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1. Introduction

At the parochial distance scales accessible by experiment, the world in which we live is

governed by the Standard Model. The gauge sector is one of the most beautiful con-

structs in theoretical physics, involving an intricate interplay between chiral fermions

to ensure the cancellation of anomalies. Indeed, the matter content in one generation

forms what is arguably the simplest non-Abelian four-dimensional chiral gauge theory.

Despite the fact that the Standard Model is built around the idea of gauge symme-

try, there is a little-advertised ambiguity in the choice of gauge group. We learn in

kindergarten that we should take

G̃ = U(1)⇥ SU(2)⇥ SU(3)

But this is not quite accurate. Experimental considerations tell us only that the gauge

group is

G = G̃/�

where � is a discrete group. As we review below, the matter content of the Standard

Model is invariant under a suitably chosen Z6 subgroup of G̃. For this reason, it is

sometimes stated that one should take the gauge group to include the quotient � = Z6.
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Figure 4: � = Z3. The Abelian lines are

generated by (q, g) = (3, 0) and (0, 1)

Figure 5: � = Z6. The Abelian lines are

generated by (q, g) = (6, 0) and (0, 1)

the Standard Model obey this relationship between the charges3. Specifically, the

representations under U(1)⇥ SU(2)⇥ SU(3) are

Leptons: lL : (2,1)�3 ) (ze2, z
e
3)q = (1, 0)�3

eR : (1,1)�6 ) (ze2, z
e
3)q = (0, 0)�6

Quarks: qL : (2,3)+1 ) (ze2, z
e
3)q = (1, 1)+1

uR : (1,3)+4 ) (ze2, z
e
3)q = (0, 1)+4

dR : (1,3)�2 ) (ze2, z
e
3)q = (0, 1)�2

We could add to this the right-handed neutrino ⌫R which is a gauge singlet. The

Higgs also obeys the relationship between electric charges, sitting in the representation

(2,1)3 ) (ze2, z
e
3)q = (1, 0)3. The fact that all Standard Model fields satisfy q =

3ze2 � 2ze3 mod 6 is, of course, equivalent to the statement made in the introduction

that the Standard Model gauge group is consistent with U(1)⇥ SU(2)⇥ SU(3)/Z6.

The quotient � = Z6 allows for the richest spectrum of magnetic line operators. Now

purely magnetic operators exist for any choice of (zm2 , zm3 ) provided they are accompa-

nied by an Abelian magnetic charge 6g = 3zm2 + 2zm3 mod 6. For example, a basis of

magnetic operators is (zm2 , zm3 )g = (1, 0)1/2 and (0, 1)1/3. We can add to these Abelian

line operators with (q, g) = (6, 0) and (0, 1). The resulting spectrum is shown in Figure

5.

3Wilson lines should be thought of as the insertion of infinitely heavy particles, and so are not
directly associated to these massless, chiral fermions. Nonetheless, both sit in representations of the
gauge group with � = Z6.
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This, however, is putting cart before the horse. At present, we can only say that the

gauge group involves a quotient by �, which is a subgroup of Z6, i.e.

� = Z6, Z3, Z2 or 1

Each of these possibilities defines a di↵erent theory and, ultimately, gives rise to di↵er-

ent physics. The obvious questions are: which describes our world? And how can we

tell?

These are di�cult questions to answer. Correlation functions of local operators in

R1,3 depend only on the Lie algebra of the gauge group and are una↵ected by global

issues such as the choice of �. This means that no current experiment can distinguish

between the four possibilities1. Nonetheless, the physics in flat space can depend in

subtle ways on � (and in more dramatic ways when spacetime has interesting topology).

The purpose of this paper is to describe the crudest di↵erences between the theories:

the spectrum of line operators and the periodicities of theta angles.

The fact that the spectrum of line operators depends on the global structure of

the gauge group was emphasised by Aharony, Seiberg and Tachikawa [1]. The line

operators can be thought of as heavy electric and magnetic test particles which can be

used to probe the dynamics of the gauge fields. Roughly speaking, taking a quotient

restricts the allowed electric line operators but, in doing so, relaxes the constraint of

Dirac quantisation and so frees up the allowed magnetic line operators. The first goal

of this paper is to classify the allowed line operators for each choice of �.

The authors of [1] also explained why the periodicity of ✓-angles depends on the

global structure of the gauge group. The second goal of this paper is to understand

how the ranges of the various ✓-angles in the Standard Model are a↵ected by the choice

of �. The ✓-angle for SU(3) is much discussed and the smallness of its (un)observed

value, ✓3 . 10�10, is one of the great open problems in particle physics. In contrast

there is seemingly no mystery about the ✓-angle for SU(2) since the existence of the

anomalous global B + L symmetry means that it can always be rotated away. (As we

will see in Section 3, this argument needs a small correction.)

Finally, there is also a ✓-angle for U(1)Y hypercharge. This has received very little

attention in the literature and with good reason, for Abelian gauge groups have no finite

1The theoretical prejudice of unification suggests that � = Z6, since only then is G is a subgroup of
SU(5) or SO(10). It may well be true that this is the way Nature works. However, the philosophy of
this paper is to admit our ignorance of the ultra-violet, and instead use our knowledge of the infra-red
to restrict what we may ultimately find as we explore higher energies.
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A Warm Up: SU(N) vs SU(N)/ZN 

Following Aharony, Seiberg and Tachikawa, 2013 



Line Operators in SU(N) and SU(N)/ZN 

•  Wilson line operators: probe electric particles 
•  Labeled by transformation under center of SU(N) 

 
•  ‘t Hooft line operators: probe magnetic particles 

•  Also labeled by transformation under center 

•  Dirac quantisation requires  

Corrigan and Olive 1976 
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Figure 1: The spectrum of line operators for: a) SU(3); b) SU(3)/Z3 at ✓ = 0; c) SU(3)/Z3

at ✓ = 2⇡; d) SU(3)/Z3 at ✓ = 4⇡.

The admissible electric line operators (ze, 0) are determined by the choice of gauge

group G = G̃/�, with only those ze which are invariant under � present. The magnetic

and dyonic line operators are then restricted by Dirac quantisation. To be specific,

consider gauge groups with centre Z(G̃) = ZN . In this case both ze and zm are

integers mod N . Two lines (ze, zm) and (z0 e, z0m) can both exist as operators only if

zez0m � zmz0 e = 0 mod N (2.1)

This is the Dirac quantisation condition for non-Abelian lines. The important role

played by the centre of the gauge group in Dirac quantisation was first pointed out by

Corrigan and Olive [10].

An Example: SU(N) vs SU(N)/ZN

For g = su(N), the centre of the group is Z(SU(N)) = ZN . When the gauge group

is G = S(N), all electric line operators are allowed; that is ze = 0, 1, 2, . . . , N � 1. In

contrast, the magnetic line operators are restricted to lie on the magnetic root lattice,

meaning that zm = 0. The resulting set of line operators for SU(3) are shown in Figure

1a, plotted in the (ze, zm) lattice. The figure shows the charges extended to ze,m 2 Z;

the key physics can be seen in the grey box, which restricts to ze,m = 0, 1, 2. The lattice

is then formed by tiling this box.

For SU(N)/ZN , the only purely electric line operators lie on the root lattice. They

have (ze, zm) = (0, 0). The magnetic line operators are more interesting and there are

several, di↵erent solutions to the quantisation condition (2.1). The simplest such solu-

tion is to admit the purely magnetic line operators (0, zm) with zm = 0, 1, 2, . . . N � 1.

No further dyonic operators are then allowed. The resulting spectrum of line operators

for G = SU(3)/Z3 is shown in Figure 1b.
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Both SU(N) and SU(N)/ZN confine through condensation of magnetic monopoles 

•  For SU(N)/ZN  this is not the minimal monopole.  

•  There is an emergent ZN magnetic gauge symmetry. 
•  This changes the local dynamics when the theory is 

compactified on, say, S1 



Line Operators in the Standard Model 

The spectrum of line operators depends on the choice of 

This, however, is putting cart before the horse. At present, we can only say that the

gauge group involves a quotient by �, which is a subgroup of Z6, i.e.

� = Z6, Z3, Z2 or 1

Each of these possibilities defines a di↵erent theory and, ultimately, gives rise to di↵er-

ent physics. The obvious questions are: which describes our world? And how can we

tell?

These are di�cult questions to answer. Correlation functions of local operators in

R1,3 depend only on the Lie algebra of the gauge group and are una↵ected by global

issues such as the choice of �. This means that no current experiment can distinguish

between the four possibilities1. Nonetheless, the physics in flat space can depend in

subtle ways on � (and in more dramatic ways when spacetime has interesting topology).

The purpose of this paper is to describe the crudest di↵erences between the theories:

the spectrum of line operators and the periodicities of theta angles.

The fact that the spectrum of line operators depends on the global structure of

the gauge group was emphasised by Aharony, Seiberg and Tachikawa [1]. The line

operators can be thought of as heavy electric and magnetic test particles which can be

used to probe the dynamics of the gauge fields. Roughly speaking, taking a quotient

restricts the allowed electric line operators but, in doing so, relaxes the constraint of

Dirac quantisation and so frees up the allowed magnetic line operators. The first goal

of this paper is to classify the allowed line operators for each choice of �.

The authors of [1] also explained why the periodicity of ✓-angles depends on the

global structure of the gauge group. The second goal of this paper is to understand

how the ranges of the various ✓-angles in the Standard Model are a↵ected by the choice

of �. The ✓-angle for SU(3) is much discussed and the smallness of its (un)observed

value, ✓3 . 10�10, is one of the great open problems in particle physics. In contrast

there is seemingly no mystery about the ✓-angle for SU(2) since the existence of the

anomalous global B + L symmetry means that it can always be rotated away. (As we

will see in Section 3, this argument needs a small correction.)

Finally, there is also a ✓-angle for U(1)Y hypercharge. This has received very little

attention in the literature and with good reason, for Abelian gauge groups have no finite

1The theoretical prejudice of unification suggests that � = Z6, since only then is G is a subgroup of
SU(5) or SO(10). It may well be true that this is the way Nature works. However, the philosophy of
this paper is to admit our ignorance of the ultra-violet, and instead use our knowledge of the infra-red
to restrict what we may ultimately find as we explore higher energies.
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Figure 2: � = 1. The Abelian lines are

generated by (q, g) = (1, 0) and (0, 1)

Figure 3: � = Z2. The Abelian lines are

generated by (q, g) = (2, 0) and (0, 1)

The resulting electric and magnetic charges of line operators are depicted in Figure

2. This, and subsequent figures, show the four possible (ze2, z
m
2 ) charges superposed on

the nine possible (ze3, z
m
3 ) charges. In this case, we can add Abelian line operators with

(q, g) = (1, 0) and (q, g) = (0, 1).

� = Z2: Wilson lines must now be invariant under ⇠3 This means that electric lines

with ze2 = 0 must have q even, while those with ze2 = 1 must have q odd. Each of these

can have any ze3 = 0, 1, 2.

The quantization condition condition (3.1) still requires zm3 = 0 mod 3. However, now

magnetic lines exist with zm2 = 1 provided they are accompanied by Abelian magnetic

charge g = 1
2 . We can add to these Abelian line operators with (q, g) = (2, 0) and

(q, g) = (0, 1). The resulting spectrum of line operators is that of U(2)⇥ SU(3) and is

shown in Figure 3.

� = Z3: Wilson lines must now be invariant under ⇠2. This mean that electric lines

must have q = ze3 mod 3. Each of these can have any ze2 = 0, 1.

The quantization condition condition (3.1) now allows lines with SU(3) magnetic

charge zm3 = 0, 1, 2, as long as they are accompanied by Abelian magnetic charge

g = zm3 /3. No SU(2) magnetic charge is allowed: zm2 = 0 mod 2. We can add to these

Abelian line operators with (q, g) = (3, 0) and (q, g) = (0, 1). The resulting spectrum

of line operators is that of SU(2)⇥ U(3) and is shown in Figure 4.

� = Z6: Purely electric operators are invariant under ⇠. This means that the Abelian

charge is q = 3ze2 � 2ze3 mod 6. It is noticeable that all fundamental fermions in

8

3. Line Operators in the Standard Model

In this section, we extend the analysis of [1] to the non-connected gauge group

G =
U(1)Ỹ ⇥ SU(2)⇥ SU(3)

�

where � ✓ Z6. The quotient group � lies in the centres of SU(2) and SU(3), combined

with a suitable U(1)Ỹ rotation. The quotient � = Z6 is generated by

⇠ = e2⇡iq/6 ⌦ ⌘ ⌦ !

where ⌘ 2 Z(SU(2)) obeys ⌘2 = 1 and ! 2 Z(SU(3)) obeys !3 = 1 and q is the U(1)Ỹ
charge. The quotient � = Z3 is generated by ⇠2 and the quotient � = Z2 is generated

by ⇠3.

Line operators are now labelled by three electric charges and three magnetic charges,

one pair for each factor of the gauge group. As reviewed in Section 2, for non-Abelian

gauge groups the line operators fall into classes, labelled by ze2, z
m
2 = 0, 1 for SU(2)

and ze3, z
m
3 = 0, 1, 2 for SU(3). We also require the additional labels (q, g) to describe

the electric and magnetic charge under U(1)Ỹ . We chose conventions2 such that q 2 Z

and, in the absence of any discrete quotient, g 2 Z as well. However, as we will see,

the presence of a discrete quotient � 6= 1 means that g can take fractional values.

The Dirac quantisation condition is simplest to state between purely electric and

purely magnetic lines: it is

(�1)z
e
2z

m
2 (e2⇡i/3)z

e
3z

m
3 e�2⇡iqg = 1

Or, equivalently,

3ze2z
m
2 + 2ze3z

m
3 � 6qg 2 6Z (3.1)

We deal with each choice of � = 1, Z2, Z3 and Z6 in turn. We start by describing

the spectrum of line operators when ✓ = 0 for each factor of the gauge group; we will

subsequently see how the spectrum changes with ✓.

� = 1: With no quotient, there is no restriction on the allowed electric line operators:

the theory contains Wilson lines with charges ze = 0, 1 and ze3 = 0, 1, 2, dressed with

any Abelian q 2 Z. Solutions to (3.1) then require zm2 = 0 mod 2 and zm3 = 0 mod 3

while g 2 Z.

2The convention that charges under U(1)Ỹ are integer valued is standard in more formal areas of
field theory, but di↵ers from the usual normalisation of hypercharge in the Standard Model, which is
given by Y = Ỹ /6.
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Together with U(1) line operators with (q,g) = (1,0) and (0,1) 
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the Standard Model obey this relationship between the charges3. Specifically, the

representations under U(1)⇥ SU(2)⇥ SU(3) are

Leptons: lL : (2,1)�3 ) (ze2, z
e
3)q = (1, 0)�3

eR : (1,1)�6 ) (ze2, z
e
3)q = (0, 0)�6

Quarks: qL : (2,3)+1 ) (ze2, z
e
3)q = (1, 1)+1

uR : (1,3)+4 ) (ze2, z
e
3)q = (0, 1)+4

dR : (1,3)�2 ) (ze2, z
e
3)q = (0, 1)�2

We could add to this the right-handed neutrino ⌫R which is a gauge singlet. The

Higgs also obeys the relationship between electric charges, sitting in the representation

(2,1)3 ) (ze2, z
e
3)q = (1, 0)3. The fact that all Standard Model fields satisfy q =

3ze2 � 2ze3 mod 6 is, of course, equivalent to the statement made in the introduction

that the Standard Model gauge group is consistent with U(1)⇥ SU(2)⇥ SU(3)/Z6.

The quotient � = Z6 allows for the richest spectrum of magnetic line operators. Now

purely magnetic operators exist for any choice of (zm2 , zm3 ) provided they are accompa-

nied by an Abelian magnetic charge 6g = 3zm2 + 2zm3 mod 6. For example, a basis of

magnetic operators is (zm2 , zm3 )g = (1, 0)1/2 and (0, 1)1/3. We can add to these Abelian

line operators with (q, g) = (6, 0) and (0, 1). The resulting spectrum is shown in Figure

5.

3Wilson lines should be thought of as the insertion of infinitely heavy particles, and so are not
directly associated to these massless, chiral fermions. Nonetheless, both sit in representations of the
gauge group with � = Z6.
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that the Standard Model gauge group is consistent with U(1)⇥ SU(2)⇥ SU(3)/Z6.

The quotient � = Z6 allows for the richest spectrum of magnetic line operators. Now

purely magnetic operators exist for any choice of (zm2 , zm3 ) provided they are accompa-

nied by an Abelian magnetic charge 6g = 3zm2 + 2zm3 mod 6. For example, a basis of

magnetic operators is (zm2 , zm3 )g = (1, 0)1/2 and (0, 1)1/3. We can add to these Abelian

line operators with (q, g) = (6, 0) and (0, 1). The resulting spectrum is shown in Figure

5.

3Wilson lines should be thought of as the insertion of infinitely heavy particles, and so are not
directly associated to these massless, chiral fermions. Nonetheless, both sit in representations of the
gauge group with � = Z6.
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condenses and 

Denote electric and magnetic charges as Q and G (such that electron has Q=-1) 

Qmin=1/6 
Gmin=6 

3. Line Operators in the Standard Model

In this section, we extend the analysis of [1] to the non-connected gauge group

G =
U(1)Ỹ ⇥ SU(2)⇥ SU(3)

�

where � ✓ Z6. The quotient group � lies in the centres of SU(2) and SU(3), combined

with a suitable U(1)Ỹ rotation. The quotient � = Z6 is generated by

⇠ = e2⇡iq/6 ⌦ ⌘ ⌦ !

where ⌘ 2 Z(SU(2)) obeys ⌘2 = 1 and ! 2 Z(SU(3)) obeys !3 = 1 and q is the U(1)Ỹ
charge. The quotient � = Z3 is generated by ⇠2 and the quotient � = Z2 is generated

by ⇠3.

Line operators are now labelled by three electric charges and three magnetic charges,

one pair for each factor of the gauge group. As reviewed in Section 2, for non-Abelian

gauge groups the line operators fall into classes, labelled by ze2, z
m
2 = 0, 1 for SU(2)

and ze3, z
m
3 = 0, 1, 2 for SU(3). We also require the additional labels (q, g) to describe

the electric and magnetic charge under U(1)Ỹ . We chose conventions2 such that q 2 Z

and, in the absence of any discrete quotient, g 2 Z as well. However, as we will see,

the presence of a discrete quotient � 6= 1 means that g can take fractional values.

The Dirac quantisation condition is simplest to state between purely electric and

purely magnetic lines: it is

(�1)z
e
2z

m
2 (e2⇡i/3)z

e
3z

m
3 e�2⇡iqg = 1

Or, equivalently,

3ze2z
m
2 + 2ze3z

m
3 � 6qg 2 6Z (3.1)

We deal with each choice of � = 1, Z2, Z3 and Z6 in turn. We start by describing

the spectrum of line operators when ✓ = 0 for each factor of the gauge group; we will

subsequently see how the spectrum changes with ✓.

� = 1: With no quotient, there is no restriction on the allowed electric line operators:

the theory contains Wilson lines with charges ze = 0, 1 and ze3 = 0, 1, 2, dressed with

any Abelian q 2 Z. Solutions to (3.1) then require zm2 = 0 mod 2 and zm3 = 0 mod 3

while g 2 Z.

2The convention that charges under U(1)Ỹ are integer valued is standard in more formal areas of
field theory, but di↵ers from the usual normalisation of hypercharge in the Standard Model, which is
given by Y = Ỹ /6.
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Figure 2: � = 1. The Abelian lines are

generated by (q, g) = (1, 0) and (0, 1)

Figure 3: � = Z2. The Abelian lines are

generated by (q, g) = (2, 0) and (0, 1)

The resulting electric and magnetic charges of line operators are depicted in Figure

2. This, and subsequent figures, show the four possible (ze2, z
m
2 ) charges superposed on

the nine possible (ze3, z
m
3 ) charges. In this case, we can add Abelian line operators with

(q, g) = (1, 0) and (q, g) = (0, 1).

� = Z2: Wilson lines must now be invariant under ⇠3 This means that electric lines

with ze2 = 0 must have q even, while those with ze2 = 1 must have q odd. Each of these

can have any ze3 = 0, 1, 2.

The quantization condition condition (3.1) still requires zm3 = 0 mod 3. However, now

magnetic lines exist with zm2 = 1 provided they are accompanied by Abelian magnetic

charge g = 1
2 . We can add to these Abelian line operators with (q, g) = (2, 0) and

(q, g) = (0, 1). The resulting spectrum of line operators is that of U(2)⇥ SU(3) and is

shown in Figure 3.

� = Z3: Wilson lines must now be invariant under ⇠2. This mean that electric lines

must have q = ze3 mod 3. Each of these can have any ze2 = 0, 1.

The quantization condition condition (3.1) now allows lines with SU(3) magnetic

charge zm3 = 0, 1, 2, as long as they are accompanied by Abelian magnetic charge

g = zm3 /3. No SU(2) magnetic charge is allowed: zm2 = 0 mod 2. We can add to these

Abelian line operators with (q, g) = (3, 0) and (q, g) = (0, 1). The resulting spectrum

of line operators is that of SU(2)⇥ U(3) and is shown in Figure 4.

� = Z6: Purely electric operators are invariant under ⇠. This means that the Abelian

charge is q = 3ze2 � 2ze3 mod 6. It is noticeable that all fundamental fermions in
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•  For Z3 and Z6, the naïve Dirac quantisation, QG integer, does not hold 
•  Magnetic monopole also carries colour magnetic charge 

•  Black hole physics suggests all possible charges arise as dynamical 
objects 

Comments 

(Banks and Seiberg, 2010) 



Theta Angles in the Standard Model 

The periodicity of theta angles depends on the choice of 

This, however, is putting cart before the horse. At present, we can only say that the

gauge group involves a quotient by �, which is a subgroup of Z6, i.e.

� = Z6, Z3, Z2 or 1

Each of these possibilities defines a di↵erent theory and, ultimately, gives rise to di↵er-

ent physics. The obvious questions are: which describes our world? And how can we

tell?

These are di�cult questions to answer. Correlation functions of local operators in

R1,3 depend only on the Lie algebra of the gauge group and are una↵ected by global

issues such as the choice of �. This means that no current experiment can distinguish

between the four possibilities1. Nonetheless, the physics in flat space can depend in

subtle ways on � (and in more dramatic ways when spacetime has interesting topology).

The purpose of this paper is to describe the crudest di↵erences between the theories:

the spectrum of line operators and the periodicities of theta angles.

The fact that the spectrum of line operators depends on the global structure of

the gauge group was emphasised by Aharony, Seiberg and Tachikawa [1]. The line

operators can be thought of as heavy electric and magnetic test particles which can be

used to probe the dynamics of the gauge fields. Roughly speaking, taking a quotient

restricts the allowed electric line operators but, in doing so, relaxes the constraint of

Dirac quantisation and so frees up the allowed magnetic line operators. The first goal

of this paper is to classify the allowed line operators for each choice of �.

The authors of [1] also explained why the periodicity of ✓-angles depends on the

global structure of the gauge group. The second goal of this paper is to understand

how the ranges of the various ✓-angles in the Standard Model are a↵ected by the choice

of �. The ✓-angle for SU(3) is much discussed and the smallness of its (un)observed

value, ✓3 . 10�10, is one of the great open problems in particle physics. In contrast

there is seemingly no mystery about the ✓-angle for SU(2) since the existence of the

anomalous global B + L symmetry means that it can always be rotated away. (As we

will see in Section 3, this argument needs a small correction.)

Finally, there is also a ✓-angle for U(1)Y hypercharge. This has received very little

attention in the literature and with good reason, for Abelian gauge groups have no finite

1The theoretical prejudice of unification suggests that � = Z6, since only then is G is a subgroup of
SU(5) or SO(10). It may well be true that this is the way Nature works. However, the philosophy of
this paper is to admit our ignorance of the ultra-violet, and instead use our knowledge of the infra-red
to restrict what we may ultimately find as we explore higher energies.
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Theta Angles 

3.1 Theta Angles

We can now ask how the spectrum of line operators changes as we vary the ✓-angles.

A priori, there are three such angles, one for each factor of the gauge group. We call

these ✓Ỹ , ✓2 and ✓3. Within the framework discussed in this paper it makes sense to

ask how the line operators vary under each of these.

Before we proceed, it is worth reviewing the role of theta angles in the Standard

Model. The most discussed is the QCD theta angle, ✓3. Bounds on strong CP violation

restrict ✓3 . 10�10. (The value ✓3 = ⇡ also preserves CP but the meson spectrum

derived from the chiral Lagrangian di↵ers from the observed values [14, 15].)

It is usually stated that the weak theta angle, ✓2, can be rotated away in the Standard

Model . This follows from the existence of an anomalous global symmetry B+L ! ZNf

where Nf = 3 is the number of generations. We will revisit this below.

Finally, there is very little, if any, discussion of the theta angle for hypercharge

✓Ỹ . This changes neither the spectrum nor correlation functions of local operators.

Nonetheless, it can play a role in the presence of magnetic monopoles or boundaries of

space. Correspondingly, it also changes the spectrum of line operators.

Here we start by ignoring the e↵ects of global anomalies and focus on the spectrum

of line operators and the Witten e↵ect. As reviewed in Section 2, for simple gauge

groups, a quotient by the centre has the e↵ect of extending the range of ✓. In the

present context, the quotient � = Zp extends the range of the Abelian theta angle

only4. We have

✓2, ✓3 2 [0, 2⇡) and ✓Ỹ 2 [0, 2⇡p2) (3.2)

This is simplest to see for the case of Z2 and Z3 where the gauge group is G = U(2)⇥
SU(3) and G = SU(2)⇥ U(3) respectively. Here

U(N) =
U(1)⇥ SU(N)

ZN

We denote the U(1) gauge field as ã, the SU(N) gauge field as a and their corresponding

field strengths as f̃ and f . The theta terms for the U(1)⇥ SU(N) theory are

S✓ =
✓N
16⇡2

Z
tr (f ?f) +

✓̃

16⇡2

Z
f̃ ?f̃

4For the hypercharge with normalisation Y = Ỹ /6, the range is 36✓Y 2 [0, 2⇡p2), so ✓Y 2 [0, 2⇡)
when � = Z6.
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The surviving angles are      and 

3.1 Theta Angles

We can now ask how the spectrum of line operators changes as we vary the ✓-angles.

A priori, there are three such angles, one for each factor of the gauge group. We call

these ✓Ỹ , ✓2 and ✓3. Within the framework discussed in this paper it makes sense to

ask how the line operators vary under each of these.

Before we proceed, it is worth reviewing the role of theta angles in the Standard

Model. The most discussed is the QCD theta angle, ✓3. Bounds on strong CP violation

restrict ✓3 . 10�10. (The value ✓3 = ⇡ also preserves CP but the meson spectrum

derived from the chiral Lagrangian di↵ers from the observed values [14, 15].)

It is usually stated that the weak theta angle, ✓2, can be rotated away in the Standard

Model . This follows from the existence of an anomalous global symmetry B+L ! ZNf

where Nf = 3 is the number of generations. We will revisit this below.

Finally, there is very little, if any, discussion of the theta angle for hypercharge

✓Ỹ . This changes neither the spectrum nor correlation functions of local operators.

Nonetheless, it can play a role in the presence of magnetic monopoles or boundaries of

space. Correspondingly, it also changes the spectrum of line operators.

Here we start by ignoring the e↵ects of global anomalies and focus on the spectrum

of line operators and the Witten e↵ect. As reviewed in Section 2, for simple gauge

groups, a quotient by the centre has the e↵ect of extending the range of ✓. In the

present context, the quotient � = Zp extends the range of the Abelian theta angle

only4. We have

✓2, ✓3 2 [0, 2⇡) and ✓Ỹ 2 [0, 2⇡p2) (3.2)

This is simplest to see for the case of Z2 and Z3 where the gauge group is G = U(2)⇥
SU(3) and G = SU(2)⇥ U(3) respectively. Here

U(N) =
U(1)⇥ SU(N)

ZN

We denote the U(1) gauge field as ã, the SU(N) gauge field as a and their corresponding

field strengths as f̃ and f . The theta terms for the U(1)⇥ SU(N) theory are

S✓ =
✓N
16⇡2

Z
tr (f ?f) +

✓̃

16⇡2

Z
f̃ ?f̃

4For the hypercharge with normalisation Y = Ỹ /6, the range is 36✓Y 2 [0, 2⇡p2), so ✓Y 2 [0, 2⇡)
when � = Z6.

10



The QCD Theta Angle 

3.1 Theta Angles

We can now ask how the spectrum of line operators changes as we vary the ✓-angles.

A priori, there are three such angles, one for each factor of the gauge group. We call
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There is no observed CP violation from the strong force. Experiment bounds  

How do we know that θ3 is not close to π? The chiral Lagrangian tells us  

(Crewther, Di Vecchia, Veneziano and Witten 1979) 
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Is there a cleaner argument? 



Yang-Mills at θ=π  

(Gaiotto, Kapustin, Komargodski, Seiberg 2017) 

SU(N) 

T-invariant at  
θ=π  

SU(N)/ZN 

T-invariant at  
θ=Nπ  Gauge ZN  

1-form symmetry 

This is a mixed anomaly in time reversal and ZN center symmetry at θ=π  

•  Time reversal is spontaneously broken 
•  Theory is a TQFT 
•  Theory is not gapped 

‘t Hooft anomaly 
matching in infra-red 

or 
or 



QCD at θ=π  

Work in progress with Zohar Komargodski 

U(1) x SU(N)  
with quarks 

T-invariant at  
θΝ= 0 and θ1= π 

U(N) 
with quarks 

Gauge ZN  
1-form symmetry 

•  There is again an anomaly when θΝ = π 	

•  There is also, now, a massless photon 
•  This does not appear to be sufficient to absorb the anomaly  

T-invariant at  
θΝ= 0 and θ1=N2π 

T-invariant at  
θΝ= π and θ1= 0 

T-invariant at  
θΝ= π and θ1=Nπ 



Further Questions 

What are the physical implications of the different quotients? 

How can we tell which gauge group describes our world? 


