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The Classical Hall Effect	

When the magnetic field points in the z-direction, so thatB = (0, 0, B), and the particle

moves only in the transverse plane, so v = (ẋ, ẏ, 0), the equations of motion become

two, coupled di↵erential equations

mẍ = �eBẏ and mÿ = eBẋ (1.1)

The general solution is

x(t) = X �R sin(!Bt+ �) and y(t) = Y +R cos(!Bt+ �) (1.2)

We see that the particle moves in a circle which, for B > 0, is in
B

Figure 2:

an anti-clockwise direction. The centre of the circle, (X, Y ), the

radius of the circle R and the phase � are all arbitrary. These

are the four integration constants from solving the two second

order di↵erential equations. However, the frequency with which

the particle goes around the circle is fixed, and given by

!B =
eB

m
(1.3)

This is called the cyclotron frequency.

1.2.2 The Drude Model

Let’s now repeat this calculation with two further ingredients. The first is an electric

field, E. This will accelerate the charges and, in the absence of a magnetic field, would

result in a current in the direction of E. The second ingredient is a linear friction term,

which is supposed to capture the e↵ect of the electron bouncing o↵ whatever impedes

its progress, whether impurities, the underlying lattice or other electrons. The resulting

equation of motion is

m
dv

dt
= �eE� ev ⇥B� mv

⌧
(1.4)

The coe�cient ⌧ in the friction term is called the scattering time. It can be thought of

as the average time between collisions.

The equation of motion (1.4) is the simplest model of charge transport, treating the

mobile electrons as if they were classical billiard balls. It is called the Drude model and

we met it already in the lectures on Electromagnetism.
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applied electric field 	
in x-direction	

magnetic field 	
in z-direction	

friction = resistance	

In equilibrium, we solve for velocity v.  The solution takes the form  	
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with σ  a 2x2 matrix called the conductivity.	



The Classical Hall Effect	

We usually plot the resistivity matrix	

Although it’s not directly relevant for our story, it’s worth pausing to think about how

we actually approach equilibrium in the Hall e↵ect. We start by putting an electric field

in the x-direction. This gives rise to a current density Jx, but this current is deflected

due to the magnetic field and bends towards the y-direction. In a finite material, this

results in a build up of charge along the edge and an associated electric field Ey. This

continues until the electric field Ey cancels the bending of due to the magnetic field,

and the electrons then travel only in the x-direction. It’s this induced electric field Ey

which is responsible for the Hall voltage VH .

Resistivity vs Resistance

The resistivity is defined as the inverse of the conductivity. This remains true when

both are matrices,

⇢ = ��1 =

 
⇢xx ⇢xy

�⇢xy ⇢yy

!
(1.7)

From the Drude model, we have

⇢ =
1

�DC

 
1 !B⌧

�!B⌧ 1

!
(1.8)

The o↵-diagonal components of the resistivity tensor, ⇢xy = !B⌧/�DC , have a couple

of rather nice properties. First, they are independent of the scattering time ⌧ . This

means that they capture something fundamental about the material itself as opposed

to the dirty messy stu↵ that’s responsible for scattering.

The second nice property is to do with what we measure. Usually we measure the

resistance R, which di↵ers from the resistivity ⇢ by geometric factors. However, for

⇢xy, these two things coincide. To see this, consider a sample of material of length L

in the y-direction. We drop a voltage Vy in the y-direction and measure the resulting

current Ix in the x-direction. The transverse resistance is

Rxy =
Vy

Ix
=

LEy

LJx
=

Ey

Jx
= �⇢xy

This has the happy consequence that what we calculate, ⇢xy, and what we measure,

Rxy, are, in this case, the same. In contrast, if we measure the longitudinal resistance

Rxx then we’ll have to divide by the appropriate lengths to extract the resistivity ⇢xx.

Of course, these lectures are about as theoretical as they come. We’re not actually

going to measure anything. Just pretend.
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The classical calculation above tells us how the resistivity should change with B	

While we’re throwing di↵erent definitions around, here’s one more. For a current Ix
flowing in the x-direction, and the associated electric field Ey in the y-direction, the

Hall coe�cient is defined by

RH = � Ey

JxB
=

⇢xy
B

So in the Drude model, we have

RH =
!B

B�DC

=
1

ne

As promised, we see that the Hall coe�cient depends only on microscopic information

about the material: the charge and density of the conducting particles. The Hall

coe�cient does not depend on the scattering time ⌧ ; it is insensitive to whatever friction

processes are at play in the material.

We now have all we need to make an experimental predic-
ρ

xy

ρ
xx

B

Figure 3:

tion! The two resistivities should be

⇢xx =
m

ne2⌧
and ⇢xy =

B

ne

Note that only ⇢xx depends on the scattering time ⌧ , and ⇢xx ! 0

as scattering processes become less important and ⌧ ! 1. If

we plot the two resistivities as a function of the magnetic field,

then our classical expectation is that they should look the figure

on the right.

1.3 Quantum Hall E↵ects

Now we understand the classical expectation. And, of course, this expectation is borne

out whenever we can trust classical mechanics. But the world is governed by quantum

mechanics. This becomes important at low temperatures and strong magnetic fields

where more interesting things can happen.

It’s useful to distinguish between two di↵erent quantum Hall e↵ects which are asso-

ciated to two related phenomena. These are called the integer and fractional quantum

Hall e↵ects. Both were first discovered experimentally and only subsequently under-

stood theoretically. Here we summarise the basic facts about these e↵ects. The goal of

these lectures is to understand in more detail what’s going on.
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Integer Quantum Hall Effect	

von Klitzing, Dorda and Pepper, 1981. (Nobel prize 1985)	

1.3.1 Integer Quantum Hall E↵ect

The first experiments exploring the quantum regime of the Hall e↵ect were performed in

1980 by von Klitzing, using samples prepared by Dorda and Pepper1. The resistivities

look like this:

This is the integer quantum Hall e↵ect. For this, von Klitzing was awarded the 1985

Nobel prize.

Both the Hall resistivity ⇢xy and the longitudinal resistivity ⇢xx exhibit interesting

behaviour. Perhaps the most striking feature in the data is the that the Hall resistivity

⇢xy sits on a plateau for a range of magnetic field, before jumping suddenly to the next

plateau. On these plateau, the resistivity takes the value

⇢xy =
2⇡~
e2

1

⌫
⌫ 2 Z (1.9)

The value of ⌫ is measured to be an integer to an extraordinary accuracy — something

like one part in 109. The quantity 2⇡~/e2 is called the quantum of resistivity (with

�e, the electron charge). It is now used as the standard for measuring of resistivity.

Moreover, the integer quantum Hall e↵ect is now used as the basis for measuring

the ratio of fundamental constants 2⇡~/e2 sometimes referred to as the von Klitzing

constant. This means that, by definition, the ⌫ = 1 state in (1.9) is exactly integer!

The centre of each of these plateaux occurs when the magnetic field takes the value

B =
2⇡~n
⌫e

=
n

⌫
�

0

1K. v Klitzing, G. Dorda, M. Pepper, “New Method for High-Accuracy Determination of the Fine-
Structure Constant Based on Quantized Hall Resistance”, Phys. Rev. Lett. 45 494.
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The Fractional Quantum Hall Effect	

done in accelerating charges. The fact that this vanishes means that we have a steady

current flowing without doing any work and, correspondingly, without any dissipation.

The fact that �xx = 0 is telling us that no current is flowing in the longitudinal direction

(like an insulator) while the fact that ⇢xx = 0 is telling us that there is no dissipation

of energy (like in a perfect conductor).

1.3.2 Fractional Quantum Hall E↵ect

As the disorder is decreased, the integer Hall plateaux become less prominent. But

other plateaux emerge at fractional values. This was discovered in 1982 by Tsui and

Störmer using samples prepared by Gossard2. The resistivities look like this:

The is the fractional quantum Hall e↵ect. On the plateaux, the Hall resistivity again

takes the simple form (1.9), but now with ⌫ a rational number

⌫ 2 Q

Not all fractions appear. The most prominent plateaux sit at ⌫ = 1/3, 1/5 (not shown

above) and 2/5 but there are many more. The vast majority of these have denominators

which are odd. But there are exceptions: in particular a clear plateaux has been

observed at ⌫ = 5/2. As the disorder is decreased, more and more plateaux emerge. It

seems plausible that in the limit of a perfectly clean sample, we would get an infinite

number of plateaux which brings us back to the classical picture of a straight line for

⇢xy!

2D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-Dimensional Magnetotransport in the Extreme
Quantum Limit”, Phys. Rev. Lett. 48 (1982)1559.
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Tsui, Stormer and Gossard, 1982. (Nobel prize with Laughlin 1998)	



Understanding the Integer Quantum Hall Effect	

B	
A rough explanation:	
	
Particles go in circles but circles 	
must be compatible with de Broglie 	
wavelength	

This is allowed…	 …but this is not	

The energy of the particle depends on how many wavelengths sit in its orbit.	



Integer Quantum Hall Effect	
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n=0	 n=1	 n=2	 n=3	 n=4	

But we can place these orbits anywhere on the plane	
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Understanding the Integer Quantum Hall Effect	

The n=0 orbits can sit in many different positions	

Degeneracy

One advantage of this approach is that we can immediately see the degeneracy in each

Landau level. The wavefunction (1.20) depends on two quantum numbers, n and k but

the energy levels depend only on n. Let’s now see how large this degeneracy is.

To do this, we need to restrict ourselves to a finite region of the (x, y)-plane. We

pick a rectangle with sides of lengths Lx and Ly. We want to know how many states

fit inside this rectangle.

Having a finite size Ly is like putting the system in a box in the y-direction. We

know that the e↵ect of this is to quantise the momentum k in units of 2⇡/Ly.

Having a finite size Lx is somewhat more subtle. The reason is that, as we mentioned

above, the gauge choice (1.17) does not have manifest translational invariance in the

x-direction. This means that our argument will be a little heuristic. Because the

wavefunctions (1.20) are exponentially localised around x = �kl2B, for a finite sample

restricted to 0  x  Lx we would expect the allowed k values to range between

�Lx/l2B  k  0. The end result is that the number of states is

N =
Ly

2⇡

Z
0

�L
x

/l2
B

dk =
LxLy

2⇡l2B
=

eBA

2⇡~ (1.21)

where A = LxLy is the area of the sample. Despite the slight approximation used

above, this turns out to be the exact answer for the number of states on a torus. (One

can do better taking the wavefunctions on a torus to be elliptic theta functions).

The degeneracy (1.21) is very very large. There are
E

k

n=1

n=2

n=3

n=4

n=5

n=0

Figure 4: Landau Levels

a macroscopic number of states in each Landau level. The

resulting spectrum looks like the figure on the right, with

n 2 N labelling the Landau levels and the energy indepen-

dent of k. This degeneracy will be responsible for much of

the interesting physics of the fractional quantum Hall e↵ect

that we will meet in Section 3.

It is common to introduce some new notation to describe

the degeneracy (1.21). We write

N =
AB

�
0

with �
0

=
2⇡~
e

(1.22)

�
0

is called the quantum of flux. It can be thought of as the magnetic flux contained

within the area 2⇡l2B. It plays an important role in a number of quantum phenomena

in the presence of magnetic fields.
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Total number of states with energy En is 	

area	

The energy levels                                   with this degeneracy are called Landau levels 	
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Integer Quantum Hall Effect	

1.3.1 Integer Quantum Hall E↵ect

The first experiments exploring the quantum regime of the Hall e↵ect were performed in

1980 by von Klitzing, using samples prepared by Dorda and Pepper1. The resistivities

look like this:

This is the integer quantum Hall e↵ect. For this, von Klitzing was awarded the 1985

Nobel prize.

Both the Hall resistivity ⇢xy and the longitudinal resistivity ⇢xx exhibit interesting

behaviour. Perhaps the most striking feature in the data is the that the Hall resistivity

⇢xy sits on a plateau for a range of magnetic field, before jumping suddenly to the next

plateau. On these plateau, the resistivity takes the value

⇢xy =
2⇡~
e2

1

⌫
⌫ 2 Z (1.9)

The value of ⌫ is measured to be an integer to an extraordinary accuracy — something

like one part in 109. The quantity 2⇡~/e2 is called the quantum of resistivity (with

�e, the electron charge). It is now used as the standard for measuring of resistivity.

Moreover, the integer quantum Hall e↵ect is now used as the basis for measuring

the ratio of fundamental constants 2⇡~/e2 sometimes referred to as the von Klitzing

constant. This means that, by definition, the ⌫ = 1 state in (1.9) is exactly integer!

The centre of each of these plateaux occurs when the magnetic field takes the value

B =
2⇡~n
⌫e

=
n

⌫
�

0

1K. v Klitzing, G. Dorda, M. Pepper, “New Method for High-Accuracy Determination of the Fine-
Structure Constant Based on Quantized Hall Resistance”, Phys. Rev. Lett. 45 494.
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is counting the number of 	
fully filled Landau levels	

A full explanation of why the plateau exists needs disorder	



An Aside: Topology in Physics	

The Nobel Prize for Topology in Physics	

David Thouless	
Duncan Haldane	

Michael Kosterlitz	



An Aside: Topology in Physics	

Here’s a different way of thinking about the integer quantum Hall effect. First some basic 	
quantum mechanics	

Space is periodic:	 Momentum is discrete	
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But the converse is also true	

Space is discrete	 Momentum is periodic	
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A periodic momentum space is called the Brillouin zone	



An Aside: Topology in Physics	

An electron in a material lives 	
on a two-dimensional lattice	

Its momentum lives on a 	
two-dimensional torus	

•  Each point on this torus is a state of the electron, described by a wavefunction ψ(p)	

•  This wavefunction has a complex phase	

•  This phase can “wind” as we go around the torus. 	



An Aside: Topology and Physics	
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The TKNN formula (where T = Thouless) relates this winding to the Hall conductivity	
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First Chern number	



An Aside: Topology and Physics	
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This idea lay almost-dormant for around 30 years!	

•  Until topological insulators were discovered in 2007	

•  No magnetic fields in sight, but the same idea of 	
     winding around the Brillouin zone	
	
•  Wonderful things happen on their surface 	



Back to…the Fractional Quantum Effect	

done in accelerating charges. The fact that this vanishes means that we have a steady

current flowing without doing any work and, correspondingly, without any dissipation.

The fact that �xx = 0 is telling us that no current is flowing in the longitudinal direction

(like an insulator) while the fact that ⇢xx = 0 is telling us that there is no dissipation

of energy (like in a perfect conductor).

1.3.2 Fractional Quantum Hall E↵ect

As the disorder is decreased, the integer Hall plateaux become less prominent. But

other plateaux emerge at fractional values. This was discovered in 1982 by Tsui and

Störmer using samples prepared by Gossard2. The resistivities look like this:

The is the fractional quantum Hall e↵ect. On the plateaux, the Hall resistivity again

takes the simple form (1.9), but now with ⌫ a rational number

⌫ 2 Q

Not all fractions appear. The most prominent plateaux sit at ⌫ = 1/3, 1/5 (not shown

above) and 2/5 but there are many more. The vast majority of these have denominators

which are odd. But there are exceptions: in particular a clear plateaux has been

observed at ⌫ = 5/2. As the disorder is decreased, more and more plateaux emerge. It

seems plausible that in the limit of a perfectly clean sample, we would get an infinite

number of plateaux which brings us back to the classical picture of a straight line for

⇢xy!

2D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-Dimensional Magnetotransport in the Extreme
Quantum Limit”, Phys. Rev. Lett. 48 (1982)1559.
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Now ν is the filling fraction of the 	
lowest Landau level	

e.g.  ν=1/3	

What picks the correct choice of filled states?......Interactions!	



The Fractional Quantum Effect	

Solving problems with many interacting electrons is hard *	

* hard = no one knows how to do it.	

Laughlin wavefunction:	
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This describes a liquid of electrons	



The Fractional Quantum Hall Effect	

Laughlin’s wavefunction predicts many surprising things. Here is the most startling 	

The excitations of the ν=1/3 quantum Hall 	
state have charge	
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The indivisible electron has split into three pieces!	

Moreover, this particle is neither boson nor fermion…it is an anyon.	



Non-Abelian Quantum Hall States	

The is one more stage in the quantum Hall story…	4. Non-Abelian Quantum Hall States

The vast majority of the observed quantum Hall plateaux

Figure 39:

sit at fractions with odd denominator. As we’ve seen

above, this can be simply understood from the fermonic

nature of electrons and the corresponding need for anti-

symmetric wavefunctions. But there are some excep-

tions. Most prominent among them is the very clear

quantum Hall state observed at ⌫ = 5/2, shown in the

figure25. A similar quantum Hall state is also seen at

⌫ = 7/2.

The ⌫ = 5/2 state is thought to consist of fully filled

lowest Landau levels for both spin up and spin down

electrons, followed by a spin-polarised Landau level at

half filling. The best candidate for this state turns

out to have a number of extraordinary properties that

opens up a whole new world of interesting physics involving non-Abelian anyons. The

purpose of this section is to describe this physics.

4.1 Life in Higher Landau Levels

Until now, we’ve only looked at states in the lowest Landau level. These are charac-

terised by holomorphic polynomials and, indeed, the holomorphic structure has been

an important tool for us to understand the physics. Now that we’re talking about quan-

tum Hall states with ⌫ > 1, one might think that we lose this advantage. Fortunately,

this is not the case. As we now show, if we can neglect the coupling between di↵erent

Landau level then there’s a way to map the physics back down to the lowest Landau

level.

The first point to make is that there is a one-to-one map between Landau levels.

We saw this already in Section 1.4 where we introduced the creation and annihilation

operators a† and a which take us from one Landau level to another. Hence, given a

one-particle state in the lowest Landau level,

|mi ⇠ zme�|z|2/4l2
B

we can construct a corresponding state a†n|mi in the nth Landau level. (Note that the

counting is like the British way of numbering floors rather than the American: if you

go up one flight of stairs you’re on the first floor or, in this case, the first Landau level).
25This state was first obseved by R. Willett, J. P. Eisenstein, H. L. Stormer, D. C. Tsui, A. C.

Gossard and H. English “Observation of an Even-Denominator Quantum Number in the Fractional
Quantum Hall E↵ect”, Phys Rev Lett 59, 15 (1987). The data shown is from W. Pan et. al. Phys.
Rev. Lett. 83, 17 (1999), cond-mat/9907356.
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ν=5/2	

The most interesting physics is in the excitations above 	
the ground state	

Quantum Hall Liquid	Excitations	

The N excitations do not have a unique state. The number of states is 	
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Global Properties of Non-Abelian Anyons	

•             states is a strange number	

•  If each particle had two different states (e.g. spin up/down), we would get 	
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The state is a global property of the system. If we only have access to a subset of the 
system, there’s no way of telling which state we’re in.	

This makes these quantum states robust…	



Topological Quantum Computing	

We describe the state by a 2N/2 dimensional vector ψ	
	
Now move the particles around on some path:	
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with Upath a unitary matrix that depends on the path taken	

These particles are called non-Abelian anyons. 	
	
This allows us to do calculations in a quantum computer without errors!	



The Hall Effect and Knot Invariants	

A question in mathematics: how do you distinguish different types of knots?	



The Hall Effect and Knot Invariants	

An answer from physics: view this as the worldline of particles in a quantum Hall system	

time	

space	

Think of this as particles 	
and anti-particles appearing 	
and disappearing.	

The quantum probability for this to happen is the knot invariant	

Witten’s 1990 Fields medal	



Summary	

done in accelerating charges. The fact that this vanishes means that we have a steady

current flowing without doing any work and, correspondingly, without any dissipation.
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Störmer using samples prepared by Gossard2. The resistivities look like this:

The is the fractional quantum Hall e↵ect. On the plateaux, the Hall resistivity again

takes the simple form (1.9), but now with ⌫ a rational number

⌫ 2 Q

Not all fractions appear. The most prominent plateaux sit at ⌫ = 1/3, 1/5 (not shown

above) and 2/5 but there are many more. The vast majority of these have denominators

which are odd. But there are exceptions: in particular a clear plateaux has been

observed at ⌫ = 5/2. As the disorder is decreased, more and more plateaux emerge. It

seems plausible that in the limit of a perfectly clean sample, we would get an infinite

number of plateaux which brings us back to the classical picture of a straight line for

⇢xy!

2D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-Dimensional Magnetotransport in the Extreme
Quantum Limit”, Phys. Rev. Lett. 48 (1982)1559.

– 13 –

There’s a lot hiding in this picture!	



The End	


