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The Quantum Hall Effect

Magnetic field (T)
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The Matrix Model

The dynamics of N electrons is described by a U(N) matrix model

B p
S = /dt %Tr (Z'DZ) +i) @IDwpi— (k+p)Tra—wTr Z1Z
1=1

The fields are: U(N) gauge field a
« adjoint valued, complex matrix Z

« p fundamental vector ©;

U(N) gauge symmetry
SU(p) global symmetry

The symmetries are:

When p=1, this was previously written down by Polychronakos (2001), inspired by Susskind.




Getting a Feel for the Matrix Model

B p
S = /dt %Tr (Z'DZ) +i) @I Dpi— (k+p)Tra—wTr Z1Z

1=1

Restrict to a single electron, N=1

1B
SN=1 = /dt —ZTZ+ Zzgpﬂ?t% (k+pla—-—wZ'Z

=1

SN N

An electron in a strong magnetic A harmonic trap

field (lowest Landau level) A finite dimensional Hilbert space.

The electron carries SU(p) spin



The Matrix Model

The dynamics of N electrons is described by a U(N) matrix model

S

1B

p
— /dt 7Tr (ZTDtZ) +ing,}LDtgpi —(k+pTra—wTrZ2'Z
i=1

Results:

This describes the dynamics of N vortices in a U(p) Chern-Simons theory
The ground states are quantum Hall wavefunctions

In the large N limit, this is a WZW CFT!




Where did the Matrix Model Come From?



The Origin of the Matrix Model

B p
S:/dt %Tr (Z'DZ) +i) @I Dpi— (k+p)Tra—wTr Z1Z
1=1

Claim: This describes the dynamics of vortices in a U(p) Chern-Simons theory

Tong, ‘03; Tong and Turner ‘15




The Origin of the Matrix Model

B p
S:/dt %Tr (Z'DZ) +i) @I Dpi— (k+p)Tra—wTr Z1Z
1=1

First hint: equation of motion for o is the Gauss’ law for the matrix model

B p
512 ZN+> gl = (k+p)ly
1=1

We divide out by gauge transformations Z — UZU' and ¢ —Up withU € U(N)

These equations also describe the moduli space of vortices M in U(p) gauge theories

Hanany and Tong ‘03



Effective Description of Quantum Hall Physics

Start with U(1) theory.

47 2T

/ N\

emergent U(7) gauge field background electromagnetism

k 1
S = /d3x — —e"Pq,0,a, + —€"PA,0,a,

« This is the effective theory for the Laughlin state with v = —

o 1
« Hall conductivity is g = S
e charged particles = anyonic quasi-holes
1
- electron current  J! = —€e"P0,a,

2T



Effective Description of Quantum Hall Physics

Step 1: Add dynamical matter fields

ko L . 1 i
S = / &*r — —e"a,0,a, + —e"PA,0,a, + i Dyp — %Daqﬁ* Do¢ — %W

47 2T

dynamical quasi-hole

Note « non-relativistic matter
« contact interaction fixed point of RG



Effective Description of Quantum Hall Physics

Step 2: Turn on a background magnetic field, B

1

2m

k B
S = /de — —""a,0,a, — %ao + 1Dy —

41
/ 5

background field A; = ——¢;;2’
2

70
DongT Da¢ T ﬂ‘¢‘4

B looks like a background charge density for the fundamental excitations ¢
Gauss'’ law for a, is
27 , b
fi2 = - (\@b\ %)

o, b .
Ground state has f1o =0 and |¢|° = o This is no longer a quantum Hall state
7



Electrons as Vortices

\¢|2: ; I:> U(1) broken I:{} vortices = electrons

Vortices have a lovely property: they are BPS!

= (1o - 57

D.é =0




Electrons as Vortices

Throw in N vortices. There is no force between them, so they can sit anywhere on the plane

We add a harmonic trap: Vcrap — —w\z!2f12

ground state

—




What Did This Buy Us?

. 2kN
We have a large vortex droplet of size R ~ ?

Outside the vortex,

B
2 __
o =

Inside the vortex,

¢|* ~ 0

* Inside the vortex, we have recovered the quantum Hall ground state.

« But now we have a microscopic picture of this...it is governed by the vortex dynamics.
« This vortex dynamics is the p=7 matrix model!

» Repeat for U(p) Chern-Simons theory to get general matrix model.



Non-Abelian Hall States

Dorey, Tong and Turner, arXiv:1603.09688

Repeat with U(p) Chern-Simons theories

U(l)k/ X SU(p)k

U(p)k’,k — 7
p

We understand the vortex dynamics when k' = (k + p)p



Solving the Matrix Model



Solving the Matrix Model

B p
S:/dt %Tr (Z'DZ) +i) @I Dpi— (k+p)Tra—wTr Z1Z
1=1

. B
Quantisation: E[Zab; Zid] — 0,40 and [gpia, gp;r, b] - 5ab5ij
Hilbert Space: Introduce “vacuum” Z,;|0) = ;|0) = 0 and act with creation operators
B p

Gauge Constraint: §[Z> 77 + Z %gpz = (k+p)ly

i=1

N

Hamiltonian: H=w Z Zinba




The Quantum Ground State for p=1

Let’s start with the case p=1

B
5[27 ZT] T SOSOT — (k + 1)1]\7 I:I} » Physical states are SU(N) gauge invariant

» Physical states have specific U(1) charge

N
Y #lpa = kN

a=1

aj...a — k
ground)y, = [Nl (Ze)! ... (ZN 7o) 1710)

an
‘\\

act with k baryon operators

Polychronakos, 01
Hellerman and van Raamsdonk ‘01



The Quantum Ground State for p=1

_ k
b (2N o)l ] 0)

ground), = [e* Vol (Z)

Compare to the Laughlin states

ext ext
’Laughlin>k — H(Za _ Zb)k €_B4 > lzal? [Ecu...omz(a)lZa2 o Z;z;qk 6_34 EAE:
a<b
Closely related ‘()> — ]Laughlin>1
1
lground);, — |Laughlin)q 2% =2 > =

1

These are quantum Hall states at filling fraction = —— | _
k—+1 Karabali and Sakita, ‘01



Quasi-Hole Excitations for p=1

The matrix model also has quasi-holes. A single quasi-hole at position nis given by
i oc det(Z" —n) [ground),

Alternatively, m quasi-holes at positions n, are given by

M1, D)k X H det(Z" —n!) |ground),

1=1
These agree with the appropriate Laughlin wavefunctions at large distance

Can show explicitly that these have fractional charge and fractional statistics...

Tong and Turner ‘15



Quasi-Hole Charge

Consider one quasi-hole  |n), o det(ZT — 1) |ground); n = ret

2
[ 0

Rotate in circle. Pick up a Berry phase @(7“) = —’&/ df k<77| %|77>k

0

272 r?

Compare to expected phase picked O(r) = Pgou = 7’ B qqn =
up by a particle of charge qq

dQH

c.f. Laughlin states and the “plasma analogy”
(Arovas, Schrieffer, Wilczek ‘84)



Quasi-Hole Charge

Analytic calculation possible!

O(r) = =2 ur’ (

n

Fi(1—n,2—n—1/k mur*/k)

TR &
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Quasi-Hole Statistics

Consider two quasi-hole |0, 1)), o det(ZT) det(ZT — 77T) lground ),

Rotate one quasi-hole around the other

0

27
20%% (1) = —i/ df (0,n] 510, mr — O(r)
, 00

N =re

10
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Quasi-Hole Statistics
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The quasi-holes are anyons



The General Quantum Ground State

B P
S = /dt %Tr (Z'DZ) +i) @I Dpi— (k+p)Tra—wTr Z1Z

1=1

* The ground states now describe particles with SU(p) spin.

« They are spin singlets only when N is divisible by p.
« (Otherwise they transform in some representation of SU(p)

« They describe non-Abelian quantum Hall states with filling fraction

Dorey, Tong and Turner ‘16



The Quantum Ground State

If N is divisible by p then the ground state is an SU(p) singlet

ground)e = [ (o), - (o)l | [( @l 2oLy, | - [(Z5 )l - (250 ] ] JO)

These describe states p
with filling fraction k+p

If N not divisible by p then the ground state transforms in a representation of SU(p)

If N=q mod p then the ground |
state sits in the representation




The General Quantum Hall Ground State

« Now our particles carry spin degrees of freedom under the SU(p).
« Their long distance structure reproduces many famous wavefunctions

Examples « SU(2) at level k=1: The (2,2,1) Halperin wavefunction for spin %2 particles
N/2 N/2
T ™2 \: 1\2 T |
V(z,w) = H(Zz — 2;) H(Zk: — %) H(Zz — 2;)
i<j k<l ik

« SU(2) at level k=2: The Moore-Read wavefunction at v="2 (for spin 1 particles)

)

1<J

« SU(p) at level k=2: spin-singlet versions of Read-Rezayi states

In general, these are a class of wavefunctions constructed by Blok and Wen ‘92.



The Matrix Model as a CFT



Boundary Conformal Field Theory

Inside the vortex,
U(p) gauge symmetry
unbroken

Outside the vortex
U(p) gauge symmetry
broken

We have engineered a Chern-Simons theory with boundary...

« There should be chiral edge modes, described by a WZW conformal field theory
« These same edge modes should be excitations of vortices

|:> In the large N limit, our matrix model should be the U(p), WZW CFT!



Quantum Hall States and WZW Model

Our quantum Hall states are those of U(p) Chern-Simons theory...

... S0 should be related to the boundary U(p) WZW model

First piece of evidence: the wavefunction are correlation function of the U(p) WZW model

They obey the Knizhnik-Zamalodchikov equations

% 1 iT;‘@T;

0z, k+p

<OR(21) C. OR(ZN)> =0

Zg — R
b+a a b

ground state wavefunction



Current Algebra

The smoking gun of a WZW model is the existence of a current algebra

Construct SU(p) currents from the matrix model

Can show that’, in the large N limit, these obey a Kac-Moody algebra!

1
T Tl ~ i zljm+n Ok T ) + km GOm0 <5jk5il — ]_?5z'j5k:l>

N

central charge (including quantum shift)

" up to two conjectured identities



The Partition Function

Remarkably, the exact partition function of the matrix model can be computed exactly

Imposes Gauss’ law

p
Z = T]mel_[x;;]’i
i=1

/ Cartan elements of SU(p)

Fugacities for SU(p) Cartan

. 1
win 22 = };I 1 — tw, /wy
N p 1
2o = gg 1 —wyx;

Fugacities for SU(N) Cartan



The Partition Function for Laughlin States

For the p=71 matrix models, the computation is easy

p
7z = TrtEHa:;-]i
i=1

The answer is

N
ZO:Hll—tj
j:

This is the partition function for a single chiral boson, as expected.

c.f. Wen 1990 from the Laughlin wavefunctions



The Partition Function

For p>1, the result is more complicated

Basic Idea: « Expand components in characters of SU(N) and SU(p).

« These are symmetric polynomials known as Schur polynomials



The Partition Function

For p>1, the answer is

PR AN

Chiral boson \
Schur polynomials

Sum over partitions A related Kostka bolvhomials X\ — SA($1, Ce ey xp)
to representations of of SU(p) poly :

These relate Schur polynomials with Hall-Littlewood polynomials.

« The information about the number of vortices N lies in the partition u:

. When N is divisible by p, it is (k.kk....k) = kN

Dorey, Tong and Turner, ‘16



The Relationship to the Boundary CFT

In the large N limit, these partition functions become something nice!

N divisible by p lim  Znawix(t, ©) — Zwzw(t, ;)

N—o0

The partition function of the matrix model and WZW model coincide!

(Kirillov, “Dilogarithm identities”, 94; Nakayashiki and Yamada, ‘95)



The Relationship to the Boundary CFT

But the large N limit is subtle

N=g mod p ]\}I_I}loo Zmatrix (L, i) — X%}ZW(t,xi)

\ ~_insertion of primary operator
T & <—/7 in appropriate representation
/

This is the character of the WZW model
associated to the representation

This is the representation that the ground state of the matrix model sits in.



Summary

quantum Hall
wavefunctions

] ground state

d=0+1
matrix model

Vorte_X Excitations
dynamics
d=0+1 d=1+1 boundary

Chern-Simons Theory conformal field theory




Thank you for your attention



Supersymmetry



A 3d Theory with Supersymmetry

S = / dtd’x { Do + i) Dyrp — LD W®' Dotd — LD T Dyth — g —e"P A0, A,
7T

—pAo + %WBQA - (11" = ulgl* + 3\¢\2|¢\2)}

Two supersymmetries: 010 = e];zp 0o = Egpzw
019 = —€1¢ 021 = €D ¢
51142 =0 52147; — _Z_ﬂ'e;w¢T

iAo = — (ot —eve') 54y = T (dotDas — e20D.0)



A 3d Theory with Supersymmetry

1 1
S = / dtd?z {id"Dyd + i Doty — — D" Dyd — —Dtp" Doytp — ﬁeWPAMaVAP
2m 2m 4

1 ™ 9 20 1,12
—LLAO+%¢TB¢_ — (lpl* — pl@l* + 3|o[*|¢] )}

particle number Hamiltonian momentum

\ |

Algebra: {Qh QJ{} =N {Qza Q;} — %H {Ql: Qg} — p

o _TH __2mu
[P7P]_ kN [Han]_ mk Ql
/)[ja Ql] — _%Ql [ja Q?] — %Q2

angular momentum




Gauss’ Law

. . 1 1
S = /dtdQZC {Z¢TDO¢ T ZWD(W o —Da¢T Daqb o —DawT Doz¢ o ﬁEquAMaVAP
2m 2m A

1 T
—pAo + 5= BY — — (|6]" — plel” + 3|0 [YI°) - V}

2T
b = m (|6]* + [¥|° — 1)




Microscopic Dynamics of Relativistic Vortices

e
B = (|6l - )
D,p=0

./\/l N is configuration space Svortex _ / dt gab( X) Xa Xb



Microscopic view of Vortices

e Bext

2T

The expected number of available states per unit area is =

The areais 7wR? = N—k The total number of available states is Nk.
7!

1
— v =2




Adding the Harmonic Trap

Evaluted on vortices, the trapping potential is simply the angular momentum.

)

ground state

Svortex = /dt (J:a,(X)X“ — wj(X))



Microscopic Dynamics of Non-Relativistic Vortices

_ 2T sl? —
B="(g* — p

D,o=0

./\/l ]\ is phase space

Sures = [ dt (FuX)X" =07 (X))

/N

with JF = () the Kahler form The potential is proportional to angular momentum

W
J=-2 | & 2]°B
Manton, '97, Romao and Speight, 04 2



Edge Excitations

Ground State:

This is a classically incompressible fluid. Perturbative excitations about the ground state are described by

S = Z / dt (ic] ¢ — wle )
I=1

This is the action for the (first n Fourier modes) of a chiral boson, describing ripples along the edge.
The continuum limit is the Floreanini-Jackiw action

S = —/dtda 0ic Oy + (WR)0,c 0y



Plan for the Talk

d=0+1
matrix model

d=2+1 d=1+1 boundary
Chern-Simons Theory conformal field theory




