When we turn off the background field A, the equation of motion for a attaches one unit of flux 
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this is simplest if we work on S

2 rather than R

2.) A single monopole operator hasR
f = 2⇡. The constraint (2.8) means that we must excite a single mode of the scalar

in this background. However, the scalar monopole harmonics carry half-integer angular

momentum [43], ensuring that the monopole operator does indeed carry half-integer

spin. The monopole is a fermion.

With this in mind, we define the fermionic path integral

Z

fermion

[A] =

Z
D exp

⇣
iS

fermion

[A]
⌘

As we explained previously, this is not gauge invariant. To restore gauge invariance, we

dress this partition function by a Chern-Simons term for the background gauge field

with half-integer coe�cient, e.g. e�
i
2SCS [A]. Such a term results in contact interactions

between currents [41].
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to the infra-red while tuning the mass to zero. Both of these possibilities will arise

below.

S

scalar+flux

=

Z
d

3

x |(@µ � iaµ)�|2 +
1

4⇡
✏

µ⌫⇢
aµ@⌫a⇢ +

1

2⇡
✏

µ⌫⇢
Aµ@⌫a⇢

S =

Z
d

3

x i ̄�

µ(@µ � iAµ) � 1

2

1

4⇡
✏

µ⌫⇢
Aµ@⌫A⇢

The fermion is governed by the Dirac action

S

fermion

[ ;A] =

Z
d

3

x i ̄�

µ(@µ � iAµ) + . . . (2.5)

We are interested in gapless fermions which, again, leaves two choices. One of these

is a free fermion. The other is best thought of as introducing an auxiliary field � and

adding the term � ̄ to the action, tuning the mass to zero. (One can play the same

game to reach the Wilson-Fisher fixed point for the boson.)

Now comes the rub: if A is taken to obey the standard quantisation condition (2.1)

then the partition function involving the action (2.5) for a single Dirac fermion is not

gauge invariant. This is the parity anomaly [38, 39]. One way to see this is to give the

fermions a mass m ̄ . Integrating them out then results in the Chern-Simons term

1

2
sign(m)SCS[A]

But, as described above, Chern-Simons terms are only gauge invariant with integer

coe�cients.

Alternatively, we can see the lack of gauge invariance directly when m = 0. Consider

the background in which we insert a single unit of flux (2.1) through a spatial S2. The

Dirac fermion has a single, complex zero mode, �. This means that the monopole has

two ground states,

|0i and �

†|0i (2.6)

Because  has charge 1, the charge of these two states must di↵er by +1. But, by CT

symmetry the magnitude of the charge should be the same for the two states. The net

result is that we have a simple example of charge fractionalisation and the states have

charge Q = ±1

2

. This means that, in the presence of an odd number of background

fluxes, the gauge charge is not integer valued. This is in contradiction with our original

Dirac quantisation condition which assumed unit fundamental charge. Something has

to break. That something is gauge invariance.
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A Seed Duality 

Theory A: 

Theory B: 

The upshot of these arguments is that we must amend the action (2.5) in some way

in order to preserve gauge invariance. There are (at least) two remedies. The first

is to retain the quantisation condition (2.1) but include a compensating half-integer

Chern-Simons action SCS[A]. The second is to change the quantisation condition (2.1).

Both remedies will appear in di↵erent places below.

2.2 Attaching Flux to Scalars

With these building blocks in place, we can now describe the simple dual from which

all else follows. We consider a scalar coupled to a dynamical gauge field a with unit

Chern-Simons coe�cient. This, in turn, is coupled to a background field A. The full

partition function takes the form

Z

scalar+flux

[A] =

Z
D�Da exp

⇣
iS

scalar

[�; a] + iSCS[a] + iSBF [a;A]
⌘

(2.7)

S

scalar+flux

= S

scalar

[�; a] + SCS[a] + SBF [a;A]

Here the path integral over gauge fields implicitly includes the relevant gauge fixing

terms. Both f = da and F = dA are taken to have canonical normalisation (2.1).

If we turn o↵ the background source, so F = 0, then the equation of motion for a
0

reads

⇢

scalar

+
f

2⇡
= 0 (2.8)

where ⇢
scalar

is the charge density of �. Clearly this attaches one unit of flux to each

� particle. In analogy with the familiar non-relativistic results [12],we should expect

the resulting object to be a fermion.

To see this explicitly, we need to look at the monopole operator [40]. (Once again,

this is simplest if we work on S

2 rather than R

2.) A single monopole operator hasR
f = 2⇡. The constraint (2.8) means that we must excite a single mode of the scalar

in this background. However, the scalar monopole harmonics carry half-integer angular

momentum [43], ensuring that the monopole operator does indeed carry half-integer

spin. The monopole is a fermion.

With this in mind, we define the fermionic path integral

Z

fermion

[A] =

Z
D exp

⇣
iS

fermion

[A]
⌘
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Z

scalar

[A] =

Z
D� exp

⇣
iS

scalar

[A]
⌘

As we explained previously, this is not gauge invariant. To restore gauge invariance,

we dress this partition function by a Chern-Simons term for the background gauge field

with half-integer coe�cient, e.g. e�
i
2SCS [A]. Such a term results in contact interactions

between currents [41].

The proposed duality of [17] is simply to identify the theory (2.7) describing scalar+flux

with the fermionic theory. Their partition functions are conjectured to be related as

Z

fermion

[A] e�
i
2SCS [A] = Z

scalar+flux

[A] (2.9)

S = S

fermion

[A]� 1

2
SCS[A]

This is the simplest example of 3d bosonization. We note that it is also an example

of a particle-vortex duality: as we saw above, the free fermion operator maps to the

monopole operator in the interacting theory.

In fact, the formula (2.9) actually describes two di↵erent dualities. The di↵erence

between them is hidden in the . . . in (2.4) and (2.5). As we saw above, there are two

choices for the critical scalar and fermion. The results of [14, 15] strongly suggest

that if we take the free fermion as the left-hand side of (2.9) then we should take the

Wilson-Fisher scalar on the right-hand side. Analogously, the critical fermion with

� ̄ coupling corresponds to the free scalar.

The level �1

2

of SCS[A] on the left-hand side of (2.9) is fixed by the Hall conductivity

[16]. To see this, let us first gap the fermion. After integrating it out, we find a Hall

conductivity that is either 0 or -1 depending on the sign of the mass. On the scalar

side, two di↵erent things happen depending on the sign of this fermionic mass. For

one sign, the scalar is gapped and integrating out the dynamical gauge field a results

in a Hall conductivity �1; for the other sign, the scalar condenses and the gauge field

a is Higgsed. In this phase, the Hall conductivity vanishes. In both cases, we find

agreement with the fermionic behaviour.

In what follows, we will assume the duality (2.9) and use it to derive many further

dualities. We do this using the kind of techniques first introduced in [37] and further

explored in [42]. First, we breathe life into the background gauge field A, promoting it

to a dynamical gauge field. This, in turn gives rise to a new topological current ?
F/2⇡

8
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The upshot of these arguments is that we must amend the action (2.5) in some way

in order to preserve gauge invariance. There are (at least) two remedies. The first

is to retain the quantisation condition (2.1) but include a compensating half-integer

Chern-Simons action SCS[A]. The second is to change the quantisation condition (2.1).

Both remedies will appear in di↵erent places below.

2.2 Attaching Flux to Scalars

With these building blocks in place, we can now describe the simple dual from which

all else follows. We consider a scalar coupled to a dynamical gauge field a with unit

Chern-Simons coe�cient. This, in turn, is coupled to a background field A. The full

partition function takes the form

Z

scalar+flux

[A] =

Z
D�Da exp

⇣
iS

scalar

[�; a] + iSCS[a] + iSBF [a;A]
⌘

(2.7)

S

scalar+flux

= S

scalar

[�; a] + SCS[a] + SBF [a;A]

Here the path integral over gauge fields implicitly includes the relevant gauge fixing

terms. Both f = da and F = dA are taken to have canonical normalisation (2.1).

If we turn o↵ the background source, so F = 0, then the equation of motion for a
0

reads

⇢

scalar

+
f

2⇡
= 0 (2.8)

where ⇢
scalar

is the charge density of �. Clearly this attaches one unit of flux to each

� particle. In analogy with the familiar non-relativistic results [12],we should expect

the resulting object to be a fermion.

To see this explicitly, we need to look at the monopole operator [40]. (Once again,

this is simplest if we work on S

2 rather than R

2.) A single monopole operator hasR
f = 2⇡. The constraint (2.8) means that we must excite a single mode of the scalar

in this background. However, the scalar monopole harmonics carry half-integer angular

momentum [43], ensuring that the monopole operator does indeed carry half-integer

spin. The monopole is a fermion.

With this in mind, we define the fermionic path integral

Z

fermion

[A] =

Z
D exp

⇣
iS

fermion

[A]
⌘

7

Z

scalar

[A] =

Z
D� exp

⇣
iS

scalar

[A]
⌘

As we explained previously, this is not gauge invariant. To restore gauge invariance,

we dress this partition function by a Chern-Simons term for the background gauge field

with half-integer coe�cient, e.g. e�
i
2SCS [A]. Such a term results in contact interactions

between currents [41].

The proposed duality of [17] is simply to identify the theory (2.7) describing scalar+flux

with the fermionic theory. Their partition functions are conjectured to be related as

Z

fermion

[A] e�
i
2SCS [A] = Z

scalar+flux

[A] (2.9)

S = S

fermion

[A]� 1

2
SCS[A]

This is the simplest example of 3d bosonization. We note that it is also an example

of a particle-vortex duality: as we saw above, the free fermion operator maps to the

monopole operator in the interacting theory.

In fact, the formula (2.9) actually describes two di↵erent dualities. The di↵erence

between them is hidden in the . . . in (2.4) and (2.5). As we saw above, there are two

choices for the critical scalar and fermion. The results of [14, 15] strongly suggest

that if we take the free fermion as the left-hand side of (2.9) then we should take the

Wilson-Fisher scalar on the right-hand side. Analogously, the critical fermion with

� ̄ coupling corresponds to the free scalar.

The level �1

2

of SCS[A] on the left-hand side of (2.9) is fixed by the Hall conductivity

[16]. To see this, let us first gap the fermion. After integrating it out, we find a Hall

conductivity that is either 0 or -1 depending on the sign of the mass. On the scalar

side, two di↵erent things happen depending on the sign of this fermionic mass. For

one sign, the scalar is gapped and integrating out the dynamical gauge field a results

in a Hall conductivity �1; for the other sign, the scalar condenses and the gauge field

a is Higgsed. In this phase, the Hall conductivity vanishes. In both cases, we find

agreement with the fermionic behaviour.

In what follows, we will assume the duality (2.9) and use it to derive many further

dualities. We do this using the kind of techniques first introduced in [37] and further

explored in [42]. First, we breathe life into the background gauge field A, promoting it

to a dynamical gauge field. This, in turn gives rise to a new topological current ?
F/2⇡
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The upshot of these arguments is that we must amend the action (2.5) in some way

in order to preserve gauge invariance. There are (at least) two remedies. The first

is to retain the quantisation condition (2.1) but include a compensating half-integer

Chern-Simons action SCS[A]. The second is to change the quantisation condition (2.1).

Both remedies will appear in di↵erent places below.

2.2 Attaching Flux to Scalars

With these building blocks in place, we can now describe the simple dual from which

all else follows. We consider a scalar coupled to a dynamical gauge field a with unit

Chern-Simons coe�cient. This, in turn, is coupled to a background field A. The full

partition function takes the form

Z

scalar+flux

[A] =

Z
Da Z

scalar

[a] exp
⇣
iSCS[a] + iSBF [a;A]

⌘
(2.7)

Z

scalar+flux

[A] =

Z
Da Z

scalar

[a] exp
⇣
iSCS[a] + iSBF [a;A]

⌘
= Z

fermion

[A] e�
i
2SCS [A]

S

scalar+flux

= S

scalar

[�; a] + SCS[a] + SBF [a;A]

Here the path integral over gauge fields implicitly includes the relevant gauge fixing

terms. Both f = da and F = dA are taken to have canonical normalisation (2.1).

If we turn o↵ the background source, so F = 0, then the equation of motion for a
0

reads

⇢

scalar

+
f

2⇡
= 0 (2.8)

where ⇢
scalar

is the charge density of �. Clearly this attaches one unit of flux to each

� particle. In analogy with the familiar non-relativistic results [12],we should expect

the resulting object to be a fermion.

To see this explicitly, we need to look at the monopole operator [40]. (Once again,

this is simplest if we work on S

2 rather than R

2.) A single monopole operator hasR
f = 2⇡. The constraint (2.9) means that we must excite a single mode of the scalar

in this background. However, the scalar monopole harmonics carry half-integer angular

momentum [43], ensuring that the monopole operator does indeed carry half-integer

spin. The monopole is a fermion.
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The upshot of these arguments is that we must amend the action (2.5) in some way

in order to preserve gauge invariance. There are (at least) two remedies. The first

is to retain the quantisation condition (2.1) but include a compensating half-integer

Chern-Simons action SCS[A]. The second is to change the quantisation condition (2.1).

Both remedies will appear in di↵erent places below.

2.2 Attaching Flux to Scalars

With these building blocks in place, we can now describe the simple dual from which

all else follows. We consider a scalar coupled to a dynamical gauge field a with unit

Chern-Simons coe�cient. This, in turn, is coupled to a background field A. The full

partition function takes the form

Z

scalar+flux

[A] =

Z
Da Z

scalar

[a] exp
⇣
iSCS[a] + iSBF [a;A]

⌘
(2.7)

Z

scalar+flux

[A] =

Z
Da Z

scalar

[a] exp
⇣
iSCS[a] + iSBF [a;A]

⌘
= Z

fermion

[A] e�
i
2SCS [A]

S

scalar+flux

= S

scalar

[�; a] + SCS[a] + SBF [a;A]

Here the path integral over gauge fields implicitly includes the relevant gauge fixing

terms. Both f = da and F = dA are taken to have canonical normalisation (2.1).

If we turn o↵ the background source, so F = 0, then the equation of motion for a
0

reads

⇢

scalar

+
f

2⇡
= 0 (2.8)

where ⇢
scalar

is the charge density of �. Clearly this attaches one unit of flux to each

� particle. In analogy with the familiar non-relativistic results [12],we should expect

the resulting object to be a fermion.

To see this explicitly, we need to look at the monopole operator [40]. (Once again,

this is simplest if we work on S

2 rather than R

2.) A single monopole operator hasR
f = 2⇡. The constraint (2.9) means that we must excite a single mode of the scalar

in this background. However, the scalar monopole harmonics carry half-integer angular

momentum [43], ensuring that the monopole operator does indeed carry half-integer

spin. The monopole is a fermion.
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The upshot of these arguments is that we must amend the action (2.5) in some way

in order to preserve gauge invariance. There are (at least) two remedies. The first

is to retain the quantisation condition (2.1) but include a compensating half-integer

Chern-Simons action SCS[A]. The second is to change the quantisation condition (2.1).

Both remedies will appear in di↵erent places below.

2.2 Attaching Flux to Scalars

With these building blocks in place, we can now describe the simple dual from which

all else follows. We consider a scalar coupled to a dynamical gauge field a with unit

Chern-Simons coe�cient. This, in turn, is coupled to a background field A. The full

partition function takes the form

Z

scalar+flux

[A] =

Z
Da Z

scalar

[a] exp
⇣
iSCS[a] + iSBF [a;A]

⌘
(2.7)

Z

scalar+flux

[A] =

Z
Da Z

scalar

[a] exp
⇣
iSCS[a] + iSBF [a;A]

⌘
= Z

fermion

[A] e�
i
2SCS [A]

S

scalar+flux

= S

scalar

[�; a] + SCS[a] + SBF [a;A]

Here the path integral over gauge fields implicitly includes the relevant gauge fixing

terms. Both f = da and F = dA are taken to have canonical normalisation (2.1).

If we turn o↵ the background source, so F = 0, then the equation of motion for a
0

reads

⇢

scalar

+
f

2⇡
= 0 (2.8)

where ⇢
scalar

is the charge density of �. Clearly this attaches one unit of flux to each

� particle. In analogy with the familiar non-relativistic results [12],we should expect

the resulting object to be a fermion.

To see this explicitly, we need to look at the monopole operator [40]. (Once again,

this is simplest if we work on S

2 rather than R

2.) A single monopole operator hasR
f = 2⇡. The constraint (2.9) means that we must excite a single mode of the scalar

in this background. However, the scalar monopole harmonics carry half-integer angular

momentum [43], ensuring that the monopole operator does indeed carry half-integer

spin. The monopole is a fermion.
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Promote A to dynamical gauge field. Right-hand side becomes 

In what follows, we will assume the duality (2.9) and use it to derive many further

dualities. We do this using the kind of techniques first introduced in [37] and further

explored in [42]. First, we breathe life into the background gauge field A, promoting it

to a dynamical gauge field. This, in turn gives rise to a new topological current ?
F/2⇡

which is subsequently coupled to a replacement background gauge field through a BF

term. Below we will use this simple but powerful trick many times. We will find that

minor variations on the theme allow us to derive a vast array of di↵erent dualities,

including the particle-vortex dualities described in the introduction.

2.3 Attaching Flux to Fermions

We start with a simple example. As described above, we promote the background

gauge field A in (2.9) to a dynamical field and couple it to a new background gauge

field which we denote as C. The left-hand side of (2.9) becomes

Z

fermion+flux

[C] =

Z
D DA exp

⇣
iS

fermion

[ ;A]� i

2
SCS[A]� iSBF [A;C]

⌘
(2.10)

Z

fermion+flux

[C] =

Z
DA Z

fermion

[A] exp
⇣
� i

2
SCS[A]� iSBF [A;C]

⌘

This describes a fermion coupled to a background flux. To get a feel for the

resulting physics, we can again look at Gauss’ law, arising as the equation of motion

for A
0

. Setting dC = 0, this reads

⇢

fermion

� 1

2

F

2⇡
= 0 (2.11)

In the background of a single monopole,
R
F = 2⇡, we must have Q

fermion

= 1

2

. We’ve

already seen that this is the charge of the state �†|0i arising from quantising the zero

mode (2.6). The other state |0i does not satisfy Gauss’ law (2.11) and is not part of

the physical Hilbert space. Moreover, the zero mode � is known to be a singlet under

rotation symmetry [36]. This means that the monopole operator is a boson and we

might expect (2.10) to be dual to a scalar theory.

Let us now see what becomes of the right-hand side of (2.9) under this operation.

The partition function is

Z
DA Z

scalar+flux

[A] exp
⇣
� iSBF [A;C]

⌘

9

new background field Do the same on left-hand side.  

The newly promoted gauge field A appears linearly in the action and can be integrated

out. Its equation of motion is simply da = dC. In the absence of any holonomy, we set

a = C to get
Z

DA Z

scalar+flux

[A] e�iSBF [A;C] = Z

scalar

[C] eiSCS [C]

This, of course, must be equal to the left-hand side (2.10). The end result is that,

starting from (2.9), we can derive a new duality in which attaching fluxes to fermions

gives rise to a bosonic theory

Z

fermion+flux

[C] = Z

scalar

[C] eiSCS [C] (2.12)

This duality was also proposed in [17].

One can check that repeating this procedure by gauging C in (2.12) and adding a

new background gauge field through a BF coupling takes us back to the duality (2.9).

Parity Duals

Before we proceed, it will be useful to highlight a trivial generalisation of the dualities

(2.9) and (2.12). These arise from the action of parity. This flips the sign of all Chern-

Simons and BF couplings, leaving other terms in the action invariant. Applying parity

to the duality (2.9) gives

Z

fermion

[A] e+
i
2SCS [A] = Z̄

scalar+flux

[A] (2.13)

where we have defined

Z̄

scalar+flux

[A] =

Z
D�Da exp

⇣
iS

scalar

[�; a]� iSCS[a]� iSBF [a;A]
⌘

(2.14)

Similarly, applying parity to the duality (2.12) yields

Z̄

fermion+flux

[C] = Z

scalar

[C] e�iSCS [C] (2.15)

where

Z̄

fermion+flux

[C] =

Z
D DA exp

⇣
iS

fermion

[ ;A] +
i

2
SCS[A] + iSBF [A;C]

⌘
(2.16)

We will have use for these versions of the duality shortly.

3. Particle-Vortex Duality

We can now play similar games to derive dualities which map bosons to bosons, and

fermions to fermions. As we will see, these include the familiar particle-vortex dualities.
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integrate out A; equation of motion  
also eliminates a through 

The newly promoted gauge field A appears linearly in the action and can be integrated

out. Its equation of motion is simply da = dC. In the absence of any holonomy, we set

a = C to get
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This, of course, must be equal to the left-hand side (2.10). The end result is that,

starting from (2.9), we can derive a new duality in which attaching fluxes to fermions

gives rise to a bosonic theory

Z

fermion+flux

[C] = Z

scalar

[C] eiSCS [C] (2.12)

This duality was also proposed in [17].

One can check that repeating this procedure by gauging C in (2.12) and adding a

new background gauge field through a BF coupling takes us back to the duality (2.9).

Parity Duals

Before we proceed, it will be useful to highlight a trivial generalisation of the dualities

(2.9) and (2.12). These arise from the action of parity. This flips the sign of all Chern-

Simons and BF couplings, leaving other terms in the action invariant. Applying parity

to the duality (2.9) gives
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where

Z̄
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[C] =

Z
D DA exp

⇣
iS
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2
SCS[A] + iSBF [A;C]
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(2.16)

We will have use for these versions of the duality shortly.

3. Particle-Vortex Duality

We can now play similar games to derive dualities which map bosons to bosons, and

fermions to fermions. As we will see, these include the familiar particle-vortex dualities.
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The newly promoted gauge field A appears linearly in the action and can be integrated

out. Its equation of motion is simply da = dC. In the absence of any holonomy, we set

a = C to get
Z

DA Z

scalar+flux

[A] e�iSBF [A;C] = Z

scalar

[C] eiSCS [C]

This, of course, must be equal to the left-hand side (2.10). The end result is that,

starting from (2.9), we can derive a new duality in which attaching fluxes to fermions

gives rise to a bosonic theory

Z

fermion+flux

[C] = Z

scalar

[C] eiSCS [C] (2.12)

This duality was also proposed in [17].

One can check that repeating this procedure by gauging C in (2.12) and adding a

new background gauge field through a BF coupling takes us back to the duality (2.9).

Parity Duals

Before we proceed, it will be useful to highlight a trivial generalisation of the dualities

(2.9) and (2.12). These arise from the action of parity. This flips the sign of all Chern-

Simons and BF couplings, leaving other terms in the action invariant. Applying parity

to the duality (2.9) gives

Z

fermion

[A] e+
i
2SCS [A] = Z̄

scalar+flux

[A] (2.13)

where we have defined

Z̄

scalar+flux

[A] =

Z
D�Da exp

⇣
iS

scalar

[�; a]� iSCS[a]� iSBF [a;A]
⌘

(2.14)

Similarly, applying parity to the duality (2.12) yields

Z̄

fermion+flux

[C] = Z

scalar

[C] e�iSCS [C] (2.15)

where

Z̄

fermion+flux

[C] =

Z
D DA exp

⇣
iS

fermion

[ ;A] +
i

2
SCS[A] + iSBF [A;C]

⌘
(2.16)

We will have use for these versions of the duality shortly.

3. Particle-Vortex Duality

We can now play similar games to derive dualities which map bosons to bosons, and

fermions to fermions. As we will see, these include the familiar particle-vortex dualities.
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Example 2: Bosonic Particle-Vortex Duality 
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Before we proceed, it will be useful to highlight a trivial generalisation of the dualities
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We will have use for these versions of the duality shortly.

3. Particle-Vortex Duality

We can now play similar games to derive dualities which map bosons to bosons, and

fermions to fermions. As we will see, these include the familiar particle-vortex dualities.
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3.1 Bosons

We start with the duality (2.12). However, before we proceed, we first divide by the

contact interaction so that the duality reads

Z

fermion+flux

[C] e�iSCS [C] = Z

scalar

[C] (3.1)

We now gauge the background field C. For notational reasons, it will prove useful to

recycle some of our old names for gauge fields. We therefore relabel C ! a. We couple

this to a new background gauge field which we call A. After gauging the right-hand

side becomes the partition function for scalar QED.

Z

scalar�QED

[A] =

Z
D�Da exp

⇣
iS

scalar

[�; a] + iSBF [a;A]
⌘

Now we look at the left-hand side of the duality. After these operations, the partition

function is
R
Da Z

fermion+flux

[a] e�iSCS [a]+iSBF [a;A]. Written out in full using (2.10) (and

changing the names of integration variables), this reads
Z

D DãDa exp
⇣
iS

fermion

[ ; ã]� i

2
SCS[ã]� iSBF [ã; a]� iSCS[a] + iSBF [a;A]

⌘

The next step is to integrate out the gauge field a. Its equation of motion requires

(in the absence of holonomy) a = A � ã. Substituting back in, and collecting various

terms, we find the resulting partition function2

Z
D Dã exp

⇣
iS

fermion

[ ; ã] +
i

2
SCS[ã]� iSBF [ã;A] + iSCS[A]

⌘
(3.2)

Something rather nice has happened: we recognise the first three terms as the parity-

transformed partition function Z̄

fermion+flux

defined in (2.16). We can replace this by

using the parity-transformed duality (2.15). Happily, the resulting contact interaction

cancels the final term in (3.2). We’re left simply with the scalar partition function

Z

scalar

[A].

We learn that applying the duality twice, once in its original form (2.12), and once

in its parity-transformed avatar (2.15), we relate two scalar partition functions

Z

scalar�QED

[A] = Z

scalar

[A]

This, of course, is the original particle-vortex duality [1, 2], relating the XY model (1.1)

(on the right) to the Abelian Higgs model (1.2) (on the left). Following through the

fate of the . . . in the original scalar action, we see that the scalar should either be free

on both sides, or tuned to the Wilson-Fisher fixed point on both sides.
2This action also appears in a recent proposal for a particle-vortex symmetric description of the

superconductor-insulator transition [44].
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Promote C to a dynamical gauge field. Right-hand side becomes  

On the left-hand-side something nice happens. After integrating out C, we find 

But this is just our original “fermion+flux” partition function (or, more precisely, a time-reversed version) We learn that applying the duality twice, once in its original form (2.12), and once

in its parity-transformed avatar (2.15), we relate two scalar partition functions

Z

scalar�QED

[A] = Z

scalar

[A]

This, of course, is the original particle-vortex duality [1, 2], relating the XY model (1.1)

(on the right) to the Abelian Higgs model (1.2) (on the left). Following through the

fate of the . . . in the original scalar action, we see that the scalar should either be free

on both sides, or tuned to the Wilson-Fisher fixed point on both sides.

We highlight that the derivation assumes the absence of holonomies in the gauge

field when integrating out a. This means that the duality may be modified on S

2 ⇥S

1,

or indeed in flat space in the presence of Wilson lines.

3.2 Fermions

We can repeat the above derivation for the fermions. This time we start with the

duality (2.9), but only after dividing through by the contact interaction on both sides,

Z

fermion

[C] = Z

scalar+flux

[C] e+
i
2SCS [C] (3.4)

Now we have a problem. As we explained previously, if the background gauge field C

obeys the canonical quantisation condition (2.1), then neither side of this equation is

gauge invariant.

A fix for this was suggested in [3, 4, 5]: we simply require the more stringent quan-

tisation condition that fluxes must be even
Z

dC

2⇡
2 2Z (3.5)

Restricted to such backgrounds, there is no anomaly.

The restriction (3.5) is certainly allowed for background gauge fields which are under

our control. However, the next step is to promote C to a dynamical field and here the

condition (3.5) is far from innocuous. Indeed, when summing over the
R
dC = 0 sector

one should presumably include instanton-anti-instanton pairs, each consisting of a 2⇡

flux, separated by some distance. If so, the restriction to (3.5) doesn’t restrict local 2⇡

fluxes appearing in the path integral; it merely insists that they are accompanied by

anti-fluxes elsewhere. One might worry that such a non-local restriction results in a

theory which violates properties we hold dear, such as locality or cluster decomposition.
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3.1 Bosons

We start with the duality (2.12). However, before we proceed, we first divide by the

contact interaction so that the duality reads

Z

fermion+flux

[C] e�iSCS [C] = Z

scalar

[C] (3.1)

We now gauge the background field C. For notational reasons, it will prove useful to

recycle some of our old names for gauge fields. We therefore relabel C ! a. We couple

this to a new background gauge field which we call A. After gauging the right-hand

side becomes the partition function for scalar QED.

Z

scalar�QED

[A] =

Z
D�Da exp

⇣
iS

scalar

[�; a] + iSBF [a;A]
⌘

Z

scalar�QED

[A] =

Z
DC Z

scalar

[C] eiSBF [a;A]

Now we look at the left-hand side of the duality. After these operations, the

partition function is
R
Da Z

fermion+flux

[a] e�iSCS [a]+iSBF [a;A]. Written out in full using

(2.10) (and changing the names of integration variables), this reads
Z

D DãDa exp
⇣
iS

fermion

[ ; ã]� i

2
SCS[ã]� iSBF [ã; a]� iSCS[a] + iSBF [a;A]

⌘

The next step is to integrate out the gauge field a. Its equation of motion requires

(in the absence of holonomy) a = A � ã. Substituting back in, and collecting various

terms, we find the resulting partition function2

Z
D Dã exp

⇣
iS

fermion

[ ; ã] +
i

2
SCS[ã]� iSBF [ã;A] + iSCS[A]

⌘
(3.2)

Z
Da Z

fermion

[a] exp
⇣
i

2
SCS[a]� iSBF [a;A] + iSCS[A]

⌘
(3.3)

Something rather nice has happened: we recognise the first three terms as the

parity-transformed partition function Z̄

fermion+flux

defined in (2.16). We can replace

this by using the parity-transformed duality (2.15). Happily, the resulting contact

interaction cancels the final term in (3.3). We’re left simply with the scalar partition

function Z

scalar

[A].

2This action also appears in a recent proposal for a particle-vortex symmetric description of the
superconductor-insulator transition [44].
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3. Particle-Vortex Duality

We can now play similar games to derive dualities which map bosons to bosons, and

fermions to fermions. As we will see, these include the familiar particle-vortex dualities.

3.1 Bosons

We start with the duality (2.14). However, before we proceed, we first divide by the

contact interaction so that the duality reads

Z

fermion+flux

[C] e�iSCS [C] = Z

scalar

[C] (3.1)

We now gauge the background field C. For notational reasons, it will prove useful to

recycle some of our old names for gauge fields. We therefore relabel C ! a. We couple

this to a new background gauge field which we call A. After gauging the right-hand

side becomes the partition function for scalar QED.

Z

scalar�QED

[A] =

Z
D�Da exp

⇣
iS

scalar

[�; a] + iSBF [a;A]
⌘

Z

scalar�QED

[A] =

Z
DC Z

scalar

[C] eiSBF [C;A]

Now we look at the left-hand side of the duality. After these operations, the

partition function is
R
Da Z

fermion+flux

[a] e�iSCS [a]+iSBF [a;A]. Written out in full using

(2.12) (and changing the names of integration variables), this reads
Z

D DãDa exp
⇣
iS

fermion

[ ; ã]� i

2
SCS[ã]� iSBF [ã; a]� iSCS[a] + iSBF [a;A]

⌘

The next step is to integrate out the gauge field a. Its equation of motion requires

(in the absence of holonomy) a = A � ã. Substituting back in, and collecting various

terms, we find the resulting partition function2

Z
D Dã exp

⇣
iS

fermion

[ ; ã] +
i

2
SCS[ã]� iSBF [ã;A] + iSCS[A]

⌘
(3.2)

Z
Da Z

fermion

[a] exp
⇣
i

2
SCS[a]� iSBF [a;A] + iSCS[A]

⌘
(3.3)

Something rather nice has happened: we recognise the first three terms as the

parity-transformed partition function Z̄

fermion+flux

defined in (2.18). We can replace

this by using the parity-transformed duality (2.17). Happily, the resulting contact

interaction cancels the final term in (3.3). We’re left simply with the scalar partition

function Z

scalar

[A].
2This action also appears in a recent proposal for a particle-vortex symmetric description of the

superconductor-insulator transition [44].
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Example 3: Fermionic Particle-Vortex Duality 

Again, promote C to a dynamical gauge field, but now restricted to have even flux sector. Left-hand side is  

On the left-hand-side something nice happens. After integrating out C, we find 

This is again the time-reversed version of our original scalar+flux. We can then use duality to derive 

With this in mind, we define the fermionic path integral

Z

fermion

[A] =

Z
D exp

⇣
iS

fermion

[A]
⌘

Z

scalar

[A] =

Z
D� exp

⇣
iS

scalar

[A]
⌘

As we explained previously, this is not gauge invariant. To restore gauge invariance,

we dress this partition function by a Chern-Simons term for the background gauge field

with half-integer coe�cient, e.g. e�
i
2SCS [A]. Such a term results in contact interactions

between currents [41].

The proposed duality of [17] is simply to identify the theory (??) describing scalar+flux

with the fermionic theory. Their partition functions are conjectured to be related as

Z

fermion

[A] e�
i
2SCS [A] = Z

scalar+flux

[A] (2.9)

Z

scalar+flux

[C] = Z

fermion

[C] e�
i
2SCS [C] (2.10)

Z

scalar+flux

[C] e+
i
2SCS [C] = Z

fermion

[C] (2.11)

= Z

fermion

[A] e�
i
2SCS [A]

S = S

fermion

[A]� 1

2
SCS[A]

This is the simplest example of 3d bosonization. We note that it is also an example

of a particle-vortex duality: as we saw above, the free fermion operator maps to the

monopole operator in the interacting theory.

In fact, the formula (2.10) actually describes two di↵erent dualities. The di↵erence

between them is hidden in the . . . in (2.4) and (2.5). As we saw above, there are two

choices for the critical scalar and fermion. The results of [14, 15] strongly suggest

that if we take the free fermion as the left-hand side of (2.10) then we should take

the Wilson-Fisher scalar on the right-hand side. Analogously, the critical fermion with

� ̄ coupling corresponds to the free scalar.
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With this in mind, we define the fermionic path integral

Z

fermion

[A] =

Z
D exp

⇣
iS

fermion

[A]
⌘

Z
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[A] =
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⇣
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[A]
⌘

As we explained previously, this is not gauge invariant. To restore gauge invariance,

we dress this partition function by a Chern-Simons term for the background gauge field

with half-integer coe�cient, e.g. e�
i
2SCS [A]. Such a term results in contact interactions

between currents [41].

The proposed duality of [17] is simply to identify the theory (??) describing scalar+flux

with the fermionic theory. Their partition functions are conjectured to be related as

Z

fermion

[A] e�
i
2SCS [A] = Z

scalar+flux

[A] (2.9)

Z

scalar+flux

[C] = Z

fermion

[C] e�
i
2SCS [C] (2.10)

Z

scalar+flux

[C] e+
i
2SCS [C] = Z

fermion

[C] (2.11)

= Z

fermion

[A] e�
i
2SCS [A]

S = S

fermion

[A]� 1

2
SCS[A]

This is the simplest example of 3d bosonization. We note that it is also an example

of a particle-vortex duality: as we saw above, the free fermion operator maps to the

monopole operator in the interacting theory.

In fact, the formula (2.10) actually describes two di↵erent dualities. The di↵erence

between them is hidden in the . . . in (2.4) and (2.5). As we saw above, there are two

choices for the critical scalar and fermion. The results of [14, 15] strongly suggest

that if we take the free fermion as the left-hand side of (2.10) then we should take

the Wilson-Fisher scalar on the right-hand side. Analogously, the critical fermion with

� ̄ coupling corresponds to the free scalar.
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A similar issue was addressed by Seiberg in the context of instantons in two and four

dimensional theories [45]. There it was argued that it is, in fact, legal to restrict the

sum over topological sectors to those divisible by some integer p. The same arguments

appear to hold here3. Thus, following [3, 4, 5], we proceed by treating C as a dynamical

gauge field, subject to (3.5).

Let us look at what becomes of the two sides of the duality (3.4). The left-hand side

is simply QED
3

, with a single flavour of fermion. Changing the name of integration

variables, the partition function is

Z

QED

[A] =

Z
D Da exp

⇣
iS

fermion

[ ; a] +
i

2
SBF [a;A]

⌘
(3.6)

Z

QED

[A] =

Z
DA Z

fermion

[A]e
i
2SBF [a;A]

where the final term is the coupling to a background field A. The partition function

is gauge invariant only if dA also obeys the quantisation condition (3.5).

Meanwhile, the calculation on the right-hand side follows closely the derivation of

bosonic particle-vortex duality above. Only factors of 2 are di↵erent but since these

factors are important, let us spell out the steps here. The partition function on the

right-hand side reads
Z

D�DãDa exp
⇣
iS

scalar

[�; ã] + iSCS[ã] + iSBF [ã; a] +
i

2
SCS[a] +

i

2
SBF [a;A]

⌘

Integrating out a results in the equation of motion da = �(dA + 2dã). Substituting

this back into the action and collecting terms, we find that
Z

D Dã exp
⇣
iS

scalar

[�; ã]� iSCS[ã]� iSBF [ã;A]�
i

2
SCS[A]

⌘

As previously, we recognise the first three terms as the parity-transformed partition

function Z̄

scalar+flux

[A] defined in (2.16). We replace this using the parity-transformed

3We could, for example, consider the action

S =

Z
d

3
x i ̄�

µ(@µ � ia

1
µ � ia

2
µ) + (a1 � a

2)dc/2⇡

with all gauge fields dynamical and obeying the canonical quantisation condition. The theory is
manifestly local. At first glance it appears that it su↵ers a gauge anomaly for both a

1 and a

2.
However, the equation of motion for c restricts da

1 = da

2 and the net result is that one e↵ectively
sums over the combined gauge field a = a

1 + a

2 obeying (3.5), avoiding the anomaly.
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appear to hold here3. Thus, following [3, 4, 5], we proceed by treating C as a dynamical

gauge field, subject to (3.5).
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D�DãDa exp
⇣
iS

scalar
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D Dã exp
⇣
iS

scalar
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As previously, we recognise the first three terms as the parity-transformed partition

function Z̄

scalar+flux

[A] defined in (2.16). We replace this using the parity-transformed

duality (2.15). The upshot of this argument is that (3.4) implies the relationship

between single flavour QED
3

, defined in (3.6), and a free fermion

Z

QED

[A] = Z

fermion

[A] (3.7)

This is precisely the particle-vortex duality for fermions proposed in [3, 4, 5], equating

the partition functions for (1.3) and (1.4).

It is instructive to look at the quantum numbers of monopole operators in QED
3

on

S

2. (See, for example, [36, 46] for the necessary facts about monopole operators.) In

the background of a monopole with flux
R
da = 2⇡n, the Dirac equation has 2|n| zero

modes, transforming in the spin (|n| � 1)/2 representation of the SU(2)
rot

rotational

symmetry. For the n = 2 monopole, the resulting states are |0i, �†
a|0i and �

†
1

�

†
2

|0i;
these have charge Q = �1, 0,+1 and spin 0, 1

2

, 0 respectively. The Gauss law constraint

projects us onto the Q = 0 states. We learn that the monopole has spin 1

2

, as it should.

The equality of partition functions (3.7), and the corresponding equality of current

correlators, provides strong evidence that QED
3

is indeed equivalent to a free Dirac

cone. We stress that, on dynamical grounds, this is surprising. With an even number

Nf of fermionic flavours there is no parity anomaly and QED
3

can be quantised with

the usual flux condition (2.1). Here the theory is expected to flow to a critical point

when Nf > N?, some critical number of flavours thought to be N? ⇡ 4. In contrast, for

Nf < N?, the theory confines, and generates a gap spontaneously breaking the flavour

symmetry. Based on this evidence, one might have thought that when Nf = 1, the

theory again confines and generates a gap, this time breaking time reversal invariance.

But, as we stressed, the change in quantisation condition (3.5) is not a small one. The

result (3.7) — and, indeed, the arguments of [4, 5] — suggest that the theory does

not confine. The same conclusion was reached recently in an attempt to apply 1/Nf

perturbation to this theory [47].

3.3 Self-Dual Theories

It is straightforward to derive many further dualities by taking variations on this theme.

Here we describe the self-dual theories.

A familiar story from the study of supersymmetric mirror symmetry is that when we

couple two flavours of matter to a single U(1) gauge field, the resulting theory is self-

dual. This is known to hold for N = 4 [29] and N = 2 [33, 34] supersymmetric theories,
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Example 4: A Self-Dual Theory 

Two background gauge fields: A for the topological current, and C for the Cartan of the SU(2) flavour  

But this is invariant under swapping A and C, together with time-reversal 

which correspond to sigma-models with target space T

?
CP

1 and CP

1 respectively. In

this section, we describe the non-supersymmetric analogs of these self-dual theories.

Self-Dual Fermions

A proposal for a self-dual fermionic theory was o↵ered recently in [48] by realising

the theory on the surface of a topological insulator. Our derivation begins by putting

together our original dual theory (2.11) with its parity partner (3.4),

Z

fermion

[A
1

]Z
fermion

[A
2

] = Z

scalar�flux

[A
1

]Z̄
scalar�flux

[A
2

] e+
i
2SCS [A1]� i

2SCS [A2] (3.8)

We write the background gauge fields as

A

1

= a+ C and A

2

= a� C

We then promote a to a dynamical gauge field, introducing a new background field A

in the process. The left-hand-side of the duality becomes

Z

QED[Nf=2]

[A;C] =

Z
Da Z

fermion

[a+ C]Z
fermion

[a� C] e+iSBF [a;A]

The claim of [48] is that this theory is actually self-dual in the sense that the physics

is invariant under exchanging the two background fields A and C. This is not obvious

from the expression above. Indeed, C is the background field for the Cartan element of

an SU(2) flavour symmetry, rotating the two fermions. There is no obvious matching

SU(2) symmetry associated to A.

We can use the duality (3.8) to help us. The right-hand side of (3.8) becomes
Z

DaD�

1

Dã

1

D�

2

Dã

2

exp
⇣
iS

scalar

[�
1

; ã
1

] + iS

scalar

[�
2

; ã
2

] + iSCS[ã1]� iSCS[ã2]

+ iSBF [ã1 � ã

2

; a] + iSBF [ã1 + ã

2

;C] + iSBF [a;A+ C]
⌘

Once again, this doesn’t look symmetric under interchange of A and C. However now

we can integrate out a. The equation of motion tells us that dã
1

� dã

2

+ dA+ dC = 0.

We will redefine c± = ã

1

± ã

2

so that the constraint reads dc� = �(dA+ dC) which we

subsequently use to eliminate c�. The kinetic terms for � depend only on the symmetric

combination A+C. Meanwhile, something rather nice happens to the remaining Chern-

Simons and BF terms; they rearrange themselves so that they depend only on the

combination A� C. We’re left withZ
D�

1

D�

2

Dc

+

exp
⇣
iS[�

1

,�

2

, c

+

;A+ C]� i

2
SBF [c+;A� C]

⌘

We see that the first term is invariant under the exchange A $ C while the second

term picks up a minus sign. This, however, is easily dealt with if we simultaneously

apply a parity transformation.
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•  Take two copies of the scalar+flux = fermion duality. 
•  Gauge an overall symmetry to get Nf=2 QED 

The dual theory of 2 scalars takes the schematic form 

which correspond to sigma-models with target space T

?
CP

1 and CP

1 respectively. In

this section, we describe the non-supersymmetric analogs of these self-dual theories.

Self-Dual Fermions
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We see that the first term is invariant under the exchange A $ C while the second

term picks up a minus sign. This, however, is easily dealt with if we simultaneously

apply a parity transformation.
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Since this scalar theory is dual to QED with 2 flavours, we learn that this too must

be self-dual under the interchange of A $ C, together with a parity transformation

Z

QED[Nf=2]

[A;C] = Z̄

QED[Nf=2]

[C;A]

in agreement with the proposal of [48].

Self-Dual Bosons

It is a simple matter to repeat the steps above to derive the self-duality of U(1) gauge

field coupled to two scalars. Starting from the duality (3.1), we find

Z

QED[Ns=2]

[A;C] =

Z
Da Z

scalar

[a+ C]Z
scalar

[a� C]eiSBF [a;A]

=

Z
Da Z

fermion+flux

[a+ C] Z̄
fermion+flux

[a� C] eiSBF [a;A�2C]

=

Z
D 

1

D 
2

Dc

+

exp
⇣
iS̃[ 

1

, 

2

, c

+

;A� 2C]� i

4
SBF [c+;A+ 2C]

⌘

where S̃[ 
1

, 

2

, c

+

;A� 2C] is what becomes of the kinetic terms after we integrate out

a and impose the resulting constraint c� = A� 2C. Importantly, this term is invariant

under parity. We see that once again the partition function admits a symmetry under

the exchange: A $ �2C together with parity. We have the self-duality

Z

QED[Ns=2]

[A;C] = Z̄

QED[Ns=2]

[�2C;�1

2
A]

A related duality in the CP

1 sigma-model with non-compact gauge group was studied

in [49].

3.4 A Vortex-Vortex Duality

To finish, we describe one final duality in which monopole operators are mapped to

monopole operators. This duality was previously described in [17] for U(N) theories;

here we derive the U(1) version.

We again start with (2.14), but this time change the Chern-Simons level for the

background field on both sides to,

Z

scalar

[C] e2iSCS [C] = Z

fermion+flux

[C] eiSSC [C]

After promoting C to a dynamical gauge field (which we rename as a), the left hand

side becomes
Z

Da Z

scalar

[a] exp
⇣
2iSCS[a] + iSBF [a;A]

⌘
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Time reversed theory 

Xu and You ‘15 



Summary 

Many dualities follow from relativistic version of flux attachement 
 


