The Quantum Hall Effect

David Tong

(And why these three guys won last week's Nobel prize)

Electron in a Magnetic Field

The Classical Hall Effect

$$
m \frac{d \mathbf{v}}{d t}=-e \mathbf{E}-e \mathbf{v} \times \mathbf{B}-\frac{m \mathbf{v}}{\tau}
$$

applied electric field magnetic field in x -direction in z-direction

In equilibrium, we solve for velocity v . The solution takes the form

$$
\mathbf{v}=\sigma \mathbf{E}
$$

with σ a 2×2 matrix called the conductivity.

The Classical Hall Effect

We usually plot the resistivity matrix

$$
\rho=\sigma^{-1}=\left(\begin{array}{cc}
\rho_{x x} & \rho_{x y} \\
-\rho_{x y} & \rho_{y y}
\end{array}\right)
$$

The classical calculation above tells us how the resistivity should change with B

Integer Quantum Hall Effect

von Klitzing, Dorda and Pepper, 198I. (Nobel prize 1985)

The Fractional Quantum Hall Effect

$$
\rho_{x y}=\frac{2 \pi \hbar}{e^{2}} \frac{1}{\nu} \quad \nu \in \mathbf{Q}
$$

Tsui, Stormer and Gossard, I982. (Nobel prize with Laughlin 1998)

Understanding the Integer Quantum Hall Effect

A rough explanation:

This is allowed...

...but this is not

The energy of the particle depends on how many wavelengths sit in its orbit.

Integer Quantum Hall Effect

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) \quad \omega=\frac{e B}{m}
$$

$$
n=0 \quad n=1 \quad n=2 \quad n=3 \quad n=4
$$

But we can place these orbits anywhere on the plane

Understanding the Integer Quantum Hall Effect

The $\mathrm{n}=0$ orbits can sit in many different positions

area

Total number of states with energy E_{n} is $\quad \mathcal{N}=\frac{A B}{\Phi_{0}} \quad \Phi_{0}=\frac{2 \pi \hbar}{e}$

The energy levels $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$ with this degeneracy are called Landau levels

Integer Quantum Hall Effect

$$
\rho_{x y}=\frac{2 \pi \hbar}{e^{2}} \frac{1}{\nu}
$$

$\nu \in \mathbf{Z}$ is counting the number of fully filled Landau levels

A full explanation of why the plateau exists needs disorder

An Aside: Topology in Physics

The Nobel Prize for Topology in Physics

David Thouless
Duncan Haldane
Michael Kosterlitz

An Aside: Topology in Physics

Here's a different way of thinking about the integer quantum Hall effect. First some basic quantum mechanics

But the converse is also true

Space is discrete

Momentum is periodic

$$
p \in\left[-\frac{\hbar \pi}{a}, \frac{\hbar \pi}{a}\right)
$$

A periodic momentum space is called the Brillouin zone

An Aside: Topology in Physics

An electron in a material lives on a two-dimensional lattice

Its momentum lives on a two-dimensional torus

- Each point on this torus is a state of the electron, described by a wavefunction $\psi(\mathrm{p})$
- This wavefunction has a complex phase
- This phase can "wind" as we go around the torus.

An Aside: Topology and Physics

The TKNN formula (where $T=$ Thouless) relates this winding to the Hall conductivity

$$
\sigma_{x y}=\frac{e^{2}}{2 \pi \hbar} C
$$

First Chern number

An Aside: Topology and Physics

This idea lay almost-dormant for around 30 years!

- Until topological insulators were discovered in 2007
- No magnetic fields in sight, but the same idea of winding around the Brillouin zone
- Wonderful things happen on their surface

Back to...the Fractional Quantum Effect

$$
\rho_{x y}=\frac{2 \pi \hbar}{e^{2}} \frac{1}{\nu}
$$

Now v is the filling fraction of the lowest Landau level
e.g. $v=1 / 3$

What picks the correct choice of filled states?......Interactions!

The Fractional Quantum Effect

Solving problems with many interacting electrons is hard *

Laughlin wavefunction:

$$
\psi\left(z_{i}\right)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{3} e^{-\sum_{i=1}^{n}\left|z_{i}\right|^{2} / 4 l_{B}^{2}}
$$

This describes a liquid of electrons

$$
z=x+i y
$$

$$
l_{B}=\sqrt{\frac{\hbar}{e B}}
$$

* hard = no one knows how to do it.

The Fractional Quantum Hall Effect

Laughlin's wavefunction predicts many surprising things. Here is the most startling

The excitations of the $v=1 / 3$ quantum Hall state have charge

$$
q= \pm \frac{e}{3}
$$

The indivisible electron has split into three pieces!

Moreover, this particle is neither boson nor fermion...it is an anyon.

Non-Abelian Quantum Hall States

The is one more stage in the quantum Hall story...

$$
v=5 / 2
$$

The most interesting physics is in the excitations above the ground state

$2^{N / 2}$

Global Properties of Non-Abelian Anyons

- $2^{N / 2}$ states is a strange number
- If each particle had two different states (e.g. spin up/down), we would get 2^{N}

The state is a global property of the system. If we only have access to a subset of the system, there's no way of telling which state we're in.

This makes these quantum states robust...

Topological Quantum Computing

We describe the state by a $2^{\mathrm{N} / 2}$ dimensional vector ψ
Now move the particles around on some path:

$$
\psi \mapsto U_{\text {path }} \psi
$$

with $U_{\text {path }}$ a unitary matrix that depends on the path taken

These particles are called non-Abelian anyons.

This allows us to do calculations in a quantum computer without errors!

The Hall Effect and Knot Invariants

A question in mathematics: how do you distinguish different types of knots?

The Hall Effect and Knot Invariants

An answer from physics: view this as the worldline of particles in a quantum Hall system

Think of this as particles and anti-particles appearing and disappearing.

The quantum probability for this to happen is the knot invariant

Summary

There's a lot hiding in this picture!

The End

