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The Quantum Hall Effect 



Theory of the Quantum Hall Effect 

d=2+1 
Chern-Simons Theory 

microscopic  
wavefunctions 

d=1+1 boundary 
conformal field theory 



The Matrix Model 

The dynamics of N electrons is described by a U(N) matrix model 

•  U(N) gauge field α 
•  adjoint valued, complex matrix Z 
•  p fundamental vector  

The fields are: 

When p=1, this was previously written down by Polychronakos (2001), inspired by Susskind.  

The symmetries are: •  U(N) gauge symmetry 
•  SU(p) global symmetry 
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2. The Quantum Hall Matrix Model

The purpose of this paper is to study a matrix model description of non-Abelian quan-

tum Hall states. The model will describe N particles which we refer to as “electrons”.

The matrix model is a U(N) gauged quantum mechanics, with a gauge field which

we denote as ↵. This gauge field is coupled to an N ⇥N complex matrix Z, together

with a set of N -dimensional vectors 'i which are labelled by an index i = 1, . . . , p.

These transform under the gauge symmetry as

Z ! UZU † and 'i ! U'i for U 2 U(N) (2.1)

The dynamics is governed by the first-order action

S =

Z
dt

iB

2
Tr

�
Z†DtZ

�
+ i

pX

i=1

'†
iDt'i � (k + p) Tr↵� !TrZ†Z (2.2)

with DtZ = @tZ � i[↵, Z] and Dt'i = @t'i � i↵'i.

The action depends on three parameters: B, ! and k. We will see below that B

is interpreted as the background magnetic field in which the electrons move, while !

is the strength of a harmonic trap which encourages the electrons to cluster close to

the origin. Finally k, which appears in the combination k + p, is the coe�cient of

the quantum mechanical Chern-Simons term. Gauge invariance requires that k is an

integer and we will further take it to be positive: k 2 Z+.

In addition to the U(N) gauge symmetry, our model also enjoys an SU(p) global

symmetry, under which the 'i rotate. When p = 1, this action reduces to the model

written by Polychronakos [3] to describe Laughlin states. The p = 1 matrix model was

further studied in a number of papers, including [19, 20, 21] and we will review some of

its properties below. The model with general p was previously discussed in [22], albeit

with a di↵erent interpretation from that o↵ered here.

Getting a Feel for the Matrix Model

To gain some intuition for the physics underlying (2.2), let’s first look at the example

of a single particle, so N = 1 and our matrix model is an Abelian U(1) gauge theory,

with dynamics

SN=1

=

Z
dt

iB

2
Z†Ż +

pX

i=1

i'†
iDt'i � (k + p)↵� ! Z†Z

5



Getting a Feel for the Matrix Model 

Restrict to a single electron, N=1 
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An electron in a strong magnetic  
field (lowest Landau level) 

A harmonic trap A finite dimensional Hilbert space.  
The electron carries SU(p) spin 
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Results: •  This describes the dynamics of N vortices in a U(p) Chern-Simons theory 

•  The ground states are quantum Hall wavefunctions 

•  In the large N limit, this is a WZW CFT!  



Where did the Matrix Model Come From? 



The Origin of the Matrix Model 
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Claim: This describes the dynamics of vortices in a U(p) Chern-Simons theory 

Tong, ‘03; Tong and Turner ‘15 



The Origin of the Matrix Model 

First hint: equation of motion for α is the Gauss’ law for the matrix model 
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These equations also describe the moduli space of vortices           in U(p) gauge theories  
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Hanany and Tong ‘03 
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In this case, the Z field decouples; the kinetic term, which is first order in time, describes

the low-energy dynamics of an electron moving in a large external magnetic field B.

When we come to the quantum theory, this will translate into the statement that the

electron lies in the lowest Landau level. The term proportional to ! provides a harmonic

trap for the electron.

Meanwhile, the 'i variables describe the internal degrees of freedom of the electron.

To see this, note that the equation of motion for ↵ requires that
P

i |'i|2 = k + p is

constant. After dividing out by U(1) gauge transformations, 'i ! ei✓'i, we see that 'i

parameterise the space CPp�1. However, the action is first order in time derivatives,

which means that CPp�1 should be viewed as the phase space of the system, as opposed

to the configuration space. This is important. Because the phase space has finite

volume, the quantisation of 'i will result in a finite-dimensional internal Hilbert space

for the electron. In other words, the electron carries “spin”.

Note that our usage of the word “spin” is somewhat more general than its standard

meaning in condensed matter physics (or high energy physics for that matter). Usu-

ally, one thinks of spin as referring to a representation of SU(2); this corresponds to

the choice p = 2 in our model. More generally, our internal degree of freedom trans-

forms in some representation of SU(p). The choice of representation is determined

by the parameter k. (We will show below that the electrons sit in the kth symmetric

representation of SU(p); in the case of SU(2), this means that they carry spin j = k/2.)

We learn that the U(1) matrix model describes a particle carrying spin, restricted

to move in the lowest Landau level. The U(N) matrix model simply describes N such

particles. Roughly speaking, the N eigenvalues of the matrix Z correspond to the

positions of the particles although, as we will see, there is some ambiguity in this when

the particles are close. More precisely, we can again look at the equation of motion for

the gauge field ↵. This results in the u(N)-valued constraint

B

2
[Z,Z†] +

pX

i=1

'i'
†
i = (k + p)1N (2.3)

The phase space, M, of the theory is now the space of solutions to (2.3), modulo the

gauge action (2.1). This has real dimension dimM = 2Np. Our task is to quantise this

phase space, with the harmonic potential H = !TrZ†Z providing the Hamiltonian.

6

We divide out by gauge transformations 



Effective Description of Quantum Hall Physics 

2. Non-Relativistic Chern-Simons-Matter Theories
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Some conventions: the subscripts µ, ⌫, ⇢ = 0, 1, 2 run over both space and time

indices, while ↵ = 1, 2 runs over spatial indices only. The fermion carries no spinor

index. Both � and  are assigned charge 1, so the covariant derivatives read Dµ� =

@µ� � iAµ� and similarly for  . The magnetic field is B = @1A2 � @2A1. Finally

| |2 =  † = �  †.

There are three parameters in the Lagrangian: the Chern-Simons level k 2 Z+, the

mass m of both bosons and fermions, and the chemical potential µ. As we will see later,

the chemical potential µ can be more fruitfully thought of as a background magnetic

field for vortices.

The first order kinetic terms mean that the action (2.1) describes bosonic and

fermionic particles, but no anti-particles. The quartic potential terms correspond to

delta function contact interactions between these particles. In the condensed matter

context, the gauge field is considered to be emergent. One of its roles is to attach flux

to particles through the Gauss’ law constraint, which arises as the equation of motion

for A0,
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k
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We’ll learn more about the importance of this relation later.

3

emergent U(1) gauge field background electromagnetism 

•  This is the effective theory for the Laughlin state with 

•  Hall conductivity is   

•  charged particles = anyonic quasi-holes 

•  electron current  
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Figure 2: Two points in the moduli space of n = 7 vortices

where Jµ is the topological current (2.15) and

Aext
↵ = �Bext

2
✏↵�x

� with Bext =
2⇡µ

e
(3.3)

This means that we expect the dynamics of vortices to correspond to particles moving

in a background magnetic field. Nonetheless, it may be rather surprising that the

vortices form a Hall state because, as we have seen, there is no force between the

vortices. Yet the key physics underlying the fractional quantum Hall e↵ect is the

repulsive interactions between electrons, opening up a gap in the partially filled Landau

level.

Although there is no force between vortices, they are not point particles. Instead,

they are solitons obeying non-linear equations and, as they approach, the solutions

deform. Indeed, when the vortices are as closely packed as they can be, they form

a classically incompressible fluid as shown in the right-hand side of Figure 2. The

scalar field � has an nth order zero in the centre of the disc and numerical studies show

that the solution is well approximated as a disc of magnetic flux in which � = 0 and

B = �2⇡µ/k. This has motivated the “bag model” of vortices in [22, 23]. For us, it

means that the vortex is a droplet of what we have called the “Hall phase”.

When n vortices coalesce, the radius R of the resulting droplet can be estimated

using the flux quantisation (3.2) to be

R ⇡

s
kn

⇡µ
(3.4)

Now we can do a back-of-the-envelope calculation. In a magnetic field Bext, the number

of states per unit area in the lowest Landau level is eBext/2⇡ = µ. In an area A =

⇡R2 = nk/µ, the lowest Landau level therefore admits BextA = nk states. We’ve

placed n vortices in this region, so the filling fraction is

⌫ =
1

k
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2. Non-Relativistic Chern-Simons-Matter Theories

We start by introducing the d = 2 + 1 non-relativistic, supersymmetric Chern-Simons

theory. The theory consists of an Abelian gauge field Aµ, coupled to complex scalar

field � and a complex fermion  . The action is
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Some conventions: the subscripts µ, ⌫, ⇢ = 0, 1, 2 run over both space and time

indices, while ↵ = 1, 2 runs over spatial indices only. The fermion carries no spinor

index. Both � and  are assigned charge 1, so the covariant derivatives read Dµ� =

@µ� � iAµ� and similarly for  . The magnetic field is B = @1A2 � @2A1. Finally

| |2 =  † = �  †.

There are three parameters in the Lagrangian: the Chern-Simons level k 2 Z+, the

mass m of both bosons and fermions, and the chemical potential µ. As we will see later,

the chemical potential µ can be more fruitfully thought of as a background magnetic

field for vortices.

The first order kinetic terms mean that the action (2.1) describes bosonic and

fermionic particles, but no anti-particles. The quartic potential terms correspond to

delta function contact interactions between these particles. In the condensed matter

context, the gauge field is considered to be emergent. One of its roles is to attach flux

to particles through the Gauss’ law constraint, which arises as the equation of motion

for A0,

B =
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�
(2.2)

We’ll learn more about the importance of this relation later.
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indices, while ↵ = 1, 2 runs over spatial indices only. The fermion carries no spinor

index. Both � and  are assigned charge 1, so the covariant derivatives read Dµ� =

@µ� � iAµ� and similarly for  . The magnetic field is B = @1A2 � @2A1. Finally

| |2 =  † = �  †.

There are three parameters in the Lagrangian: the Chern-Simons level k 2 Z+, the

mass m of both bosons and fermions, and the chemical potential µ. As we will see later,

the chemical potential µ can be more fruitfully thought of as a background magnetic

field for vortices.

The first order kinetic terms mean that the action (2.1) describes bosonic and

fermionic particles, but no anti-particles. The quartic potential terms correspond to

delta function contact interactions between these particles. In the condensed matter

context, the gauge field is considered to be emergent. One of its roles is to attach flux
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Effective Description of Quantum Hall Physics 

•  B looks like a background charge density for the fundamental excitations 
•  Gauss’ law for a0 is 
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indices, while ↵ = 1, 2 runs over spatial indices only. The fermion carries no spinor
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@µ� � iAµ� and similarly for  . The magnetic field is B = @1A2 � @2A1. Finally

| |2 =  † = �  †.

There are three parameters in the Lagrangian: the Chern-Simons level k 2 Z+, the

mass m of both bosons and fermions, and the chemical potential µ. As we will see later,

the chemical potential µ can be more fruitfully thought of as a background magnetic

field for vortices.

The first order kinetic terms mean that the action (2.1) describes bosonic and

fermionic particles, but no anti-particles. The quartic potential terms correspond to

delta function contact interactions between these particles. In the condensed matter

context, the gauge field is considered to be emergent. One of its roles is to attach flux
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indices, while ↵ = 1, 2 runs over spatial indices only. The fermion carries no spinor

index. Both � and  are assigned charge 1, so the covariant derivatives read Dµ� =

@µ� � iAµ� and similarly for  . The magnetic field is B = @1A2 � @2A1. Finally
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There are three parameters in the Lagrangian: the Chern-Simons level k 2 Z+, the

mass m of both bosons and fermions, and the chemical potential µ. As we will see later,

the chemical potential µ can be more fruitfully thought of as a background magnetic

field for vortices.
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There are three parameters in the Lagrangian: the Chern-Simons level k 2 Z+, the

mass m of both bosons and fermions, and the chemical potential µ. As we will see later,

the chemical potential µ can be more fruitfully thought of as a background magnetic

field for vortices.

The first order kinetic terms mean that the action (2.1) describes bosonic and

fermionic particles, but no anti-particles. The quartic potential terms correspond to

delta function contact interactions between these particles. In the condensed matter

context, the gauge field is considered to be emergent. One of its roles is to attach flux

to particles through the Gauss’ law constraint, which arises as the equation of motion
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We’ll learn more about the importance of this relation later.

The action (2.1) can be constructed by starting from a relativistic Chern-Simons

theory with N = 2 supersymmetry and taking a limit in which the anti-particles

decouple. For the case µ = 0, this was first done in [1] and we review the procedure in

Appendix A. To our knowledge, the supersymmetric theory with µ 6= 0 has not been

previously constructed, although the bosonic sector of our theory is similar, but not

identical, to a model studied by Manton [10] which shares the same vortices as (2.1).

We will describe these vortices in some detail in Section 3.

3

2. Non-Relativistic Chern-Simons-Matter Theories

We start by introducing the d = 2 + 1 non-relativistic, supersymmetric Chern-Simons

theory. The theory consists of an Abelian gauge field Aµ, coupled to complex scalar

field � and a complex fermion  . The action is

S =

Z
dtd2x

⇢
i�†D0�+ i †D0 � 1

2m
D↵�

† D↵�� 1

2m
D↵ 

† D↵ � k

4⇡
✏µ⌫⇢Aµ@⌫A⇢

�µA0 +
1

2m
 †B � ⇡

mk

�
|�|4 � µ|�|2 + 3|�|2| |2

��
(2.1)

f12 =
2⇡

k

✓
|�|2 � B

2⇡

◆

Some conventions: the subscripts µ, ⌫, ⇢ = 0, 1, 2 run over both space and time indices,

while ↵ = 1, 2 runs over spatial indices only. The fermion carries no spinor index. Both

� and  are assigned charge 1, so the covariant derivatives read Dµ� = @µ�� iAµ� and

similarly for  . The magnetic field is B = @1A2 � @2A1. Finally | |2 =  † = �  †.

There are three parameters in the Lagrangian: the Chern-Simons level k 2 Z+, the

mass m of both bosons and fermions, and the chemical potential µ. As we will see later,

the chemical potential µ can be more fruitfully thought of as a background magnetic

field for vortices.

The first order kinetic terms mean that the action (2.1) describes bosonic and

fermionic particles, but no anti-particles. The quartic potential terms correspond to

delta function contact interactions between these particles. In the condensed matter

context, the gauge field is considered to be emergent. One of its roles is to attach flux

to particles through the Gauss’ law constraint, which arises as the equation of motion

for A0,

B =
2⇡

k

�
|�|2 + | |2 � µ

�
(2.2)

We’ll learn more about the importance of this relation later.

The action (2.1) can be constructed by starting from a relativistic Chern-Simons

theory with N = 2 supersymmetry and taking a limit in which the anti-particles

decouple. For the case µ = 0, this was first done in [1] and we review the procedure in

Appendix A. To our knowledge, the supersymmetric theory with µ 6= 0 has not been

previously constructed, although the bosonic sector of our theory is similar, but not

identical, to a model studied by Manton [10] which shares the same vortices as (2.1).

We will describe these vortices in some detail in Section 3.

3

2. Non-Relativistic Chern-Simons-Matter Theories

We start by introducing the d = 2 + 1 non-relativistic, supersymmetric Chern-Simons

theory. The theory consists of an Abelian gauge field Aµ, coupled to complex scalar

field � and a complex fermion  . The action is

S =

Z
dtd2x

⇢
i�†D0�+ i †D0 � 1

2m
D↵�

† D↵�� 1

2m
D↵ 

† D↵ � k

4⇡
✏µ⌫⇢Aµ@⌫A⇢

�µA0 +
1

2m
 †B � ⇡

mk

�
|�|4 � µ|�|2 + 3|�|2| |2

��
(2.1)

|�|2 = B

2⇡

Some conventions: the subscripts µ, ⌫, ⇢ = 0, 1, 2 run over both space and time indices,

while ↵ = 1, 2 runs over spatial indices only. The fermion carries no spinor index. Both

� and  are assigned charge 1, so the covariant derivatives read Dµ� = @µ�� iAµ� and

similarly for  . The magnetic field is B = @1A2 � @2A1. Finally | |2 =  † = �  †.

There are three parameters in the Lagrangian: the Chern-Simons level k 2 Z+, the

mass m of both bosons and fermions, and the chemical potential µ. As we will see later,

the chemical potential µ can be more fruitfully thought of as a background magnetic

field for vortices.

The first order kinetic terms mean that the action (2.1) describes bosonic and

fermionic particles, but no anti-particles. The quartic potential terms correspond to

delta function contact interactions between these particles. In the condensed matter

context, the gauge field is considered to be emergent. One of its roles is to attach flux

to particles through the Gauss’ law constraint, which arises as the equation of motion

for A0,

B =
2⇡

k

�
|�|2 + | |2 � µ

�
(2.2)

We’ll learn more about the importance of this relation later.

The action (2.1) can be constructed by starting from a relativistic Chern-Simons

theory with N = 2 supersymmetry and taking a limit in which the anti-particles

decouple. For the case µ = 0, this was first done in [1] and we review the procedure in

Appendix A. To our knowledge, the supersymmetric theory with µ 6= 0 has not been

previously constructed, although the bosonic sector of our theory is similar, but not

identical, to a model studied by Manton [10] which shares the same vortices as (2.1).

We will describe these vortices in some detail in Section 3.

3

2. Non-Relativistic Chern-Simons-Matter Theories

We start by introducing the d = 2 + 1 non-relativistic, supersymmetric Chern-Simons

theory. The theory consists of an Abelian gauge field Aµ, coupled to complex scalar

field � and a complex fermion  . The action is

S =

Z
dtd2x

⇢
i�†D0�+ i †D0 � 1

2m
D↵�

† D↵�� 1

2m
D↵ 

† D↵ � k

4⇡
✏µ⌫⇢Aµ@⌫A⇢

�µA0 +
1

2m
 †B � ⇡

mk

�
|�|4 � µ|�|2 + 3|�|2| |2

��
(2.1)

|�|2 = B

2⇡

f12 = 0

Some conventions: the subscripts µ, ⌫, ⇢ = 0, 1, 2 run over both space and time indices,

while ↵ = 1, 2 runs over spatial indices only. The fermion carries no spinor index. Both

� and  are assigned charge 1, so the covariant derivatives read Dµ� = @µ�� iAµ� and

similarly for  . The magnetic field is B = @1A2 � @2A1. Finally | |2 =  † = �  †.

There are three parameters in the Lagrangian: the Chern-Simons level k 2 Z+, the

mass m of both bosons and fermions, and the chemical potential µ. As we will see later,

the chemical potential µ can be more fruitfully thought of as a background magnetic

field for vortices.

The first order kinetic terms mean that the action (2.1) describes bosonic and

fermionic particles, but no anti-particles. The quartic potential terms correspond to

delta function contact interactions between these particles. In the condensed matter

context, the gauge field is considered to be emergent. One of its roles is to attach flux

to particles through the Gauss’ law constraint, which arises as the equation of motion

for A0,

B =
2⇡

k

�
|�|2 + | |2 � µ

�
(2.2)

We’ll learn more about the importance of this relation later.

3



Electrons as Vortices 

U(1) broken  vortices = electrons 
3. A Quantum Hall Fluid of Vortices

We would like to understand how to interpolate from the vacuum to the Hall phase.

We do this by injecting vortices. These vortices are BPS which, in this context, means

that they have H = 0 and lie in a protected sector of the theory. From the form of the

Hamiltonian (2.3) and Gauss’ law (2.2), it is clear that solutions with vanishing energy,

H = 0, can be constructed by solving the equations

Dz� = 0 and B =
2⇡

k
(|�|2 � µ) (3.1)

with the fermions set to zero:  = 0.

The vortex equations (3.1) are well studied. Solutions are labelled by the integer

winding of the scalar field � or, equivalently, by the magnetic flux

n = � 1

2⇡
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d2x B 2 Z+ (3.2)

In the sector with winding n, the most general solution to (3.1) has 2n real parameters

[20, 21]. When vortices are well separated, these correspond to n positions on the

complex plane. The existence of these moduli reflects the fact that the coe�cient of

the quartic interaction in (2.1) has been tuned to the critical value, ensuring that there

are neither attractive nor repulsive forces between the vortices.

As vortices coalesce, they lose their individual identities and the interpretation of

these moduli changes. It is tempting to label the vortex by the point at which the

Higgs field vanishes, but this does not provide an accurate description of what the

vortex profile looks like. Instead, as we show in Section 3.4, in this regime it is better

to think of the 2n moduli as describing the edge modes of a large, incompressible fluid.

Why do Vortices Form a Fractional Quantum Hall State?

The rest of this section is devoted to a detailed analysis of the quantum dynamics of

vortices. We will ultimately show that their ground state is given by the Laughlin

wavenfunction. But here we first provide a hand-waving argument for why we expect

the vortices to form a quantum Hall fluid.

We first note that the chemical potential term µA0, present in the Lagrangian (2.1),

can be viewed as a background magnetic field for vortices. It can be written as

�
Z

d3x µA0 =

Z
d3x eJµAext

µ
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We will describe these vortices in some detail in Section 3.

3

Vortices have a lovely property: they are BPS! 

2. Non-Relativistic Chern-Simons-Matter Theories

We start by introducing the d = 2 + 1 non-relativistic, supersymmetric Chern-Simons

theory. The theory consists of an Abelian gauge field Aµ, coupled to complex scalar

field � and a complex fermion  . The action is

S =

Z
dtd2x

⇢
i�†D0�+ i †D0 � 1

2m
D↵�

† D↵�� 1

2m
D↵ 

† D↵ � k

4⇡
✏µ⌫⇢Aµ@⌫A⇢

�µA0 +
1

2m
 †B � ⇡

mk

�
|�|4 � µ|�|2 + 3|�|2| |2

��
(2.1)

f12 =
2⇡

k

✓
|�|2 � B

2⇡

◆

Some conventions: the subscripts µ, ⌫, ⇢ = 0, 1, 2 run over both space and time indices,

while ↵ = 1, 2 runs over spatial indices only. The fermion carries no spinor index. Both

� and  are assigned charge 1, so the covariant derivatives read Dµ� = @µ�� iAµ� and

similarly for  . The magnetic field is B = @1A2 � @2A1. Finally | |2 =  † = �  †.

There are three parameters in the Lagrangian: the Chern-Simons level k 2 Z+, the
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•  Inside the vortex, we have recovered the quantum Hall ground state. 

•  But now we have a microscopic picture of this…it is governed by the vortex dynamics. 
•  This vortex dynamics is the p=1 matrix model! 

•  Repeat for U(p) Chern-Simons theory to get general matrix model. 



Non-Abelian Hall States 

Repeat with U(p) Chern-Simons theories 

Dorey, Tong and Turner, arXiv:1603.09688   

which is essentially half of the Read-Rezayi state. To complete the argument, notice

that whatever sign a particular spin allocation comes with, it comes with the same

sign in both copies of �
(p). Hence overall, we obtain the square of this expression,

symmetrised over all spin allocations. The projection does indeed result in the Read-

Rezayi state (3.14) ⇤

The Read-Rezayi states are associated to the parafermion CFT SU(2)k/U(1)k. Mean-

while, our states are associated to SU(k)
2

. The two are related by level-rank duality.

This means that our states include the non-Abelian anyons of the Moore-Read state;

for example, SU(3)
2

includes the Fibonacci anyons. We will see how these emerge

in Section 5 when we review the connection to conformal field theory. However, the

Blok-Wen spin-singlet states arise from a CFT with no quotient, and hence contain

additional anyonic degrees of freedom that are not part of the Read-Rezayi sequence

of states.

4. The View from Chern-Simons Theory

Until now, we’ve focussed only on the properties of the matrix model (1.2). In this

section, we explain where it comes from. The main idea, first proposed in [16] and

recently explored in some detail in [17], is that the matrix model describes the dynamics

of vortices in a d = 2+1 dimensional Chern-Simons theory. In [17], this connection was

explained for Abelian Chern-Simons theories; in this section we generalise this picture

to the non-Abelian case.

Our starting point is a Chern-Simons theory with gauge group

U(p)k0,k =
U(1)k0 ⇥ SU(p)k

Zp
(4.1)

The Zp quotient places a strong restriction on the allowed values of k0 which must obey

[18]

k0 � kp 2 p2Z (4.2)

We denote the U(1) gauge field as ã and the SU(p) gauge field as a. Both are to be

thought of as emergent gauge fields in the condensed matter system. Their dynamics

is governed by the Chern-Simons action

SCS = �
Z

d3x
k0

4⇡
✏µ⌫⇢ãµ@⌫ ã⇢ +

k

4⇡
Tr ✏µ⌫⇢(aµ@⌫a⇢ � 2i

3
aµa⌫a⇢)
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interest lies in the universality class of the quantum Hall ground states and here the

matrix model is expected to give the right answer. In the next section we show that

this is indeed the case.

There is one final subtlety. Classically, the matrix model describes the dynamics of

vortices when the U(1) and SU(p) levels are equal: k0 = kp. However, at the quantum

level, there is a shift of the level. In the 3d Chern-Simons theory, the SU(p) level

is renormalised at one-loop to k ! k + p. The matrix model captures the quantum

dynamics when these shifted levels coincide. This requires

k0 = (k + p)p

This too satisfies the requirement (4.2). This is the value that we’ve used in (1.2) and

throughout this paper. In particular, we see that the filling fraction (4.6) becomes

⌫ = p/(k + p) in agreement with the matrix model result (2.8).

5. The View from Conformal Field Theory

In the previous section, we used vortices to construct a disc-like region of space in which

the low-energy dynamics is described by an unbroken U(p) Chern-Simons theory. The

microscopic dynamics of these vortices are described by the matrix model, with ground

states corresponding to the Blok-Wen wavefunctions. In this section, we close the circle

and describe these states from the perspective of the boundary.

Our vortex construction has presented us with a Chern-Simons theory on a manifold

with boundary, where the boundary is now the edge of the large vortex. On general

grounds, we expect this boundary to support a chiral U
(k+p)p,k WZW model [45, 46].

This should manifest itself in two ways. First, the excitations of the matrix model

should coincide with the excitations of a (suitably discretised) WZW model. We will

return to this in future work [22]. Secondly, the ground state wavefunction — which,

as we have seen, is of the Blok-Wen type — should arise as the correlation function

in the conformal field theory [4]. This, of course, was how Blok and Wen originally

derived their wavefunctions [9]. Here we review this construction, including the e↵ect

of the Abelian factor in the gauge group.

Let’s first review some simple properties of the WZW models. The irreducible repre-

sentations of the SU(p) Kac-Moody algebra at level k are labelled by the corresponding

representation of the SU(p) Lie algebra. The latter are well known to be described by

Young tableaux with up to p� 1 rows. The representations of SU(p)k are those Young

tableaux which have no more than k boxes in the first row.

24

We understand the vortex dynamics when 
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2. The Quantum Hall Matrix Model

The purpose of this paper is to study a matrix model description of non-Abelian quan-

tum Hall states. The model will describe N particles which we refer to as “electrons”.

The matrix model is a U(N) gauged quantum mechanics, with a gauge field which

we denote as ↵. This gauge field is coupled to an N ⇥N complex matrix Z, together

with a set of N -dimensional vectors 'i which are labelled by an index i = 1, . . . , p.

These transform under the gauge symmetry as

Z ! UZU † and 'i ! U'i for U 2 U(N) (2.1)

The dynamics is governed by the first-order action

S =

Z
dt

iB

2
Tr

�
Z†DtZ

�
+ i

pX

i=1

'†
iDt'i � (k + p) Tr↵� !TrZ†Z (2.2)

with DtZ = @tZ � i[↵, Z] and Dt'i = @t'i � i↵'i.

The action depends on three parameters: B, ! and k. We will see below that B

is interpreted as the background magnetic field in which the electrons move, while !

is the strength of a harmonic trap which encourages the electrons to cluster close to

the origin. Finally k, which appears in the combination k + p, is the coe�cient of

the quantum mechanical Chern-Simons term. Gauge invariance requires that k is an

integer and we will further take it to be positive: k 2 Z+.

In addition to the U(N) gauge symmetry, our model also enjoys an SU(p) global

symmetry, under which the 'i rotate. When p = 1, this action reduces to the model

written by Polychronakos [3] to describe Laughlin states. The p = 1 matrix model was

further studied in a number of papers, including [19, 20, 21] and we will review some of

its properties below. The model with general p was previously discussed in [22], albeit

with a di↵erent interpretation from that o↵ered here.

Getting a Feel for the Matrix Model

To gain some intuition for the physics underlying (2.2), let’s first look at the example

of a single particle, so N = 1 and our matrix model is an Abelian U(1) gauge theory,

with dynamics

SN=1

=

Z
dt

iB

2
Z†Ż +

pX

i=1

i'†
iDt'i � (k + p)↵� ! Z†Z

5

In this case, the Z field decouples; the kinetic term, which is first order in time, describes

the low-energy dynamics of an electron moving in a large external magnetic field B.

When we come to the quantum theory, this will translate into the statement that the

electron lies in the lowest Landau level. The term proportional to ! provides a harmonic

trap for the electron.

Meanwhile, the 'i variables describe the internal degrees of freedom of the electron.

To see this, note that the equation of motion for ↵ requires that
P

i |'i|2 = k + p is

constant. After dividing out by U(1) gauge transformations, 'i ! ei✓'i, we see that 'i

parameterise the space CPp�1. However, the action is first order in time derivatives,

which means that CPp�1 should be viewed as the phase space of the system, as opposed

to the configuration space. This is important. Because the phase space has finite

volume, the quantisation of 'i will result in a finite-dimensional internal Hilbert space

for the electron. In other words, the electron carries “spin”.

Note that our usage of the word “spin” is somewhat more general than its standard

meaning in condensed matter physics (or high energy physics for that matter). Usu-

ally, one thinks of spin as referring to a representation of SU(2); this corresponds to

the choice p = 2 in our model. More generally, our internal degree of freedom trans-

forms in some representation of SU(p). The choice of representation is determined

by the parameter k. (We will show below that the electrons sit in the kth symmetric

representation of SU(p); in the case of SU(2), this means that they carry spin j = k/2.)

We learn that the U(1) matrix model describes a particle carrying spin, restricted

to move in the lowest Landau level. The U(N) matrix model simply describes N such

particles. Roughly speaking, the N eigenvalues of the matrix Z correspond to the

positions of the particles although, as we will see, there is some ambiguity in this when

the particles are close. More precisely, we can again look at the equation of motion for

the gauge field ↵. This results in the u(N)-valued constraint

B

2
[Z,Z†] +

pX

i=1

'i'
†
i = (k + p)1N (2.3)

The phase space, M, of the theory is now the space of solutions to (2.3), modulo the

gauge action (2.1). This has real dimension dimM = 2Np. Our task is to quantise this

phase space, with the harmonic potential H = !TrZ†Z providing the Hamiltonian.

6

2.1 Quantisation

In this section, we study the quantisation of our matrix model (2.2). The canonical

commutation relations inherited from the action (2.2) are

B

2
[Zab, Z

†
cd] = �ad�bc and ['i a,'

†
j b] = �ab�ij (2.4)

with a, b = 1, . . . , N and i, j = 1, . . . , p. We choose a reference state |0i obeying

Zab|0i = 'i|0i = 0

The Hilbert space is then constructed in the usual manner by acting on |0i with Z†

and '†
i .

However, we still need to take into account the U(N) gauge symmetry. This is

implemented by requiring that all physical states obey the quantum version of the

Gauss’ law constraint (2.3). Normal ordering the terms in the matrix commutator, this

reads

B

2
: [Z,Z†] : +

pX

i=1

'i'
†
i = (k + p)1N (2.5)

The traceless part of this equation is interpreted as the requirement that physical states

are SU(N) singlets. Meanwhile, the trace of this constraint requires all physical states

to carry fixed charge under U(1) ⇢ U(N). Here there is an ordering issue. Using the

commutation relations (2.4), we find

NX

a=1

pX

i=1

'i a'
†
i a = (k + p)N )

NX

a=1

pX

i=1

'†
i a'i a = kN (2.6)

This tells us that all physical states carry charge kN under the U(1). In other words,

all states in the physical Hilbert space contain precisely kN copies of '† acting on |0i.

The Spin of the Particle Revisited

We can now be more precise about the internal SU(p) spin carried by each particle.

Setting N = 1, the spin states of a single particle take the form

|⌦i1...iki = '†
i1 . . .'

†
ik
|0i

Since each operator 'i transforms in the fundamental of SU(p), the spin states |⌦i
transform in the kth symmetric representation. In particular, for k = 1 the electrons

carry the fundamental representation of SU(p).

7

There is a unique time independent solution, with Ż = 0, obeying [a0, Z] = !Z. This

can also be viewed as the statement that rotating the phase of Z is equivalent to a

gauge transformation. There is a unique solution to this equation and the constraint

(3.12) given by [2],

Z0 =

s
k

⇡µ

0

BBBBBBB@

0 1

0
p
2
. . .

0
p
n� 1

0

1

CCCCCCCA

and '0 =
p
k

0

BBBBBBB@

0

0
...

0
p
n

1

CCCCCCCA

(3.16)

with a0 = ! diag(n� 1, n� 2, . . . , 2, 1, 0).

As promised, Z0 is not approximately diagonal. This reflects the fact that individual

vortices do not have well-defined positions. Nonetheless, we can reconstruct a number

of simple properties of the vortex solution from this matrix. The radius-squared of the

disc can be thought of as the maximum eigenvalue of Z†
0Z0 [2]. To leading order in the

vortex number n, this gives

R2 ⇡ kn

⇡µ

which agrees with our the radius of the classical vortex solution (3.4). Meanwhile, the

angular momentum of a given solution is J = TrZ†Z. The angular momentum of the

ground state is

J0 = ⇡µTr
⇣
Z†

0Z0

⌘
=

kn(n� 1)

2
(3.17)

which, to leading order in 1/n, agrees with the angular momentum of the classical

vortex solution (3.9).

The Quantum Ground State

The quantisation of the matrix model (3.14) was initiated in [2] and explored in some

detail in [35] and [36]. The individual components of the matrix Z and vector ' are

promoted to quantum operators, with commutation relations

⇡µ [Zab, Z
†
cd] = �ad�bc and ['a,'

†
b] = �ab

B

2
[Zab, Z

†
cd] = �ad�bc and ['a,'

†
b] = �ab
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Hilbert Space: Introduce “vacuum”                                       and act with creation operators 

Gauge Constraint: 

space must obey the quantum version of the Gauss’ law constraint (3.12). It is useful

to view the trace and traceless part of this constraint separately. The trace constraint

reads

nX

a=1

'a'
†
a = kn )

nX

a=1

'†
a'a = (k � 1)n (3.18)

This means that physical states must have (k � 1)n '-excitations. Note that the

ordering of the original constraint has resulted in a shift k ! k � 1. This will prove

important below.

Meanwhile, the traceless part of the constraint (3.12) tells us that physical states

must be SU(n) ⇢ U(n) singlets. We can form such singlet operators out of Z† and '†

either from baryons or from traces. The baryonic operators are

✏a1...an('†Z† p1)a1 . . . ('
†Z† pn)an

where p1, . . . pn are, necessarily distinct, integers. The trace operators are

Tr(Z† p)

There can be complicated relations between the baryonic and trace operators; explicit

descriptions for low numbers of vortices were recently presented in [44].

The trace constraint (3.18) means that physical states contain exactly k�1 baryonic

operators. The harmonic trap endows these with an energy proportional to the number

of Z† excitations,

H = !J = !⇡µ
nX

a,b=1

Z†
abZba

H = !
NX

a,b=1

Z†
abZba

To minimise this energy, we must act with k � 1 baryonic operators, each with

pi = i� 1. This results in the ground state

|groundik =
⇥
✏a1...an'†

a1
('†Z†)a2 . . . ('

†Z†n�1)an
⇤k�1 |0i (3.19)

The angular momentum of this ground state coincides with that of the classical ground

state (3.17).
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Hamiltonian: 



The Quantum Ground State for p=1 

•  Physical states are SU(N) gauge invariant 

•  Physical states have specific U(1) charge 

Polychronakos, 01 
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The Quantum Ground State for p=1 

where p1, . . . pn are, necessarily distinct, integers. The trace operators are

Tr(Z† p)

There can be complicated relations between the baryonic and trace operators; explicit

descriptions for low numbers of vortices were recently presented in [40].

The trace constraint (3.18) means that physical states contain exactly k�1 baryonic

operators. The harmonic trap endows these with an energy proportional to the number

of Z† excitations,

H = ⌅J = ⌅⇤µ
n⇤

a,b=1

Z†
abZba

To minimise this energy, we must act with k�1 baryonic operators, each with pi = i�1.

This results in the ground state

|ground⌅k =
�
�a1...an⇧†

a1(⇧
†Z†)a2 . . . (⇧

†Z†n�1)an
⇥k�1 |0⌅ (3.19)

The angular momentum of this ground state coincides with that of the classical ground

state (3.17).

There is a close resemblance between these ground states and the Laughlin states

[41] for n electrons at filling fraction ⇥ = 1/k,

|Laughlin⌅k =
⌅

a<b

(za � zb)
k e�

Bext

4

P
|za|2 =

�
�a1...anz0a1za2 . . . z

n�1
an

⇥k
e�

Bext

4

P
|za|2 (3.20)

A formal map between the states was suggested in [33]. A more rigorous study, which

we now review, was provided in [34] (see also [37]). The first step is to identify ap-

propriate coordinates on the phase space of the matrix model. There are a number

of di�erent choices, none of which have preferred status. Here we use the coherent

state representation suggested in [34]. We diagonalise Z and use its eigenvalues as

coordinates on the phase space. (Non-diagonalisable matrices have zero measure.)

The first result of [34] is that the k = 1 ground state, |ground⌅1 = |0⌅, is precisely

the ⇥ = 1 Laughlin state describing a filled Landau level,

|0⌅ = |Laughlin⌅1

For k > 1, the map to the Laughlin wavefunction is not exact. Instead, the wavefunc-

tions agree only at large separation

|ground⌅k ⇤ |Laughlin⌅k for |za � zb| ⇥ 1/⇤µ
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we now review, was provided in [34] (see also [37]). The first step is to identify ap-

propriate coordinates on the phase space of the matrix model. There are a number

of di�erent choices, none of which have preferred status. Here we use the coherent

state representation suggested in [34]. We diagonalise Z and use its eigenvalues as

coordinates on the phase space. (Non-diagonalisable matrices have zero measure.)

The first result of [34] is that the k = 1 ground state, |ground⌅1 = |0⌅, is precisely

the ⇥ = 1 Laughlin state describing a filled Landau level,

|0⌅ = |Laughlin⌅1

For k > 1, the map to the Laughlin wavefunction is not exact. Instead, the wavefunc-
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These are quantum Hall states at filling fraction 



Quasi-Hole Excitations for p=1 

Quantum Quasi-Holes

We claim that the quantum state describing m quasi-holes, located at complex coordi-

nates �i, i = 1, . . . ,m, is

|�1, . . . , �m⇧k ⌅
m�

i=1

det(Z† � �†i ) |ground⇧k (3.25)

where we have allowed for a normalisation constant.

Let us first motivate this ansatz. Multiplying by det(Z† � �†) is equivalent to taking

one of the baryonic operators in the ground state (3.19) and replacing each occurrence

of ⇤†Z† p by ⇤†Z† p(Z��)†. Under the coherent state map of [34], where the eigenvalues

of Z are used as coordinates, this gives

|�1, . . . , �m⇧k ⇤
�

a

(za � �)|Laughlin⇧k

which is indeed the Laughlin wavefunction for quasi-holes.

As we vary the positions �i, the resulting states |�1, . . . , �m⇧ are not linearly indepen-

dent. This reflects the fact that these holes are made from a finite number of underlying

particles. Nonetheless, for |�i| < R, with R =
⇥
kn/⇥µ the size of the quantum Hall

droplet (3.4), we expect the state to approximately describe m localised quasi-holes.

This interpretation breaks down as the quasi-holes approach the edge of the droplet.

Indeed, the states degenerate and become approximately the same for any value of

|�i| ⇥ R. We’ll see the consquences of this below.

In the presence of a harmonic trap, the states (3.24) are not energy eigenstates

unless �i = 0. Nonetheless, it is simple to check that the time-dependent states,

|ei�t�1, . . . , ei�t�m⇧k, in which the quasi-holes orbit the origin, solve the time-dependent

Schrödinger equation. In what follows, we will compute the braiding of the time inde-

pendent states (3.24).

In the quantum Hall e�ect, the quasi-holes famously have fractional charge and

fractional statistics. We now show this directly for the states (3.24). We follow the

classic calculation of [4] in computing the Berry phase accumulated as quasi-holes move

in closed paths. However, there is a technical di�erence that is worth highlighting. In

the usual Laughlin wavefunction, the overlap integrals are too complicated to perform

directly. Instead, one resorts to the plasma analogy [41]. This requires an assumption

that a classical 2d plasma exhibits a screening phase.

25

The matrix model also has quasi-holes.  A single quasi-hole at position η is given by 

Quantum Quasi-Holes

We claim that the quantum state describing m quasi-holes, located at complex coordi-

nates �i, i = 1, . . . ,m, is

|�1, . . . , �m⇧k ⌅
m�

i=1

det(Z† � �†i ) |ground⇧k (3.24)

where we have allowed for a normalisation constant.

|�⇧k ⌅ det(Z† � �) |ground⇧k (3.25)

Let us first motivate this ansatz. Multiplying by det(Z† � �†) is equivalent to taking

one of the baryonic operators in the ground state (3.19) and replacing each occurrence

of ⇤†Z† p by ⇤†Z† p(Z��)†. Under the coherent state map of [34], where the eigenvalues

of Z are used as coordinates, this gives

|�1, . . . , �m⇧k ⇤
�

a

(za � �)|Laughlin⇧k

which is indeed the Laughlin wavefunction for quasi-holes.

As we vary the positions �i, the resulting states |�1, . . . , �m⇧ are not linearly indepen-

dent. This reflects the fact that these holes are made from a finite number of underlying

particles. Nonetheless, for |�i| < R, with R =
⇥
kn/⇥µ the size of the quantum Hall

droplet (3.4), we expect the state to approximately describe m localised quasi-holes.

This interpretation breaks down as the quasi-holes approach the edge of the droplet.

Indeed, the states degenerate and become approximately the same for any value of

|�i| ⇥ R. We’ll see the consquences of this below.

In the presence of a harmonic trap, the states (3.25) are not energy eigenstates

unless �i = 0. Nonetheless, it is simple to check that the time-dependent states,

|ei�t�1, . . . , ei�t�m⇧k, in which the quasi-holes orbit the origin, solve the time-dependent

Schrödinger equation. In what follows, we will compute the braiding of the time inde-

pendent states (3.25).

In the quantum Hall e�ect, the quasi-holes famously have fractional charge and

fractional statistics. We now show this directly for the states (3.25). We follow the

classic calculation of [4] in computing the Berry phase accumulated as quasi-holes move

in closed paths. However, there is a technical di�erence that is worth highlighting. In

the usual Laughlin wavefunction, the overlap integrals are too complicated to perform

directly. Instead, one resorts to the plasma analogy [41]. This requires an assumption

that a classical 2d plasma exhibits a screening phase.

25

Alternatively, m quasi-holes at positions ηi are given by 

These agree with the appropriate Laughlin wavefunctions at large distance 

Can show explicitly that these have fractional charge and fractional statistics… 

Tong and Turner ‘15 



Quasi-Hole Charge 

Consider one quasi-hole 

Quantum Quasi-Holes

We claim that the quantum state describing m quasi-holes, located at complex coordi-

nates �i, i = 1, . . . ,m, is

|�1, . . . , �m⇧k ⌅
m�

i=1

det(Z† � �†i ) |ground⇧k (3.24)

where we have allowed for a normalisation constant.

|�⇧k ⌅ det(Z† � �) |ground⇧k (3.25)

Let us first motivate this ansatz. Multiplying by det(Z† � �†) is equivalent to taking

one of the baryonic operators in the ground state (3.19) and replacing each occurrence

of ⇤†Z† p by ⇤†Z† p(Z��)†. Under the coherent state map of [34], where the eigenvalues

of Z are used as coordinates, this gives

|�1, . . . , �m⇧k ⇤
�

a

(za � �)|Laughlin⇧k

which is indeed the Laughlin wavefunction for quasi-holes.

As we vary the positions �i, the resulting states |�1, . . . , �m⇧ are not linearly indepen-

dent. This reflects the fact that these holes are made from a finite number of underlying

particles. Nonetheless, for |�i| < R, with R =
⇥
kn/⇥µ the size of the quantum Hall

droplet (3.4), we expect the state to approximately describe m localised quasi-holes.

This interpretation breaks down as the quasi-holes approach the edge of the droplet.

Indeed, the states degenerate and become approximately the same for any value of

|�i| ⇥ R. We’ll see the consquences of this below.

In the presence of a harmonic trap, the states (3.25) are not energy eigenstates

unless �i = 0. Nonetheless, it is simple to check that the time-dependent states,

|ei�t�1, . . . , ei�t�m⇧k, in which the quasi-holes orbit the origin, solve the time-dependent

Schrödinger equation. In what follows, we will compute the braiding of the time inde-

pendent states (3.25).

In the quantum Hall e�ect, the quasi-holes famously have fractional charge and

fractional statistics. We now show this directly for the states (3.25). We follow the

classic calculation of [4] in computing the Berry phase accumulated as quasi-holes move

in closed paths. However, there is a technical di�erence that is worth highlighting. In

the usual Laughlin wavefunction, the overlap integrals are too complicated to perform

directly. Instead, one resorts to the plasma analogy [41]. This requires an assumption

that a classical 2d plasma exhibits a screening phase.
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Rotate in circle. Pick up a Berry phase  

A second route to computing the braiding of quasi-particles is provided by the link to

conformal field theories [43], where it is conjectured to be equivalent to the monodromy

of conformal blocks. The primary focus has been on the richer subject of non-Abelian

quantum Hall states. Di⌅erent approaches include [46] and [44, 45], the latter once

again relying on a plasma analogy. See also [47] for an alternative approach to braiding.

We will now show that the matrix model construction of the quasi-hole states (3.25)

seems to avoid these issues and a direct attack on the problem bears fruit. We compute

the Berry phase explicitly without need of a plasma analogy (although we do rely on

a combinatoric conjecture for which we have very compelling evidence but, for the

moment, no proof).

Fractional Charge

We start by computing the charge of the quasi-hole under the external gauge field.

To do this, we consider a single excitation located at ⇥ = rei�. We then adiabatically

transport the quasi-hole in a circle by sending ⇤ ⇥ ⇤+2⌅. If the quasi-hole has charge

qQH then we expect that the wavefunction will pick up the Aharonov-Bohm phase �

proportional to the magnetic flux ⇥ enclosed in the orbit,

�(r) = ⇥qQH = ⌅r2BextqQH =
2⌅2µr2

e
qQH (3.25)

where we’ve used the value of Bext = 2⌅µ/e computed in (3.3), with e the charge of

a single vortex. There is a more direct expression for �, arising as the Berry phase

associated to the adiabatic change of the wavefunction,

�(r) = �i

⇥ 2⇥

0

d⇤ k⌅⇥|
⌃

⌃⇤
|⇥⇧k (3.26)

Our task is to compute this phase. From this we extract qQH.

To do this, it will help to introduce some new notation. We define the states |⇤l⇧k,
with l = 0, . . . , n� 1

|⇤l⇧k = [�a1,...,an⇧†
a1(⇧

†Z†)a2 . . . (⇧
†Z† l�1)al(⇧

†Z† l+1)al+1
. . . (⇧†Z†n)an⇤

�b1,...,an⇧†
b1
(⇧†Z†)b2 . . . (⇧

†Z†n�1)bn

⌅k�2

|0⇧

Each of these is an eigenstate of angular momentum, with J = J0 + ⌅µ(n � l). We

can expand the quasi-hole state (3.25) in this basis as

|⇥⇧k ⇤
n�1�

l=0

(�⇥†)l|⇤l⇧k
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Compare to expected phase picked  
up by a particle of charge qQH  

A second route to computing the braiding of quasi-particles is provided by the link to

conformal field theories [43], where it is conjectured to be equivalent to the monodromy
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a combinatoric conjecture for which we have very compelling evidence but, for the
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Fractional Charge
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where we’ve used the value of Bext = 2⌅µ/e computed in (3.3), with e the charge of
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Our task is to compute this phase. From this we extract qQH.

To do this, it will help to introduce some new notation. We define the states |⇤l⇧k,
with l = 0, . . . , n� 1
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Each of these is an eigenstate of angular momentum, with J = J0 + ⌅µ(n � l). We

can expand the quasi-hole state (3.24) in this basis as
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c.f. Laughlin states and the “plasma analogy”	
(Arovas, Schrieffer, Wilczek ‘84)	



Quasi-Hole Charge 

Because the |⇥l⌅k have di⇤erent angular momenta, they are orthogonal. We write their

inner product as

k⇤⇥p|⇥l⌅k = ⇥(l; k) �lp

In terms of these inner products, the Berry phase (3.26) is simply written as

�(r) = 2⇤i

⇧n
l=0 il⇥(l; k) r

2l

⇧n
l=0 ⇥(l; k) r

2l

The computation of ⇥(l; k) is not straightforward. (Indeed, this is the step in the usual

calculation where one resorts to the plasma analogy.) We conjecture the following

result:

⇥(l; k) = (⇤µ)l�n

�
n

l

⇥⇤
n�l�1⌃

a=0

(ka+ 1)

⌅

k⇤ground|ground⌅k

We have only been able to prove this for l = n� 1 and l = n� 2. However, it gives the

correct answer for all values of n, l and k that we can compute numerically. Clearly, it

would be of interest to prove this in generality.

In what follows, we assume that this expression for ⇥(l; k) is correct. Rather remark-

ably, the resulting sum can be written in closed form. We find

�(r) = �2⇤2µr2
�

n

(n� 1)k + 1
1F1(1� n, 2� n� 1/k, ⇤µr2/k)

1F1( �n, 1� n� 1/k, ⇤µr2/k)

⇥
(3.27)

This is the ratio of confluent hypergeometric functions of the first kind.

The result (3.27) is plotted in Figure 3 for n = 1000 vortices and k = 3. The

plot shows clearly that, for r < R, the Berry phase � coincides with the expected

Aharonov-Bohm phase (3.25) if the charge of the quasi-hole is taken to be

qQH = � e

k

This, of course, is the expected result [41, 4].

Our Berry phase computation also reveals finite size e⇤ects. The magnitude of the

Berry phase reaches a maximum of 2⇤n at r = R, the edge of the droplet. Outside

this disc, the Berry phase no longer increases and the picture in terms of quasi-holes

breaks down. One can also use the result above to determine the size of the edge e⇤ects;

numerical plots reveal them to be small as long as k ⇥ n.
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Quasi-Hole Statistics 

Consider two quasi-hole 

Rotate one quasi-hole around the other 

A second route to computing the braiding of quasi-particles is provided by the link to

conformal field theories [43], where it is conjectured to be equivalent to the monodromy

of conformal blocks. The primary focus has been on the richer subject of non-Abelian

quantum Hall states. Di⌅erent approaches include [46] and [44, 45], the latter once

again relying on a plasma analogy. See also [47] for an alternative approach to braiding.

We will now show that the matrix model construction of the quasi-hole states (3.24)

seems to avoid these issues and a direct attack on the problem bears fruit. We compute

the Berry phase explicitly without need of a plasma analogy (although we do rely on

a combinatoric conjecture for which we have very compelling evidence but, for the

moment, no proof).

Fractional Charge

We start by computing the charge of the quasi-hole under the external gauge field.

To do this, we consider a single excitation located at ⇥ = rei�. We then adiabatically

transport the quasi-hole in a circle by sending ⇤ ⇥ ⇤+2⌅. If the quasi-hole has charge

qQH then we expect that the wavefunction will pick up the Aharonov-Bohm phase �

proportional to the magnetic flux ⇥ enclosed in the orbit,

�(r) = ⇥qQH = ⌅r2BextqQH =
2⌅2µr2

e
qQH (3.25)

where we’ve used the value of Bext = 2⌅µ/e computed in (3.3), with e the charge of

a single vortex. There is a more direct expression for �, arising as the Berry phase

associated to the adiabatic change of the wavefunction,

�(r) = �i

⇥ 2⇥

0

d⇤ k⌅⇥|
⌃

⌃⇤
|⇥⇧k (3.26)

Our task is to compute this phase. From this we extract qQH.

To do this, it will help to introduce some new notation. We define the states |⇤l⇧k,
with l = 0, . . . , n� 1

|⇤l⇧k = [�a1,...,an⇧†
a1(⇧

†Z†)a2 . . . (⇧
†Z† l�1)al(⇧

†Z† l+1)al+1
. . . (⇧†Z†n)an⇤

�b1,...,an⇧†
b1
(⇧†Z†)b2 . . . (⇧

†Z†n�1)bn

⌅k�2

|0⇧

Each of these is an eigenstate of angular momentum, with J = J0 + ⌅µ(n � l). We

can expand the quasi-hole state (3.24) in this basis as

|⇥⇧k ⇤
n�1�

l=0

(�⇥†)l|⇤l⇧k
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Quantum Quasi-Holes

We claim that the quantum state describing m quasi-holes, located at complex coordi-

nates �i, i = 1, . . . ,m, is

|�1, . . . , �m⇧k ⌅
m�

i=1

det(Z† � �†i ) |ground⇧k (3.24)

where we have allowed for a normalisation constant.

|0, �⇧k ⌅ det(Z†) det(Z† � �†) |ground⇧k (3.25)

Let us first motivate this ansatz. Multiplying by det(Z† � �†) is equivalent to taking

one of the baryonic operators in the ground state (3.19) and replacing each occurrence

of ⇤†Z† p by ⇤†Z† p(Z��)†. Under the coherent state map of [34], where the eigenvalues

of Z are used as coordinates, this gives

|�1, . . . , �m⇧k ⇤
�

a

(za � �)|Laughlin⇧k

which is indeed the Laughlin wavefunction for quasi-holes.

As we vary the positions �i, the resulting states |�1, . . . , �m⇧ are not linearly indepen-

dent. This reflects the fact that these holes are made from a finite number of underlying

particles. Nonetheless, for |�i| < R, with R =
⇥
kn/⇥µ the size of the quantum Hall

droplet (3.4), we expect the state to approximately describe m localised quasi-holes.

This interpretation breaks down as the quasi-holes approach the edge of the droplet.

Indeed, the states degenerate and become approximately the same for any value of

|�i| ⇥ R. We’ll see the consquences of this below.

In the presence of a harmonic trap, the states (3.25) are not energy eigenstates

unless �i = 0. Nonetheless, it is simple to check that the time-dependent states,

|ei�t�1, . . . , ei�t�m⇧k, in which the quasi-holes orbit the origin, solve the time-dependent

Schrödinger equation. In what follows, we will compute the braiding of the time inde-

pendent states (3.25).

In the quantum Hall e�ect, the quasi-holes famously have fractional charge and

fractional statistics. We now show this directly for the states (3.25). We follow the

classic calculation of [4] in computing the Berry phase accumulated as quasi-holes move

in closed paths. However, there is a technical di�erence that is worth highlighting. In

the usual Laughlin wavefunction, the overlap integrals are too complicated to perform

directly. Instead, one resorts to the plasma analogy [41]. This requires an assumption

that a classical 2d plasma exhibits a screening phase.
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Figure 3: The Berry phase for a single quasi-hole in n = 1000 vortices with k = 3. The

phase � (solid, red) and the expected phase for a particle of charge �e/k in the field Bext

(gray, dashed) are both plotted.

There is another interpretation of the quasi-hole state (3.25): it is an excitation of

the fundamental boson ⇧ in the Hall phase (2.17). Now the Aharonov-Bohm phase

arises because this particle has charge 1 under the statistical gauge field with magnetic

field B = �2⌅µ/k. This is a pleasing, dual perspective. The vortices are solitons

constructed from ⇧. But, equally, we see that we can reconstruct ⇧ as a collective

excitation of many vortices!

Fractional Statistics

Let us next consider the statistics of quasi-holes as they are braided. To do this, we

consider a state with two excitations, |⇥1, ⇥2⇤k. It is simplest to place the first at the

origin, ⇥1 = 0, and transport the second in a full circle. This is equivalent to exchanging

the quasi-holes twice and computes double the statistical phase. Of course, there is

also a contribution from the Aharonov-Bohm phase �(r) described above and we must

subtract this o⇤. The resulting statistical phase, �stat, is then given by

2�stat(r) = �i

� 2⇥

0

d⇤ k⇥0, ⇥|
⌥

⌥⇤
|0, ⇥⇤k ��(r)

where, again ⇥ = rei�.

To compute the statistical phase, we need yet more inner products. We define the

states

|⇥0,l⇤k = [�a1,...,an(⌃†Z†)a1(⌃
†Z† 2)a2 . . . (⌃

†Z† l)al(⌃
†Z† l+2)al+1

. . . (⌃†Z†n+1)an⇥
�b1,...,an⌃†

b1
(⌃†Z†)b2 . . . (⌃

†Z†n�1)bn

⇤k�2

|0⇤
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Quasi-Hole Statistics 
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Figure 4: The statistical phase for a quasi-hole encircling a second quasi-hole at the origin

for n = 5000 and k = 3. The Berry phase �stat (solid, red) is plotted, together with the

expected phase for a particle of statistics �/k (gray, dashed).

This is similar to |⇥l⌅k, defined previously, except now each factor of Z† has been

increased by 1. This is the e⇤ect of placing the extra quasi-hole at the origin. (For

more general locations of the quasi-hole, we would need the obvious generalisations of

these states |⇥l0,l⌅k.) The states |⇥0,l⌅k are again orthogonal. We conjecture that their

norm is given by

k⇤⇥0,l|⇥0,l⌅k
k⇤ground|ground⌅k

= (⇥µ)l�2n

�
n

l

⇥⇧
n�l�1⌥

a=0

(ka+ 1)

⌃⇧
l�1⌥

a=0

(ka+ 1)

⌃⇧
n�1⌥

a=l

(ka+ 2)

⌃

Again, this gives the correct result for all cases that we can compute numerically. With

these functions, it is straightforward to determine an expression for the statistical phase

in terms of a sum over n states. Once again, this sum has a closed form, this time given

using regularised hypergeometric functions by

2�stat(r) =
2⇥2µr2

k

⇤
n 2F̃2(1 + 1/k, 1� n; 1 + 2/k, 2� n� 1/k; ⇥µr2/k)

2F̃2(1/k,�n; 2/k, 1� n� 1/k; ⇥µr2/k)

⌅
��r

We plot this for n = 5000 and k = 3 in Figure 4. All other plots with k ⇥ n have

similar features. We see that there is clearly an intermediate, parametrically large

regime, in which the pair of particles are both far from the edge of the disc and far

from each other, where their exchange statistics are given by

�stat =
⇥

k

This is the expected result for a quasi-hole at filling fraction � = 1/k.
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Figure 4: The statistical phase for a quasi-hole encircling a second quasi-hole at the origin

for n = 5000 and k = 3. The Berry phase �stat (solid, red) is plotted, together with the

expected phase for a particle of statistics �/k (gray, dashed).
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these functions, it is straightforward to determine an expression for the statistical phase

in terms of a sum over n states. Once again, this sum has a closed form, this time given

using regularised hypergeometric functions by

2�stat(r) =
2⇥2µr2

k

⇤
n 2F̃2(1 + 1/k, 1� n; 1 + 2/k, 2� n� 1/k; ⇥µr2/k)

2F̃2(1/k,�n; 2/k, 1� n� 1/k; ⇥µr2/k)

⌅
��r

We plot this for n = 5000 and k = 3 in Figure 4. All other plots with k ⇥ n have
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from each other, where their exchange statistics are given by
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This is the expected result for a quasi-hole at filling fraction � = 1/k.
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The General Quantum Ground State 

2. The Quantum Hall Matrix Model

The purpose of this paper is to study a matrix model description of non-Abelian quan-

tum Hall states. The model will describe N particles which we refer to as “electrons”.

The matrix model is a U(N) gauged quantum mechanics, with a gauge field which

we denote as ↵. This gauge field is coupled to an N ⇥N complex matrix Z, together

with a set of N -dimensional vectors 'i which are labelled by an index i = 1, . . . , p.

These transform under the gauge symmetry as

Z ! UZU † and 'i ! U'i for U 2 U(N) (2.1)

The dynamics is governed by the first-order action

S =

Z
dt

iB

2
Tr

�
Z†DtZ

�
+ i

pX

i=1

'†
iDt'i � (k + p) Tr↵� !TrZ†Z (2.2)

with DtZ = @tZ � i[↵, Z] and Dt'i = @t'i � i↵'i.

The action depends on three parameters: B, ! and k. We will see below that B

is interpreted as the background magnetic field in which the electrons move, while !

is the strength of a harmonic trap which encourages the electrons to cluster close to

the origin. Finally k, which appears in the combination k + p, is the coe�cient of

the quantum mechanical Chern-Simons term. Gauge invariance requires that k is an

integer and we will further take it to be positive: k 2 Z+.

In addition to the U(N) gauge symmetry, our model also enjoys an SU(p) global

symmetry, under which the 'i rotate. When p = 1, this action reduces to the model

written by Polychronakos [3] to describe Laughlin states. The p = 1 matrix model was

further studied in a number of papers, including [19, 20, 21] and we will review some of

its properties below. The model with general p was previously discussed in [22], albeit

with a di↵erent interpretation from that o↵ered here.

Getting a Feel for the Matrix Model

To gain some intuition for the physics underlying (2.2), let’s first look at the example

of a single particle, so N = 1 and our matrix model is an Abelian U(1) gauge theory,

with dynamics

SN=1

=

Z
dt

iB

2
Z†Ż +

pX

i=1

i'†
iDt'i � (k + p)↵� ! Z†Z

5

•  The ground states now describe particles with SU(p) spin. 

•  They are spin singlets only when N is divisible by p. 
•  (Otherwise they transform in some representation of SU(p) 

•  They describe non-Abelian quantum Hall states with filling fraction 

Wavefunctions for p � 2

For the case p = 1 described above, all physical states have the same dependence on

'† excitations; they di↵er only in their Z† excitations. This is the reason that no

' variables were needed when writing the wavefunctions. In contrast, when p � 2,

di↵erent physical states can have a di↵erent structure of '†
i excitations. These capture

the way the state transforms under the SU(p) symmetry.

We repeat the procedure described above, moving from coherent state representation

to wavefunction. For k = 0 the wavefunction knows nothing about the spin degrees of

freedom. This means that the k = 0 wavefunction is again given by (2.7), describing a

fully-filled Landau level with ⌫ = 1.

However, for p � 2 and k > 1, we have a new ingredient. Apart from the Vander-

monde determinant (2.7), each further time that a power of a particle coordinate za
appears in the wavefunction, it is accompanied by a spin degree of freedom,

�a 2 {1, . . . , p}

where a = 1, . . . , N labels the particle.

For example, when k = 1, each particle has a single spin degree of freedom �. This

reflects the fact that, as we saw earlier, each particle transforms in the fundamental

representation of SU(p). More generally, the internal state of each particle is deter-

mined by k factors of the spin label �. As we will explain in some detail in Section 3,

this is to be interpreted as specifying the kth symmetric representation under SU(p).

When N is divisible by p, the ground state wavefunction (2.5) is a an SU(p) spin-

singlet. The states have filling fraction

⌫ =
p

k + p
(2.8)

and have the property that

hza | groundik !  BW (za) as |za � zb| ! 1

where  BW (za) are a class of non-Abelian wavefunctions constructed some time ago by

Blok and Wen [9]. We devote the next section to a more detailed description of these

quantum Hall states.
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The Quantum Ground State 

If N is divisible by p then the ground state is an SU(p) singlet 

2.2 The Wavefunctions

The description of the ground states given above is in terms of coherent state repre-

sentation. To make connections with the more traditional form of the wavefunctions,

we need to find a map between the creation operators Z† and the position space rep-

resentation. For the p = 1 states, this was explained by Karabali and Sakita [11, 12].

We first review their results and then provide the generalisation to the SU(p) matrix

model.

p = 1 and the Laughlin Wavefunctions

At the formal level, there is a clear similarity between the ground state for p = 1

theories,

|groundik =
⇥
✏a1...aN (Z0')†a1(Z')

†
a2 . . . (Z

N�1')†aN
⇤k |0i (2.6)

|groundik =
h
✏a1...aN

h
('

1

)†a1 . . . ('p)
†
ap

i h
(Z'

1

)†ap+1
. . . (Z'p)

†
a2p

i
. . .

h
(Z

N
p �1'

1

)†aN�p+1
. . . (Z

N
p �1'p)

†
aN

iik
|0i

and the Laughlin wavefunctions at filling fraction ⌫ = 1/m

 m(za) =
Y

a<b

(za � zb)
me�B

P
|za|2/4 =

⇥
✏a1...aN z0a1z

1

a2 . . . z
N�1

aN

⇤m
e�B

P
|za|2/4

However, this similarity can be misleading: the operators Z† and '† are very di↵erent

objects from the holomorphic position variable za. To make this connection precise,

we need to be more careful about how to relate the two. In fact, there is no canonical

map. There are, however, a number of natural ways to make the connection. Two of

these, discussed in [11], are:

• We work with a coherent state representation Ẑ|Z,'i = Z|Z,'i and '̂|Z,'i =
'|Z,'i where, for once, we’ve used hats to denote the di↵erence between the

quantum operator Ẑ and the classical matrix Z. We then diagonalise Z = V DV �1

with D = diag(z
1

, . . . , zN) and express the resulting wavefunctions as  (za) =

hza| i.
• Alternatively, we could decompose the complex operator matrix Ẑ = X̂ + iŶ

and subsequently work in a coherent state representation X̂|Xi = X|Xi. This

picture has the advantage that the matrices X̂ and Ŷ are conjugate, giving us

the representation

Ẑ†
ab =

1p
2

✓
Xab � @

@Xab

◆
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If N not divisible by p then the ground state transforms in a representation of SU(p) 

When N is divisible by p, there is a unique ground state. This is an SU(p) singlet. To

describe the construction of this state, we first group p creation operators '†
i together

to form the operator

B(r)†a1...ap = ✏i1...ip(Zr')†i1 a1 . . . (Z
r')†ip ap

This is a singlet under the SU(p) global symmetry, but transforms in the pth anti-

symmetric representation of the U(N) gauge symmetry. To construct an SU(N) singlet

with the correct U(1) charge (2.3), we make a “baryon of baryons”. The ground state

is then

|groundik =
h
✏a1...aNB(0)†a1...apB(1)†ap+1...a2p . . .B(N/p� 1)†aN�p+1...aN

ik
|0i (2.5)

This state has energy E = !k
2B

N(N�p)
p . This time the requirements of the U(N) gauge

invariance have resulted in interesting correlations between both position and spin

degrees of freedom of the electrons. We will devote the rest of this section and the next

to describing the structure of these states.

N = q mod p

When N is not divisible by p, the ground state is no longer a singlet under the global

SU(p) symmetry. We write N = mp+ q with m 2 Z+. One can check that the ground

states are

|groundik =
kY

l=1

h
✏a1...aNB(0)†a1...apB(1)†ap+1...a2p . . .B(m� 1)†aN�p�q+1...aN�q

(Zm'i(l,1))
†
aN�q+1

. . . (Zm'i(l,q))
†
aN

i
|0i

where i
(l,↵), with l = 1, . . . k and ↵ = 1, . . . q are free indices labelling the degenerate

ground states. These ground states transform in the kth-fold symmetrisation of the

qth anti-symmetric representation of SU(p). In terms of Young diagrams, this is the

representation

q

8
>><

>>:

kz }| {

We’ll see in Section 5 why these representations are special and might be expected to

arise in quantum Hall states. In the meantime, in what follows we will primarily focus

on the states (2.5) that arise when N is divisible by p.

8

If N=q mod p then the ground 
state sits in the representation 

Wavefunctions for p � 2

For the case p = 1 described above, all physical states have the same dependence on

'† excitations; they di↵er only in their Z† excitations. This is the reason that no

' variables were needed when writing the wavefunctions. In contrast, when p � 2,

di↵erent physical states can have a di↵erent structure of '†
i excitations. These capture

the way the state transforms under the SU(p) symmetry.

We repeat the procedure described above, moving from coherent state representation

to wavefunction. For k = 0 the wavefunction knows nothing about the spin degrees of

freedom. This means that the k = 0 wavefunction is again given by (2.7), describing a

fully-filled Landau level with ⌫ = 1.

However, for p � 2 and k > 1, we have a new ingredient. Apart from the Vander-

monde determinant (2.7), each further time that a power of a particle coordinate za
appears in the wavefunction, it is accompanied by a spin degree of freedom,

�a 2 {1, . . . , p}

where a = 1, . . . , N labels the particle.

For example, when k = 1, each particle has a single spin degree of freedom �. This

reflects the fact that, as we saw earlier, each particle transforms in the fundamental

representation of SU(p). More generally, the internal state of each particle is deter-

mined by k factors of the spin label �. As we will explain in some detail in Section 3,

this is to be interpreted as specifying the kth symmetric representation under SU(p).

When N is divisible by p, the ground state wavefunction (2.5) is a an SU(p) spin-

singlet. The states have filling fraction

⌫ =
p

k + p
(2.8)

and have the property that

hza | groundik !  BW (za) as |za � zb| ! 1

where  BW (za) are a class of non-Abelian wavefunctions constructed some time ago by

Blok and Wen [9]. We devote the next section to a more detailed description of these

quantum Hall states.

11

These describe states  
with filling fraction 



The General Quantum Hall Ground State 

•  Now our particles carry spin degrees of freedom under the SU(p).  
•  Their long distance structure reproduces many famous wavefunctions  

Examples •  SU(2) at level k=1: The (2,2,1) Halperin wavefunction for spin ½ particles  

•  SU(2) at level k=2: The Moore-Read wavefunction at ν=½ (for spin 1 particles)  

 
•  SU(p) at level k=2: spin-singlet versions of Read-Rezayi states  

Introduction

The purpose of these notes is to describe a simple way to generate quantum Hall states

for particles that carry an internal spin degree of freedom. Here, what we mean by

spin is not restricted to the usual spin-1/2 qubit | "i and | #i. Instead we will consider

spin s states with 2s+1 degrees of freedom, as well as representations of more general

SU(p) groups.

Let’s start by reviewing the standard formalism for two-component Hall states, due

originally to Halperin. We split the particles into two groups, usually labelled spin up

and spin down (although they need not be genuine spin states of the electron). The

positions of these particles are labelled by zi and wi respectively, where each index runs

over i = 1, . . . , N , so that the total number of particles is 2N . The so-called (m,m, n)

state is then the obvious generalisation of the Laughlin wavefunction

 (z, w) =
NY

i<j

(zi � zj)
m

NY

k<l

(wk � wl)
m
Y

i,k

(zi � wk)
n (1)

where, as usual, we’re omitting the exponential factors from the wavefunction.

 (z, w) =
N/2Y

i<j

(z"i � z"j )
2

N/2Y

k<l

(z#k � z#l )
2

Y

i,k

(z"i � z#k) (2)

One can determine the filling fraction of this state by the usual angular momentum

counting. The highest power of a given electron position, say z
1

, is zm(N�1)+nN
1

which, in

the large N limit, tells us that the area of the droplet of electrons is A ⇡ 2⇡(m+n)Nl2B
with lB the magnetic length. The filling fraction for spin up particles is therefore

⌫" = 1/(m+ n). The total filling fraction is then

⌫ = ⌫" + ⌫# =
2

m+ n
(3)

It’s usually said that only the (n + 1, n + 1, n) Halperin states are spin singlets. This

is a little lazy since, as we review below, it really refers to the generalisation of the

states (2) when the spin 1/2 degrees of freedom are included explicitly. Indeed, one of

our first observations is that every (m,m, n) Halperin states can be viewed as a spin

singlet, but where the underlying particles carry spin s = (m� n)/2.

1

In general, these are a class of wavefunctions constructed by Blok and Wen ‘92.   

The Spin 1 Wavefunction as a Pfa�an

We will now show that the wavefunction (3.4) for spin 1 particles can be written as

�2(z, �) = Pf

✓ |abi
1

za � zb

◆Y

a<b

(za � zb) (3.6)

 = Pf

✓ |iji
1

zi � zj

◆Y

i<j

(zi � zj)
2 (3.7)

with Pf the Pfa�an of the matrix whose (i, j)th component is as given. This is a

spin singlet version of the Moore-Read state [4]. It is sensible because the spin 1 singlet

|abi
1

is symmetric in spins, in contrast to |abi 1
2
which is anti-symmetric.

It was noticed long ago [9, 26] that the (3, 3, 1) state is closely related to the Pfa�an

state. In [9] the particles were spin-1 but projected onto the m = 0 spin component; in

[26] the particles were taken to be spin 1/2 and the resulting state was not a spin singlet.

Our result (3.6) is clearly closely related to these earlier results both of which are proven

using the Cauchy identity. However, the proof of (3.6) requires more sophisticated

machinery which appears not to have been available at the time of [9, 26].

The Proof:

The projective Hilbert space associated to the two spins is a Bloch sphere CP1. We

parameterise this by the inhomogeneous coordinate ⇣. Formally, we then set |#ai = 1

and |"ai = ⇣a and write � as the polynomial

�(z, ⇣) =
1

2N/2
✏a1...aN

h
(za1za2)

0 . . . (zaN�1zaN )
N/2�1

ih
(⇣a1 � ⇣a2) . . . (⇣aN�1 � ⇣aN )

i

This has the advantage that the right-hand-side can be viewed as the determinant of a

N ⇥N matrix �[z; ⇣] with components given by

�[z; ⇣]a,b =

(
zb�1

a 1  j  N
2

⇣az
b�1

a
N
2

+ 1  j  2N
(3.8)

To show the result (3.6), we then need to prove the polynomial identity

det2�[z; ⇣]
?

= Pf

✓
(⇣a � ⇣b)2

za � zb

◆Y

a<b

(za � zb)
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The Matrix Model as a CFT 



Boundary Conformal Field Theory 

Inside the vortex,  
U(p) gauge symmetry 
unbroken 

Outside the vortex 
U(p) gauge symmetry  
broken  

We have engineered a Chern-Simons theory with boundary… 
  

•   There should be chiral edge modes, described by a WZW conformal field theory 
•    These same edge modes should be excitations of vortices          

 
           

In the large N limit, our matrix model should be the U(p)k WZW CFT! 



Quantum Hall States and WZW Model 

Our quantum Hall states are those of U(p) Chern-Simons theory… 
 
                             … so should be related to the boundary U(p) WZW model 

The KZ equation reads
 

@

@za
� 1

k + p

NX

b 6=a

T ↵
a ⌦ T ↵

b

za � zb

!
hOR(z1) . . .OR(zN)i = 0 (5.3)

where T ↵ is the Hermitian generator for the k-th symmetric representation. These

obey the SU(p) algebra [T ↵, T �] = if↵��T �, with the normalisation f↵��f��� = 2p �↵�,

where p appears in its role as the dual Coxeter number of SU(p).

Solving the Knizhnik-Zamolodchikov Equation

We will now show that the KZ equation (5.3) is solved by

hOR(z1) . . .OR(zN)i =
NY

a<b

(za � zb)
�k/p P ⇥�k

(p)(z, �)
⇤

(5.4)

with �
(p) is defined in (3.12).

It will be useful to first rewrite our ansatz in slightly more concrete form. As discussed

up to (3.16), it’s simple to check that, up to an unimportant normalisation,

P ⇥�k
(p)(z, �)

⇤
=


A

Y

1a<bN/p

(za � zb)|�1

i . . . |�
1

i ⌦
Y

N/p<a<b2N/p

(za � zb)|�2

i . . . |�
2

i

⌦ . . . . . .⌦
Y

(p�1)N/p<a<bN

(za � zb) |�pi . . . |�pi
ik

(5.5)

Here we have placed the first N/p particles in the same spin state, the next N/p in a

di↵erent spin state and so on. The A symbol means that we then anti-symmetrise over

all particles.

The generators T ↵ in (5.3) can be viewed as acting symmetrically on what were

originally k distinct fundamental factors,

T ↵ =

kz }| {
t↵ ⌦ 1⌦ · · ·⌦ 1 + symmetric permutations

with t↵ the generator in the fundamental representation. The normalisation in the

KZ equation ensures that we have t↵ijt
↵
kl = �il�jk � 1

p�ij�kl, where the group indices

i, j, k, l = 1, . . . , p. This means that if the operator T ↵
a ⌦ T ↵

b acts on a state where

particles a and b have the same spin, this tensor product returns the same spin state

multiplied by a factor (1� 1/p). By contrast, if the two particles have di↵erent spins,

it returns a superposition of the same state with a factor �1/p, and a state with the

particles swapped with no factor.

27

First piece of evidence: the wavefunction are correlation function of the U(p) WZW model 

ground state wavefunction 

They obey the Knizhnik-Zamalodchikov equations 



Current Algebra 

Construct SU(p) currents from the matrix model 

here i, j, k = 1, . . . , p denotes the flavour index, while m ⇥ 0 denotes the grading. It

is straightforward to show that the commutators (4.1) imply that these currents give

a representation of half of the Kacs-Moody algebra,

[J̃m
ij , J̃ n

kl] = i
�
�ilJ̃m+n

kj � �kjJ̃m+n
il

⇥
(4.6)

while [J̃m, J̃ n] = [J̃m,J n
ij ] = 0. Note that this holds for any N . Note that this

same expression also holds if we use classical Poisson brackets instead of quantum

commutators.

While the result (4.6) is heartening, our interest really lies in the full Kacs-Moody

algebra and, in particular, the central extension term. We do not expect this algebra

to exist at finite N . However, we will show that in the N ⇤ ⌅ limit the matrix model

does indeed reproduce the full algebra, with the central extension term proportional

the level of the parent Chern-Simons theory, namely k � p in the quantum theory (or

level k is we use classical Poisson brackets instead of commutators).

As always, the central charge of (non-compact) U(1) currents is ambiguous due to a

possible rescaling. For this reason, we focus on the SU(p) currents. Here too there is

a normalisation issue, but one that will turn out to be uniquely fixed. To this end, we

rescale the positive-graded currents

Jm
ij =

⇤
kN

p

⌅�m/2

J̃m
ij m ⇥ 0

Note that these still obey the algebra (4.6) since the overall scaling is a power of m.

However, only these rescaled currents will give rise to the full Kacs-Moody algebra, This

arises when we consider the commutators with the negative graded currents, defined

by

Jm
ij = J �m †

ji m < 0

Check that ij are the right way around!. These too obey the graded Lie algebra

(4.6) if we restrict tom,n < 0. More interesting are the mixed commutators, [Jm
ij ,J �n

kl ]

with m,n > 0. In the rest of this section, we will show that these obey the full-Kacs-

Moody algebra

Jm
ij = ⇥†

iZ
m⇥j m ⇥ 0

Jm
ij = ⇥†

iZ
†m⇥j m < 0
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Can show that*, in the large N limit, these obey a Kac-Moody algebra! 

The smoking gun of a WZW model is the existence of a current algebra 

* up to two conjectured identities 

central charge (including quantum shift) 

While the result (2.5) is heartening, our interest really lies in the full Kac-Moody

algebra and, in particular, the central extension term. Here we will see the di↵erence

between classical and quantum theories.

The central charge of the U(1) current is harder to pin down due to a possible rescal-

ing. For this reason, we focus on the SU(p) currents. Here too there is a normalisation

issue, but one that will turns out to be uniquely fixed. To this end, we rescale the

positive-graded currents

Jm
ij =

✓
(k + p)N

p

◆�m/2

J̃m
ij m � 0

Note that these still obey the algebra (2.5) since the overall scaling is a power of m. We

will see that only these rescaled currents will give rise to the full Kac-Moody algebra.

We then define the negative graded currents as

Jm
ij = J |m| †

ji m < 0

and similarly for J̃ . These too obey the graded Lie algebra (2.5) if we restrict to

m,n < 0.

Of course, the central term only arises when we consider mixed commutators of

the form [Jm
ij ,J �n

kl ] with m,n > 0. These are trickier to compute because now the

constraint (2.1) comes into play. However, things simplify somewhat in the N ! 1
limit. We find the following:

[Jm
ij ,J n

kl] ⇠ i(�ilJm+n
kj � �kjJm+n

il ) + km �m+n,0

✓
�jk�il � 1

p
�ij�kl

◆
(2.6)

Here ⇠ means up to 1/N corrections. Moreover, the operators in this equation should

act on states that are constructed from the vacuum |0i by acting with fewer than O(N)

creation operators. The rest of this section is devoted to the derivation of (2.6).

Deriving the Kac-Moody Algebra

The novelty in deriving (2.6) arises from the commutator [Z,Z†] terms between currents

travelling in opposite directions. We take m,n > 0 and look at

[J̃m
ij , J̃ �n

kl ] = ['†
iZ

m'j,'
†
kZ

†n'l]

= �jk'
†
iZ

mZ†n'l � �il'
†
kZ

†nZm'j + '†
ia'

†
kb[Z

m
ac, Z

†n
bd ]'jc'ld

= �jk'
†
i [Z

m, Z†n]'l + �jk'
†
iZ

†nZm'l

��il'
†
kZ

†nZm'j + '†
ia'

†
kb[Z

m
ac, Z

†n
bd ]'jc'ld (2.7)

All U(N) group indices are contracted in the obvious manner apart from in the final

term where we’ve written them explicitly.
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2.1 The Currents

It is straightforward to construct generators of the positive graded current algebra in

the matrix model. The problem factorises into U(1) and its SU(p) parts. The U(1)

currents are simply

J̃m = trZm

while the SU(p) adjoint-valued currents are

J̃m
ij = i

✓
'†
iZ

m'j � 1

p
�ij '

†
kZ

m'k

◆

here i, j, k = 1, . . . , p denotes the flavour index, while m � 0 denotes the grading.

It is simple to show that the commutators (2.2) imply that these currents give a

representation of half of the Kac-Moody algebra,

[J̃m
ij , J̃ n

kl] = i
⇣
�ilJ̃m+n

kj � �kjJ̃m+n
il

⌘
(2.5)

while [J̃m, J̃ n] = [J̃m,J n
ij ] = 0. This holds for any N . This same expression holds in

both the quantum theory and the classical theory where, in the latter, the commutation

relations (2.2) should be replaced by classical Poisson brackets.

While the result (2.5) is heartening, our interest really lies in the full Kac-Moody

algebra and, in particular, the central extension term. Here we will see the di↵erence

between classical and quantum theories.

The central charge of the U(1) current is harder to pin down due to a possible rescal-

ing. For this reason, we focus on the SU(p) currents. Here too there is a normalisation

issue, but one that will turns out to be uniquely fixed. To this end, we rescale the

positive-graded currents

Jm
ij =

✓
(k + p)N

p

◆�m/2

J̃m
ij m � 0

Note that these still obey the algebra (2.5) since the overall scaling is a power of m. We

will see that only these rescaled currents will give rise to the full Kac-Moody algebra.

We then define the negative graded currents as

Jm
ij = J |m| †

ji m < 0

and similarly for J̃ . These too obey the graded Lie algebra (2.5) if we restrict to

m,n < 0.
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2.1 The Currents

It is straightforward to construct generators of the positive graded current algebra in

the matrix model. The problem factorises into U(1) and its SU(p) parts. The U(1)

currents are simply

J̃m = trZm

while the SU(p) adjoint-valued currents are

J̃m
ij = i

✓
'†
iZ

m'j � 1

p
�ij '

†
kZ

m'k

◆

here i, j, k = 1, . . . , p denotes the flavour index, while m � 0 denotes the grading.

It is simple to show that the commutators (2.2) imply that these currents give a

representation of half of the Kac-Moody algebra,

[J̃m
ij , J̃ n

kl] = i
⇣
�ilJ̃m+n

kj � �kjJ̃m+n
il

⌘
(2.5)

while [J̃m, J̃ n] = [J̃m,J n
ij ] = 0. This holds for any N . This same expression holds in

both the quantum theory and the classical theory where, in the latter, the commutation

relations (2.2) should be replaced by classical Poisson brackets.

While the result (2.5) is heartening, our interest really lies in the full Kac-Moody

algebra and, in particular, the central extension term. Here we will see the di↵erence

between classical and quantum theories.

The central charge of the U(1) current is harder to pin down due to a possible rescal-

ing. For this reason, we focus on the SU(p) currents. Here too there is a normalisation

issue, but one that will turns out to be uniquely fixed. To this end, we rescale the

positive-graded currents

Jm
ij =

✓
(k + p)N

p

◆�m/2

J̃m
ij m � 0

Note that these still obey the algebra (2.5) since the overall scaling is a power of m. We

will see that only these rescaled currents will give rise to the full Kac-Moody algebra.

We then define the negative graded currents as

Jm
ij = J |m| †

ji m < 0

and similarly for J̃ . These too obey the graded Lie algebra (2.5) if we restrict to

m,n < 0.
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The Partition Function 

Remarkably, the exact partition function of the matrix model can be computed exactly 

Cartan elements of SU(p) 
We now impose the requirements of gauge invariance. The physical states must be

SU(N) singlets and carry U(1) charge k. (I suspect that we should include the

normal ordering seen in (4.3), in which case k ! k� p in everything below).

We do this by contour integration, so that

Z =
NY

a=1

I
d!a

!k+1

a

Y

b 6=c

✓
1� !b

!c

◆
ZZ Z' (5.3)

Here the product factor arises from the Haar measure over the group manifold U(N).

The denominator 1/!k+1 ensures that the only contributions we pick up in the contour

integral are those with overall U(1) ⇢ U(N) charge equal to the Chern-Simons level k.

One could attempt to compute this partition function directly using contour inte-

gration. (Nick had some comments here about the relationship to Nekrasov

partition function and also to Ami’s counting programme. Do we want to

say something about this?). Instead, we will proceed slightly di↵erently. We will

expand Z in irreducible representations (irreps) of the global symmetry SU(p).

A Digression on Representation Theory

For finite dimensional representations, irreps of U(p) are the same as those of GL(p,C).

(Do we need to mention this?). Let us first recall that such irreps are classified by

the highest weight. This is defined by a parition, a non-increasing sequence of positive

integers that we call �,

� : �
1

� �
2

� . . . � �l(�) > 0

The number of elements in the sequence, l(�), is called the length of the partition.

The sum of all elements, w(�) =
P

i �i is called the weight of the partition. It will

sometimes be useful below to define one final element �l(�)+1

⌘ 0.

A partition can be represented graphically by a Young diagram. This is an array of

boxes. The jth row contains �j boxes. Each row is aligned so that the left-most boxes

sit under each other. For example, the Young diagram for the partition (5, 4, 2, 2) looks

like this:

A partition � defines the highest weight for a representation R�. The associated

character �� is defined to be

�� = TrR�

pY

a=1

xJi
i

16

with  

This is an integer multiple of !2/2. Acting on an eigenstate, we write

H =
!2

2
�

We also introduce chemical potentials for the Cartan elements of the SU(p) flavour

group. We write these as Ji, with i = 1, . . . , p with
P

i Ji = 0. (I think this last part

is right!). The quantum numbers � and Ji of all states are integers. We introduce

fugacities t and xi for these quantum numbers. Our task is to compute the partition

function

Z = Tr t�
pY

i=1

xJi
i

where the trace is over all states in the Hilbert space.

As we have seen, much of the subtlety in the matrix model lies in the Gauss’ law

constraint (2.3) which ensures that the states are gauge invariant. Our strategy in

computing Z is to first enumerate all gauge non-invariant states and only later project

onto the gauge invariant subset. With this in mind, we introduce further fugacities for

each Cartan element of the gauge symmetry, U(1)N ⇢ U(N). We call these fugacities

!a with a = 1, . . . , N .

If we ignore the restrictions of gauge invariance, then the Hilbert space is simple

to define: it consists of any number of Z†
ab or '†

a i operators acting on |0i. Let’s deal

with each species of operator in turn. The Z operators lie in the adjoint representation

of U(N) and are singlets under SU(p). They carry quantum numbers !a = +1 and

!b = �1 (for some a 6= b) and � = 1. Taking the trace over states of the form Z† r|0i
for all possible r gives the contribution to the partition function of the form

ZZ =
NY

a,b=1

1

1� t!a/!b
(5.1)

Meanwhile, the ' operators transform in the fundamental of both U(N) and SU(p).

This means that they carry charge !a = +1 and xi = +1 for some a and i. They have

� = 0. Taking the trace over states of the form '† r|0i gives the contribution to the

partition function

Z' =
NY

a=1

pY

i=1

1

1� !axi
(5.2)
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This is an integer multiple of !2/2. Acting on an eigenstate, we write

H =
!2

2
�

We also introduce chemical potentials for the Cartan elements of the SU(p) flavour

group. We write these as Ji, with i = 1, . . . , p with
P

i Ji = 0. (I think this last part

is right!). The quantum numbers � and Ji of all states are integers. We introduce

fugacities t and xi for these quantum numbers. Our task is to compute the partition

function

Z = Tr t�
pY

i=1

xJi
i

where the trace is over all states in the Hilbert space.

As we have seen, much of the subtlety in the matrix model lies in the Gauss’ law

constraint (2.3) which ensures that the states are gauge invariant. Our strategy in

computing Z is to first enumerate all gauge non-invariant states and only later project

onto the gauge invariant subset. With this in mind, we introduce further fugacities for

each Cartan element of the gauge symmetry, U(1)N ⇢ U(N). We call these fugacities

!a with a = 1, . . . , N .

If we ignore the restrictions of gauge invariance, then the Hilbert space is simple

to define: it consists of any number of Z†
ab or '†

a i operators acting on |0i. Let’s deal

with each species of operator in turn. The Z operators lie in the adjoint representation

of U(N) and are singlets under SU(p). They carry quantum numbers !a = +1 and

!b = �1 (for some a 6= b) and � = 1. Taking the trace over states of the form Z† r|0i
for all possible r gives the contribution to the partition function of the form

ZZ =
NY

a,b=1

1

1� t!a/!b
(5.1)

Meanwhile, the ' operators transform in the fundamental of both U(N) and SU(p).

This means that they carry charge !a = +1 and xi = +1 for some a and i. They have

� = 0. Taking the trace over states of the form '† r|0i gives the contribution to the

partition function
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NY
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pY

i=1

1

1� !axi
(5.2)
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The Partition Function for Laughlin States 
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This is the partition function for a single chiral boson, as expected. 
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The Partition Function 
We now impose the requirements of gauge invariance. The physical states must be

SU(N) singlets and carry U(1) charge k. (I suspect that we should include the

normal ordering seen in (4.3), in which case k ! k� p in everything below).

We do this by contour integration, so that

Z =
NY
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I
d!a

!k+1

a

Y

b 6=c

✓
1� !b

!c

◆
ZZ Z' (5.3)

Here the product factor arises from the Haar measure over the group manifold U(N).

The denominator 1/!k+1 ensures that the only contributions we pick up in the contour

integral are those with overall U(1) ⇢ U(N) charge equal to the Chern-Simons level k.

One could attempt to compute this partition function directly using contour inte-

gration. (Nick had some comments here about the relationship to Nekrasov

partition function and also to Ami’s counting programme. Do we want to

say something about this?). Instead, we will proceed slightly di↵erently. We will

expand Z in irreducible representations (irreps) of the global symmetry SU(p).

A Digression on Representation Theory

For finite dimensional representations, irreps of U(p) are the same as those of GL(p,C).

(Do we need to mention this?). Let us first recall that such irreps are classified by

the highest weight. This is defined by a parition, a non-increasing sequence of positive

integers that we call �,

� : �
1

� �
2

� . . . � �l(�) > 0

The number of elements in the sequence, l(�), is called the length of the partition.

The sum of all elements, w(�) =
P

i �i is called the weight of the partition. It will

sometimes be useful below to define one final element �l(�)+1

⌘ 0.

A partition can be represented graphically by a Young diagram. This is an array of

boxes. The jth row contains �j boxes. Each row is aligned so that the left-most boxes

sit under each other. For example, the Young diagram for the partition (5, 4, 2, 2) looks

like this:

A partition � defines the highest weight for a representation R�. The associated

character �� is defined to be

�� = TrR�

pY

a=1

xJi
i
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This is an integer multiple of !2/2. Acting on an eigenstate, we write

H =
!2

2
�

We also introduce chemical potentials for the Cartan elements of the SU(p) flavour

group. We write these as Ji, with i = 1, . . . , p with
P

i Ji = 0. (I think this last part

is right!). The quantum numbers � and Ji of all states are integers. We introduce

fugacities t and xi for these quantum numbers. Our task is to compute the partition

function

Z = Tr t�
pY

i=1

xJi
i

where the trace is over all states in the Hilbert space.

As we have seen, much of the subtlety in the matrix model lies in the Gauss’ law

constraint (2.3) which ensures that the states are gauge invariant. Our strategy in

computing Z is to first enumerate all gauge non-invariant states and only later project

onto the gauge invariant subset. With this in mind, we introduce further fugacities for

each Cartan element of the gauge symmetry, U(1)N ⇢ U(N). We call these fugacities

!a with a = 1, . . . , N .

If we ignore the restrictions of gauge invariance, then the Hilbert space is simple

to define: it consists of any number of Z†
ab or '†

a i operators acting on |0i. Let’s deal

with each species of operator in turn. The Z operators lie in the adjoint representation

of U(N) and are singlets under SU(p). They carry quantum numbers !a = +1 and

!b = �1 (for some a 6= b) and � = 1. Taking the trace over states of the form Z† r|0i
for all possible r gives the contribution to the partition function of the form

ZZ =
NY

a,b=1

1

1� t!a/!b
(5.1)

Meanwhile, the ' operators transform in the fundamental of both U(N) and SU(p).

This means that they carry charge !a = +1 and xi = +1 for some a and i. They have

� = 0. Taking the trace over states of the form '† r|0i gives the contribution to the

partition function

Z' =
NY

a=1

pY

i=1

1

1� !axi
(5.2)
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For p>1, the result is more complicated 

•  Expand components in characters of SU(N) and SU(p).  

•  These are symmetric polynomials known as Schur polynomials 

with  

Basic Idea: 



The Partition Function 

For p>1, the answer is 

Schur polynomials 

Sum over partitions λ related  
to representations of of SU(p)              Kostka polynomials.  

 
 
These relate Schur polynomials with Hall-Littlewood polynomials. 

•  The information about the number of vortices N lies in the partition µ:  	
•   	
•  When N is divisible by p, it is (k,k,k,…,k) = kN     

Here the product factor arises from the Haar measure over the group manifold U(N).

The denominator 1/!k+1 ensures that the only contributions we pick up in the contour

integral are those with overall U(1) ⇢ U(N) charge equal to the Chern-Simons level k.

One could attempt to compute this partition function directly using contour inte-

gration. (Nick had some comments here about the relationship to Nekrasov

partition function and also to Ami’s counting programme. Do we want to

say something about this?). Instead, we will proceed slightly di↵erently. We will

expand Z in irreducible representations (irreps) of the global symmetry SU(p).

A Digression on Representation Theory

For finite dimensional representations, irreps of U(p) are the same as those of GL(p,C).

(Do we need to mention this?). Let us first recall that such irreps are classified by

the highest weight. This is defined by a parition, a non-increasing sequence of positive

integers that we call �,

� : �
1

� �
2

� . . . � �
l(�)

> 0

The number of elements in the sequence, l(�), is called the length of the partition.

The sum of all elements, w(�) =
P

i
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i

is called the weight of the partition. It will

sometimes be useful below to define one final element �
l(�)+1

⌘ 0.

A partition can be represented graphically by a Young diagram. This is an array of

boxes. The jth row contains �
j

boxes. Each row is aligned so that the left-most boxes

sit under each other. For example, the Young diagram for the partition (5, 4, 2, 2) looks

like this:

A partition � defines the highest weight for a representation R
�

. The associated

character �
�

is defined to be

�
�

= Tr
R�

pY

a=1

xJi
i

For GL(p,C), these characters are called Schur polynomials

�
�

= S
�

(x
1

, . . . , x
p

)

They are symmetric polynomials in x
1

, . . . , x
p

and form a basis for all symmetric poly-

nomials. To define the Schur polynomial, we first introduce the alternating polynomial
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The Relationship to the Boundary CFT 

In the large N limit, these partition functions become something nice! 

N divisible by p 

The partition function of the matrix model and WZW model coincide! 

With only a finite N degrees of freedom, we could only hope to find a discretised

version of the boundary CFT. More interesting is what happens as N ! 1. We

conjecture or, better yet, other people conjecture that in this limit the partition

function becomes the character of a left-moving Âp�1

current algebra at level k

Z = Q
(kN )

(x
1

, . . . , xp; t) ! �(Âp�1

)k

where

� = Tr tL0

pY

i=1

xJi
i

is computed in the CFT. This is the character for left-moving states only as expected.

There is also a connection that can be seen at finite N . The partition function is a

representation of the current algebra....I don’t understand this

We need to be clearer in these statements. Or, perhaps just more correct

given that I don’t understand them that well.

lim
N!1

Z
matrix

(t, xi) �! ZWZW (t, xi)

5.2 The Relationship to Spin Chains

In this section, we describe a relationship between the matrix model partition function

described above and a class of spin chains.

A spin chain of SU(p) (or GL(p,C)) representations has a Hilbert space determined

by a partition µ,

H = pµ1 ⌦ pµ2 ⌦ . . .⌦ pµl(µ) (5.7)

where p is the p-dimensional Hilbert space which transforms under the fundamental

representation of SU(p), and pµi denotes the µi-fold tensor product of this space2

2
I’m not yet sure where this needs to go in the discussion: For any choice of partition

�, the Hilbert space (5.7) can be decomposed into spaces which carry irreducible representations of
SU(p). As we have seen, these irreps are also labelled by a partition � and we denote the corresponding
Hilbert space as R�. We then decompose (5.7) as

H =
X

�

Kµ,�R�

whereKµ� are integers which describe how often the irrep � appears. These are called Kostka numbers.
There are, of course, many reasons to be interested in spin chains. One rather prosaic reason is that
they provide a useful technology to compute the Kostka numbers Kµ,� and ultimately the Kostka

polynomials?.
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The Relationship to the Boundary CFT 

But the large N limit is subtle 
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)k

where

� = Tr tL0

pY

i=1

xJi
i

is computed in the CFT. This is the character for left-moving states only as expected.

There is also a connection that can be seen at finite N . The partition function is a

representation of the current algebra....I don’t understand this

We need to be clearer in these statements. Or, perhaps just more correct

given that I don’t understand them that well.

lim
N!1

Z
matrix

(t, xi) �! �
(q)
WZW (t, xi)

5.2 The Relationship to Spin Chains

In this section, we describe a relationship between the matrix model partition function

described above and a class of spin chains.

A spin chain of SU(p) (or GL(p,C)) representations has a Hilbert space determined

by a partition µ,

H = pµ1 ⌦ pµ2 ⌦ . . .⌦ pµl(µ) (5.7)

where p is the p-dimensional Hilbert space which transforms under the fundamental

representation of SU(p), and pµi denotes the µi-fold tensor product of this space2

2
I’m not yet sure where this needs to go in the discussion: For any choice of partition

�, the Hilbert space (5.7) can be decomposed into spaces which carry irreducible representations of
SU(p). As we have seen, these irreps are also labelled by a partition � and we denote the corresponding
Hilbert space as R�. We then decompose (5.7) as

H =
X

�

Kµ,�R�

whereKµ� are integers which describe how often the irrep � appears. These are called Kostka numbers.
There are, of course, many reasons to be interested in spin chains. One rather prosaic reason is that
they provide a useful technology to compute the Kostka numbers Kµ,� and ultimately the Kostka

polynomials?.

19

This is the character of the WZW model  
associated to the representation  

X 

insertion of primary operator  
in appropriate representation 

When N is divisible by p, there is a unique ground state. This is an SU(p) singlet. To

describe the construction of this state, we first group p creation operators '†
i together

to form the operator

B(r)†a1...ap = ✏i1...ip(Zr')†i1 a1 . . . (Z
r')†ip ap

This is a singlet under the SU(p) global symmetry, but transforms in the pth anti-

symmetric representation of the U(N) gauge symmetry. To construct an SU(N) singlet

with the correct U(1) charge (2.3), we make a “baryon of baryons”. The ground state

is then

|groundik =
h
✏a1...aNB(0)†a1...apB(1)†ap+1...a2p . . .B(N/p� 1)†aN�p+1...aN

ik
|0i (2.5)

This state has energy E = !k
2B

N(N�p)
p . This time the requirements of the U(N) gauge

invariance have resulted in interesting correlations between both position and spin

degrees of freedom of the electrons. We will devote the rest of this section and the next

to describing the structure of these states.

N = q mod p

When N is not divisible by p, the ground state is no longer a singlet under the global

SU(p) symmetry. We write N = mp+ q with m 2 Z+. One can check that the ground

states are

|groundik =
kY

l=1

h
✏a1...aNB(0)†a1...apB(1)†ap+1...a2p . . .B(m� 1)†aN�p�q+1...aN�q

(Zm'i(l,1))
†
aN�q+1

. . . (Zm'i(l,q))
†
aN

i
|0i

where i
(l,↵), with l = 1, . . . k and ↵ = 1, . . . q are free indices labelling the degenerate

ground states. These ground states transform in the kth-fold symmetrisation of the

qth anti-symmetric representation of SU(p). In terms of Young diagrams, this is the

representation

q

8
>><

>>:

kz }| {

We’ll see in Section 5 why these representations are special and might be expected to

arise in quantum Hall states. In the meantime, in what follows we will primarily focus

on the states (2.5) that arise when N is divisible by p.

8

This is the representation that the ground state of the matrix model sits in. 
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A 3d Theory with Supersymmetry 

The number of bosons and fermions in our model are individually conserved. The

corresponding Noether charges are

NB =

Z
d2x �†� and NF =

Z
d2x  † (2.6)

The total particle number is simply the charge under the Abelian gauge group

N = NB +NF

We denote the axial combination as

R = NB �NF

This will play the role of an R-symmetry in the supersymmetry algebra.

The presence of the anomalous term in the expression for the momentum (2.4) has

an interesting e↵ect on the commutation relations. (Here we describe the quantum

commutation relations rather than classical Poisson brackets.) We find

[H, P̂ ] = �2⇡µ

mk
P̂ and [H,P ] = 0 (2.7)

So the Noether charge P is conserved, but the translationally invariant momenta P̂ †

and P̂ act as raising and lowering operators for the spectrum. Further, the conserved

momenta do not commute. We have

[P, P †] = �⇡µ
k
N (2.8)

Both (2.7) and (2.8) are similar to the commutation relations in quantum mechanics

for momenta in a magnetic field. This is because, as we will describe in more detail

below, µ acts like an e↵ective magnetic for vortices while the Gauss’ law constraint

ensures that all excitations carry some vortex charge.

When µ = 0 the theory also enjoys both a Galilean boost and, more surprisingly,

a conformal symmetry [1]. In this paper, we restrict ourselves to the non-conformal

theory with chemical potential µ > 0.

Supersymmetries

The action (2.1) enjoys two complex supersymmetries [1]. These often go by the name

of kinematical and dynamical supersymmetries. The kinematical supersymmetry is the

simpler of the two.

�1� = ✏†1 , �1 = �✏1� , �1Az = 0 , �1A0 =
⇡

mk

⇣
✏1� 

† � ✏†1 �
†
⌘

5
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for momenta in a magnetic field. This is because, as we will describe in more detail

below, µ acts like an e↵ective magnetic for vortices while the Gauss’ law constraint

ensures that all excitations carry some vortex charge.

When µ = 0 the theory also enjoys both a Galilean boost and, more surprisingly,

a conformal symmetry [1]. In this paper, we restrict ourselves to the non-conformal

theory with chemical potential µ > 0.
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This is reminiscent of the Green-Schwarz spacetime supersymmetry on the string world-

sheet. The transformation on � and  is generated by

Q1 =

Z
d2x �† (2.9)

This does not specify a transformation for A0 which does no harm as long as we allow

ourselves to impose Gauss’ law. We will see the implications of this below.

Under the dynamical supersymmetry, the fields transform as

�2� = ✏†2Dz̄ , �2 = ✏2Dz� , �2Az = � i⇡

k
✏†2 �

†

�A0 =
i⇡

mk

⇣
✏†2�

†Dz̄ � ✏2�Dz 
†
⌘

with supercharge

Q2 =

Z
d2x �†Dz̄ (2.10)

The supersymmetry algebra is

{Q1, Q
†
1} = N , {Q2, Q

†
2} =

m

2
H , {Q1, Q

†
2} = P̂ (2.11)

Note that the two supercharges generate the translationally invariant momentum P̂ ,

rather than the conserved momentum P . There is also a mild surprise in the commu-

tators of bosonic and fermionic charges1, in particular

[H,Q1] = �2⇡µ

mk
Q1 (2.12)

This means that although the kinematic supersymmetries leave the action invariant,

when µ 6= 0 they do not result in a symmetry of the spectrum. This can be traced to

the fact that Gauss’ law was required, both in the construction of the Hamiltonian (2.3)

and in the derivation of the commutators (2.12). Other commutators follow from Jacobi

identities and give [Q2, H] = [Q1, P̂ ] = [Q†
1, P̂ ] = 0 while [Q2, P̂ ] = (2/m)[H,Q1].

Finally, the commutators of the angular momentum will also be important for our

story. There’s nothing unusual about them. We have

[J , Q1] = �1

2
Q1 and [J , Q2] =

1

2
Q2 (2.13)

1We thank Nima Doroud for very useful discussions regarding this algebra.
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2. Non-Relativistic Chern-Simons-Matter Theories

We start by introducing the d = 2 + 1 non-relativistic, supersymmetric Chern-Simons

theory. The theory consists of an Abelian gauge field Aµ, coupled to complex scalar

field � and a complex fermion  . The action is

S =

Z
dtd2x

⇢
i�†D0�+ i †D0 � 1

2m
D↵�

† D↵�� 1

2m
D↵ 

† D↵ � k

4⇡
✏µ⌫⇢Aµ@⌫A⇢

�µA0 +
1

2m
 †B � ⇡

mk

�
|�|4 � µ|�|2 + 3|�|2| |2

��
(2.1)

Some conventions: the subscripts µ, ⌫, ⇢ = 0, 1, 2 run over both space and time indices,

while ↵ = 1, 2 runs over spatial indices only. The fermion carries no spinor index. Both

� and  are assigned charge 1, so the covariant derivatives read Dµ� = @µ�� iAµ� and

similarly for  . The magnetic field is B = @1A2 � @2A1. Finally | |2 =  † = �  †.

There are three parameters in the Lagrangian: the Chern-Simons level k 2 Z+, the

mass m of both bosons and fermions, and the chemical potential µ. As we will see later,

the chemical potential µ can be more fruitfully thought of as a background magnetic

field for vortices.

The first order kinetic terms mean that the action (2.1) describes bosonic and

fermionic particles, but no anti-particles. The quartic potential terms correspond to

delta function contact interactions between these particles. In the condensed matter

context, the gauge field is considered to be emergent. One of its roles is to attach flux

to particles through the Gauss’ law constraint, which arises as the equation of motion

for A0,

B =
2⇡

k

�
|�|2 + | |2 � µ

�
(2.2)

We’ll learn more about the importance of this relation later.

The action (2.1) can be constructed by starting from a relativistic Chern-Simons

theory with N = 2 supersymmetry and taking a limit in which the anti-particles

decouple. For the case µ = 0, this was first done in [1] and we review the procedure in

Appendix A. To our knowledge, the supersymmetric theory with µ 6= 0 has not been

previously constructed, although the bosonic sector of our theory is similar, but not

identical, to a model studied by Manton [10] which shares the same vortices as (2.1).

We will describe these vortices in some detail in Section 3.
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Algebra:	

The number of bosons and fermions in our model are individually conserved. The

corresponding Noether charges are

NB =

Z
d2x �†� and NF =

Z
d2x  † (2.6)

The total particle number is simply the charge under the Abelian gauge group

N = NB +NF

We denote the axial combination as

R = NB �NF

This will play the role of an R-symmetry in the supersymmetry algebra.

The presence of the anomalous term in the expression for the momentum (2.4) has

an interesting e↵ect on the commutation relations. (Here we describe the quantum

commutation relations rather than classical Poisson brackets.) We find

[H, P̂ ] = �2⇡µ

mk
P̂ and [H,P ] = 0 (2.7)

So the Noether charge P is conserved, but the translationally invariant momenta P̂ †

and P̂ act as raising and lowering operators for the spectrum. Further, the conserved

momenta do not commute. We have

[P, P †] = �⇡µ
k
N (2.8)

Both (2.7) and (2.8) are similar to the commutation relations in quantum mechanics

for momenta in a magnetic field. This is because, as we will describe in more detail

below, µ acts like an e↵ective magnetic for vortices while the Gauss’ law constraint

ensures that all excitations carry some vortex charge.

When µ = 0 the theory also enjoys both a Galilean boost and, more surprisingly,

a conformal symmetry [1]. In this paper, we restrict ourselves to the non-conformal

theory with chemical potential µ > 0.

Supersymmetries

The action (2.1) enjoys two complex supersymmetries [1]. These often go by the name

of kinematical and dynamical supersymmetries. The kinematical supersymmetry is the

simpler of the two.

�1� = ✏†1 , �1 = �✏1� , �1Az = 0 , �1A0 =
⇡

mk

⇣
✏1� 
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†
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This is reminiscent of the Green-Schwarz spacetime supersymmetry on the string world-

sheet. The transformation on � and  is generated by

Q1 =

Z
d2x �† (2.9)

This does not specify a transformation for A0 which does no harm as long as we allow

ourselves to impose Gauss’ law. We will see the implications of this below.

Under the dynamical supersymmetry, the fields transform as

�2� = ✏†2Dz̄ , �2 = ✏2Dz� , �2Az = � i⇡

k
✏†2 �

†

�2A0 =
i⇡

mk

⇣
✏†2�

†Dz̄ � ✏2�Dz 
†
⌘

with supercharge

Q2 =

Z
d2x �†Dz̄ (2.10)

The supersymmetry algebra is

{Q1, Q
†
1} = N , {Q2, Q

†
2} =

m

2
H , {Q1, Q

†
2} = P̂ (2.11)

Note that the two supercharges generate the translationally invariant momentum P̂ ,

rather than the conserved momentum P . There is also a mild surprise in the commu-

tators of bosonic and fermionic charges1, in particular

[H,Q1] = �2⇡µ

mk
Q1 (2.12)

This means that although the kinematic supersymmetries leave the action invariant,

when µ 6= 0 they do not result in a symmetry of the spectrum. This can be traced to

the fact that Gauss’ law was required, both in the construction of the Hamiltonian (2.3)

and in the derivation of the commutators (2.12). Other commutators follow from Jacobi

identities and give [Q2, H] = [Q1, P̂ ] = [Q†
1, P̂ ] = 0 while [Q2, P̂ ] = (2/m)[H,Q1].

Finally, the commutators of the angular momentum will also be important for our

story. There’s nothing unusual about them. We have

[J , Q1] = �1

2
Q1 and [J , Q2] =

1

2
Q2 (2.13)

1We thank Nima Doroud for very useful discussions regarding this algebra.
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rather than the conserved momentum P . There is also a mild surprise in the commu-

tators of bosonic and fermionic charges1, in particular

[H,Q1] = �2⇡µ

mk
Q1 (2.12)

This means that although the kinematic supersymmetries leave the action invariant,

when µ 6= 0 they do not result in a symmetry of the spectrum. This can be traced to

the fact that Gauss’ law was required, both in the construction of the Hamiltonian (2.3)

and in the derivation of the commutators (2.12). Other commutators follow from Jacobi

identities and give [Q2, H] = [Q1, P̂ ] = [Q†
1, P̂ ] = 0 while [Q2, P̂ ] = (2/m)[H,Q1].

Finally, the commutators of the angular momentum will also be important for our

story. There’s nothing unusual about them. We have

[J , Q1] = �1

2
Q1 and [J , Q2] =

1

2
Q2 (2.13)

1We thank Nima Doroud for very useful discussions regarding this algebra.
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2. Non-Relativistic Chern-Simons-Matter Theories

We start by introducing the d = 2 + 1 non-relativistic, supersymmetric Chern-Simons

theory. The theory consists of an Abelian gauge field Aµ, coupled to complex scalar

field � and a complex fermion  . The action is

S =

Z
dtd2x

⇢
i�†D0�+ i †D0 � 1

2m
D↵�

† D↵�� 1

2m
D↵ 

† D↵ � k

4⇡
✏µ⌫⇢Aµ@⌫A⇢

�µA0 +
1

2m
 †B � ⇡

mk

�
|�|4 � µ|�|2 + 3|�|2| |2

��
(2.1)

Some conventions: the subscripts µ, ⌫, ⇢ = 0, 1, 2 run over both space and time indices,

while ↵ = 1, 2 runs over spatial indices only. The fermion carries no spinor index. Both

� and  are assigned charge 1, so the covariant derivatives read Dµ� = @µ�� iAµ� and

similarly for  . The magnetic field is B = @1A2 � @2A1. Finally | |2 =  † = �  †.

There are three parameters in the Lagrangian: the Chern-Simons level k 2 Z+, the

mass m of both bosons and fermions, and the chemical potential µ. As we will see later,

the chemical potential µ can be more fruitfully thought of as a background magnetic

field for vortices.

The first order kinetic terms mean that the action (2.1) describes bosonic and

fermionic particles, but no anti-particles. The quartic potential terms correspond to

delta function contact interactions between these particles. In the condensed matter

context, the gauge field is considered to be emergent. One of its roles is to attach flux

to particles through the Gauss’ law constraint, which arises as the equation of motion

for A0,

B =
2⇡

k

�
|�|2 + | |2 � µ

�
(2.2)

We’ll learn more about the importance of this relation later.

The action (2.1) can be constructed by starting from a relativistic Chern-Simons

theory with N = 2 supersymmetry and taking a limit in which the anti-particles

decouple. For the case µ = 0, this was first done in [1] and we review the procedure in

Appendix A. To our knowledge, the supersymmetric theory with µ 6= 0 has not been

previously constructed, although the bosonic sector of our theory is similar, but not

identical, to a model studied by Manton [10] which shares the same vortices as (2.1).

We will describe these vortices in some detail in Section 3.
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Microscopic Dynamics of Relativistic Vortices 

3. A Quantum Hall Fluid of Vortices

We would like to understand how to interpolate from the vacuum to the Hall phase.

We do this by injecting vortices. These vortices are BPS which, in this context, means

that they have H = 0 and lie in a protected sector of the theory. From the form of the

Hamiltonian (2.3) and Gauss’ law (2.2), it is clear that solutions with vanishing energy,

H = 0, can be constructed by solving the equations

Dz� = 0 and B =
2⇡

k
(|�|2 � µ) (3.1)

with the fermions set to zero:  = 0.

The vortex equations (3.1) are well studied. Solutions are labelled by the integer

winding of the scalar field � or, equivalently, by the magnetic flux

n = � 1

2⇡

Z
d2x B 2 Z+ (3.2)

In the sector with winding n, the most general solution to (3.1) has 2n real parameters

[20, 21]. When vortices are well separated, these correspond to n positions on the

complex plane. The existence of these moduli reflects the fact that the coe�cient of

the quartic interaction in (2.1) has been tuned to the critical value, ensuring that there

are neither attractive nor repulsive forces between the vortices.

As vortices coalesce, they lose their individual identities and the interpretation of

these moduli changes. It is tempting to label the vortex by the point at which the

Higgs field vanishes, but this does not provide an accurate description of what the

vortex profile looks like. Instead, as we show in Section 3.4, in this regime it is better

to think of the 2n moduli as describing the edge modes of a large, incompressible fluid.

Why do Vortices Form a Fractional Quantum Hall State?

The rest of this section is devoted to a detailed analysis of the quantum dynamics of

vortices. We will ultimately show that their ground state is given by the Laughlin

wavenfunction. But here we first provide a hand-waving argument for why we expect

the vortices to form a quantum Hall fluid.

We first note that the chemical potential term µA0, present in the Lagrangian (2.1),

can be viewed as a background magnetic field for vortices. It can be written as

�
Z

d3x µA0 =

Z
d3x eJµAext

µ
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is configuration space 

3.1 The Dynamics of Vortices

We now turn to a more detailed description of the dynamics of vortices. We first

introduce the vortex moduli space, Mn, the space of solutions to the vortex equations

(3.1) with winding number n. As we have already mentioned,

dim(Mn) = 2n

The coordinates Xa, a = 1, . . . , 2n, parameterising Mn are the collective coordinates

of vortex solutions: �(x;X) and A�(x;X).

The standard approach to soliton dynamics is to assume that, at low-energies, motion

can be modelled by restricting to the moduli space [24]. This is usually applied in rela-

tivistic theories where the action is second order in time derivatives and typically pro-

vides an accurate approximation to the real dynamics. Here we have a non-relativistic

theory, first order in time derivatives, and this results in a number of di�erences which

we now explain. One ultimate surprise — which we will get to in Section 3.2 — is

that there is no approximation involved in the moduli space dynamics in this system;

instead it is exact.

The first, and most important di�erence, is associated to the meaning of the space

Mn. In relativistic theories, Mn is the configuration space of vortices and the dynamics

is captured by geodesic motion on Mn with respect to a metric gab(X). It is known

that Mn is a complex manifold, with complex structure J , and the metric gab(X) is

Kähler. For completeness, we explain how to construct this metric in Appendix B.

In our non-relativistic context, it is no longer true that Mn is the configuration space

of vortices. Instead, it is the phase space. The dynamics of the vortices is described by

a quantum mechanics action of the form,

Svortex =

�
dt Fa(X)Ẋa (3.5)

Svortex =

�
dt gab(X)ẊaẊb (3.6)

where F(X) is a one-form over Mn. Our goal is determine this one-form.

In fact, this problem has already been solved in the literature. A model which shares

its vortex dynamics with ours was previously studied by Manton [10] and subsequently,
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Microscopic view of Vortices 

The expected number of available states per unit area is                        
	
	
The area is                     .  The total number of available states is Nk.   

This, of course, is the expected filling fraction in the Hall phase with conductivity

(2.18).

eBext

2⇡
= µ ⇡R2 =

nk

µ

3.1 The Dynamics of Vortices

We now turn to a more detailed description of the dynamics of vortices. We first

introduce the vortex moduli space, Mn, the space of solutions to the vortex equations

(3.1) with winding number n. As we have already mentioned,

dim(Mn) = 2n

The coordinates Xa, a = 1, . . . , 2n, parameterising Mn are the collective coordinates

of vortex solutions: �(x;X) and A↵(x;X).

The standard approach to soliton dynamics is to assume that, at low-energies, motion

can be modelled by restricting to the moduli space [24]. This is usually applied in rela-

tivistic theories where the action is second order in time derivatives and typically pro-

vides an accurate approximation to the real dynamics. Here we have a non-relativistic

theory, first order in time derivatives, and this results in a number of di↵erences which

we now explain. One ultimate surprise — which we will get to in Section 3.2 — is

that there is no approximation involved in the moduli space dynamics in this system;

instead it is exact.

The first, and most important di↵erence, is associated to the meaning of the space

Mn. In relativistic theories, Mn is the configuration space of vortices and the dynamics

is captured by geodesic motion on Mn with respect to a metric gab(X). It is known

that Mn is a complex manifold, with complex structure J , and the metric gab(X) is

Kähler. For completeness, we explain how to construct this metric in Appendix B.

In our non-relativistic context, it is no longer true that Mn is the configuration space

of vortices. Instead, it is the phase space. The dynamics of the vortices is described by

a quantum mechanics action of the form,

Svortex =

Z
dt Fa(X)Ẋa (3.5)
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Figure 2: Two points in the moduli space of n = 7 vortices

where Jµ is the topological current (2.15) and

Aext
↵ = �Bext

2
✏↵�x

� with Bext =
2⇡µ

e
(3.3)

This means that we expect the dynamics of vortices to correspond to particles moving

in a background magnetic field. Nonetheless, it may be rather surprising that the

vortices form a Hall state because, as we have seen, there is no force between the

vortices. Yet the key physics underlying the fractional quantum Hall e↵ect is the

repulsive interactions between electrons, opening up a gap in the partially filled Landau

level.

Although there is no force between vortices, they are not point particles. Instead,

they are solitons obeying non-linear equations and, as they approach, the solutions

deform. Indeed, when the vortices are as closely packed as they can be, they form

a classically incompressible fluid as shown in the right-hand side of Figure 2. The

scalar field � has an nth order zero in the centre of the disc and numerical studies show

that the solution is well approximated as a disc of magnetic flux in which � = 0 and

B = �2⇡µ/k. This has motivated the “bag model” of vortices in [22, 23]. For us, it

means that the vortex is a droplet of what we have called the “Hall phase”.

When n vortices coalesce, the radius R of the resulting droplet can be estimated

using the flux quantisation (3.2) to be

R ⇡

s
kn

⇡µ
(3.4)

Now we can do a back-of-the-envelope calculation. In a magnetic field Bext, the number

of states per unit area in the lowest Landau level is eBext/2⇡ = µ. In an area A =

⇡R2 = nk/µ, the lowest Landau level therefore admits BextA = nk states. We’ve

placed n vortices in this region, so the filling fraction is
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Adding the Harmonic Trap 

Evaluted on vortices, the trapping potential is simply the angular momentum.  

3.2 Introducing a Harmonic Trap

We have derived a low-energy e⇥ective action (3.6) for the vortex dynamics. However,

this dynamics is boring. The equation of motion arising from (3.6) is

�abẊ
b = 0 ⇤ Ẋa = 0

The vortices don’t move. They are pinned in place.

The lack of dynamics follows because there is no force between vortices and, in a

first order system, we don’t have the luxury of giving the vortices an initial velocity.

To get something more interesting, we impose an external force on the vortices. We

will do so by introducing a harmonic trap. We want this trap to be compatible with

supersymmetry. We can do this by choosing the new Hamiltonian

Hnew = H + ⇥

⇤
J � 1

2
NF

⌅

where J is the angular momentum (2.5), NF the fermion number operator (2.6) and

⇥ dictates the strength of the trap. From (2.14), we see that this Hamiltonian remains

invariant underQ2, although notQ1. When evaluated on BPS vortices, the Hamiltonian

is simply

Hnew = �µ⇥

2

⇧
d2x |z|2B (3.7)

This new Hamiltonian is the angular momentum of a given BPS vortex configuration:

it preserves the BPS nature of vortices while shifting their energy. Evaluating (3.9)

on a vortex configuration provides a function J (X) over the vortex moduli space Mn

which governs the their low-energy dynamics,

Svortex =

⇧
dt

�
Fa(X)Ẋa � ⇥J (X)

⇥
(3.8)

We will now look at some examples of the classical dynamics dcescribed by this action.

Classical Motion in the Trap

The harmonic trap (3.9) favours those vortex solutions that are clustered towards the

origin. The lowest energy configuration now has all vortices coincident at the origin, as

in the right-hand picture in Figure 2. As we have seen, the size of this vortex is given

by (3.4), so the angular momentum of this state is

J0 ⇥ �µ

2

⇧ R

0

dr 2�r3B =
kn2

2
(3.9)
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Microscopic Dynamics of Non-Relativistic Vortices 

3. A Quantum Hall Fluid of Vortices

We would like to understand how to interpolate from the vacuum to the Hall phase.

We do this by injecting vortices. These vortices are BPS which, in this context, means

that they have H = 0 and lie in a protected sector of the theory. From the form of the

Hamiltonian (2.3) and Gauss’ law (2.2), it is clear that solutions with vanishing energy,

H = 0, can be constructed by solving the equations

Dz� = 0 and B =
2⇡

k
(|�|2 � µ) (3.1)

with the fermions set to zero:  = 0.

The vortex equations (3.1) are well studied. Solutions are labelled by the integer

winding of the scalar field � or, equivalently, by the magnetic flux

n = � 1

2⇡

Z
d2x B 2 Z+ (3.2)

In the sector with winding n, the most general solution to (3.1) has 2n real parameters

[20, 21]. When vortices are well separated, these correspond to n positions on the

complex plane. The existence of these moduli reflects the fact that the coe�cient of

the quartic interaction in (2.1) has been tuned to the critical value, ensuring that there

are neither attractive nor repulsive forces between the vortices.

As vortices coalesce, they lose their individual identities and the interpretation of

these moduli changes. It is tempting to label the vortex by the point at which the

Higgs field vanishes, but this does not provide an accurate description of what the

vortex profile looks like. Instead, as we show in Section 3.4, in this regime it is better

to think of the 2n moduli as describing the edge modes of a large, incompressible fluid.

Why do Vortices Form a Fractional Quantum Hall State?

The rest of this section is devoted to a detailed analysis of the quantum dynamics of

vortices. We will ultimately show that their ground state is given by the Laughlin

wavenfunction. But here we first provide a hand-waving argument for why we expect

the vortices to form a quantum Hall fluid.

We first note that the chemical potential term µA0, present in the Lagrangian (2.1),

can be viewed as a background magnetic field for vortices. It can be written as

�
Z

d3x µA0 =

Z
d3x eJµAext

µ
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is phase space 

3.1 The Dynamics of Vortices

We now turn to a more detailed description of the dynamics of vortices. We first

introduce the vortex moduli space, Mn, the space of solutions to the vortex equations

(3.1) with winding number n. As we have already mentioned,

dim(Mn) = 2n

The coordinates Xa, a = 1, . . . , 2n, parameterising Mn are the collective coordinates

of vortex solutions: �(x;X) and A�(x;X).

The standard approach to soliton dynamics is to assume that, at low-energies, motion

can be modelled by restricting to the moduli space [24]. This is usually applied in rela-

tivistic theories where the action is second order in time derivatives and typically pro-

vides an accurate approximation to the real dynamics. Here we have a non-relativistic

theory, first order in time derivatives, and this results in a number of di⇥erences which

we now explain. One ultimate surprise — which we will get to in Section 3.2 — is

that there is no approximation involved in the moduli space dynamics in this system;

instead it is exact.

The first, and most important di⇥erence, is associated to the meaning of the space

Mn. In relativistic theories, Mn is the configuration space of vortices and the dynamics

is captured by geodesic motion on Mn with respect to a metric gab(X). It is known

that Mn is a complex manifold, with complex structure J , and the metric gab(X) is

Kähler. For completeness, we explain how to construct this metric in Appendix B.

In our non-relativistic context, it is no longer true that Mn is the configuration space

of vortices. Instead, it is the phase space. The dynamics of the vortices is described by

a quantum mechanics action of the form,

Svortex =

�
dt Fa(X)Ẋa (3.5)

where F(X) is a one-form over Mn. Our goal is determine this one-form.

In fact, this problem has already been solved in the literature. A model which shares

its vortex dynamics with ours was previously studied by Manton [10] and subsequently,

in more geometric form, in [25, 26]. The main result of these papers is that F is an

object known as the symplectic potential. It has the property that

dF = � (3.6)

where � is the Kähler form on Mn, compatible with the metric gab and the complex

structure J .
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3.2 Introducing a Harmonic Trap

We have derived a low-energy e⇥ective action (3.6) for the vortex dynamics. However,

this dynamics is boring. The equation of motion arising from (3.6) is

�abẊ
b = 0 ⇤ Ẋa = 0

The vortices don’t move. They are pinned in place.

The lack of dynamics follows because there is no force between vortices and, in a

first order system, we don’t have the luxury of giving the vortices an initial velocity.

To get something more interesting, we impose an external force on the vortices. We

will do so by introducing a harmonic trap. We want this trap to be compatible with

supersymmetry. We can do this by choosing the new Hamiltonian

Hnew = H + ⇥

⇤
J � 1

2
NF

⌅

where J is the angular momentum (2.5), NF the fermion number operator (2.6) and

⇥ dictates the strength of the trap. From (2.14), we see that this Hamiltonian remains

invariant underQ2, although notQ1. When evaluated on BPS vortices, the Hamiltonian

is simply

Hnew = �µ⇥

2

⇧
d2x |z|2B (3.7)

This new Hamiltonian is the angular momentum of a given BPS vortex configuration:

it preserves the BPS nature of vortices while shifting their energy. Evaluating (3.9)

on a vortex configuration provides a function J (X) over the vortex moduli space Mn

which governs the their low-energy dynamics,

Svortex =

⇧
dt

�
Fa(X)Ẋa � ⇥J (X)

⇥
(3.8)

We will now look at some examples of the classical dynamics dcescribed by this action.

Classical Motion in the Trap

The harmonic trap (3.9) favours those vortex solutions that are clustered towards the

origin. The lowest energy configuration now has all vortices coincident at the origin, as

in the right-hand picture in Figure 2. As we have seen, the size of this vortex is given

by (3.4), so the angular momentum of this state is

J0 ⇥ �µ

2

⇧ R

0

dr 2�r3B =
kn2

2
(3.9)
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In our non-relativistic theory, the statement thatQ2 annihilates the soliton is stronger:

it means that Q2 does not act on the soliton phase space. This is the reason that there

are no associated fermionic zero modes.
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We will now look at some examples of the classical dynamics dcescribed by this action.
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Edge Excitations 

with complex coe⇤cients cl. Plugging this ansatz into the action (3.14), we have the

following expression for the e⇥ective dynamics of cl,

S = ⇥µ
n�

l,p=1

⇥
dt iTr(Z l�1

0 Z† p�1
0 ) c⇥l ċp +

⇤
Tr(a0 [Z

† p�1
0 , Z l�1

0 ])� ⌅Tr(Z l�1
0 Z† p�1

0 )
⌅
c⇥l cp

where we have dropped the constant contribution (3.17). We need to compute two

traces, both involving Z0 given in (3.16). The first is

⇥µTrZ l�1
0 Z† p�1

0 ⇥ �l�lp with �l =
kl

l + 1
n(n� 1) . . . (n� l)

The second trace involves a0 and can be readily computed by invoking the relationship

⌅Z0 = [a0, Z0], to give [a0, Z
† p
0 ] = �p⌅Z† p

0 . The action for the perturbations can then

be written in the simple form,

S =
n�

l=1

�l

⇥
dt (ic ⇥l ċl � ⌅lc ⇥l cl) (3.22)

S =
n�

l=1

⇥
dt (ic ⇥l ċl � ⌅lc ⇥l cl) (3.23)

This is the action for a real, chiral boson, defined on the edge of the Hall droplet.

We parameterise the perimeter of the droplet by ⇤ ⇧ [0, 2⇥R) with R given by (3.4).

The continuum excitations then take the form

c(⇤, t) =
1⌃
2⇥R

⇥�

l=�⇥

eil�/R⌃
�l

cl(t) with c�l = c⇥l

The action (3.22) is that of a chiral boson, truncated to the lowest n Fourier modes. The

zero mode is also projected out. The action is linear in both time and space derivatives

and describes modes propagating in one direction around the disc with velocity v = ⌅R.

A previous derivation of the chiral boson edge theory from the matrix model was given

in [39], albeit in a model with a di⇥erent potential. It is unclear to us how that

derivation relates to the one above.

Note that as n increases, the radius of the disc (3.4) scales as
⌃
n, while the number

of Fourier modes increases linearly with n. The density of modes therefore scales as

1/
⌃
n, suggesting the existence of a continuum d = 1+ 1 dimensional limit as n ⇤ ⌅.

22

Ground State:	

This is a classically incompressible fluid. Perturbative excitations about the ground state are described by	

This is the action for the (first n Fourier modes) of a chiral boson, describing ripples along the edge. 	
The continuum limit is the Floreanini-Jackiw action	

This is the action for a real, chiral boson, defined on the edge of the Hall droplet. We

parameterise the perimeter of the droplet by ⇥ ⌅ [0, 2�R) with R given by (3.4). The

continuum excitations then take the form

c(⇥, t) =
1⇧
2�

⇥�

l=�⇥

eil�/R
⇤

�l

l
cl(t) with c�l = c⇥l

Then the action (3.22) becomes

S = �
⇥

dtd⇥ ⇧tc ⇧�c+ (⇤R)⇧�c ⇧�c

This is the form of the action for a chiral boson proposed in [?], now truncated to

the lowest n Fourier modes. The action describes modes propagating in one direction

around the disc with velocity v = ⇤R. A previous derivation of the chiral boson edge

theory from the matrix model was given in [39], albeit in a model with a di⇥erent

potential. It is unclear to us how that derivation relates to the one above.

Note that as n increases, the radius of the disc (3.4) scales as
⇧
n, while the number

of Fourier modes increases linearly with n. The density of modes therefore scales as

1/
⇧
n, suggesting the existence of a continuum d = 1+ 1 dimensional limit as n ⇥ ⇤.

The Noncommutative Description Revisited

The original motivation for the quantum Hall matrix model was to provide a finite

n regularisation of Susskind’s non-commutative approach to quantum Hall fluids [9].

Taking the n ⇥ ⇤ limit of the matrix model, one can e⇥ectively drop the field ⌅ and

the constraint (3.12) becomes

[X1, X2] = i
2�µ

k
= i

eBext

k
We interpret this as a non-commutative plane. Expanding the action around the state

(3.16) gives rise to a Chern-Simons theory on this non-commutative plane, with fields

multiplied using the Moyal product [9]. The perspective o⇥ered here shows that this

non-commutative theory provides a hydrodynamic description of the dynamics of n ⇥
⇤ BPS vortices.

There is no harmonic trap introduced in the non-commutative Chern-Simons descrip-

tion. Because it arises from the expansion around (3.16), all perturbative excitations

of the theory are edge modes of an infinitely large disc, now consigned to asympto-

tia. However, these perturbation excitations are not the end of the story. There are

many other non-perturbative bulk excitations. These correspond to separating vortices

or, as we will see in the next section, creating a hole in the fluid of vortices. The

non-commutative Chern-Simons theory is capturing these modes.
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