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Abstract: Our final lecture is on domain walls (also known as kinks). We do all the

usual stuff: solutions, moduli spaces, brane constructions. We focus in the applications

on the relationship between kinks and monopoles, leading to a quantitative correspon-

dence between 2d sigma models and 4d gauge theories. Further applications to the 2d

black hole, and 3d Chern-Simons-Higgs theories are also described.
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4. Domain Walls

So far we’ve considered co-dimension 4 instantons, co-dimension 3 monopoles and co-

dimension 2 vortices. We now come to co-dimension 1 domain walls, or kinks as they’re

also known. While BPS domain walls exist in many supersymmetric theories (for

example, in Wess-Zumino models [1]), there exists a special class of domain walls that

live in gauge theories with 8 supercharges. They were first studied by Abraham and

Townsend [2] and have rather special properties. These will be the focus of this lecture.

As we shall explain below, the features of these domain walls are inherited from the

other solitons we’ve met, most notably the monopoles.

4.1 The Basics

To find domain walls, we need to deform our theory one last time. We add masses

mi for the fundamental scalars qi. Our Lagrangian is that of a U(Nc) gauge theory,

coupled to a real adjoint scalar field φ and Nf fundamental scalars qi

S =

∫

d4x Tr

(

1

2e2
F µνFµν +

1

e2
(Dµφ)2

)

+

Nf
∑

i=1

|Dµqi|
2

−

Nf
∑

i=1

q†i (φ−mi)
2qi −

e2

4
Tr (

Nf
∑

i=1

qiq
†
i − v2 1N)2 (4.1)

Notice the way the masses mix with φ, so that the true mass of each scalar is |φ−mi|.

Adding masses in this way is consistent with N = 2 supersymmetry. We’ll pick all

masses to be distinct and, without loss of generality, choose

mi < mi+1 (4.2)

As in Lecture 3, there are vacua with V = 0 only if Nf ≥ Nc. The novelty here is that,

for Nf > Nc, we have multiple isolated vacua. Each vacuum is determined by a choice

of Nc distinct elements from a set of Nf

Ξ = {ξ(a) : ξ(a) 6= ξ(b) for a 6= b} (4.3)

where a = 1, . . . , Nc runs over the color index, and ξ(a) ∈ {1, . . . , Nf}. Let’s set

ξ(a) < ξ(a + 1). Then, up to a Weyl transformation, we can set the first term in the

potential to vanish by

φ = diag(mξ(1), . . . , mξ(Nc)) (4.4)
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This allows us to turn on the particular components qa
i ∼ δa

i=ξ(a) without increasing

the energy. To cancel the second term in the potential, we require

qa
i = vδa

i=ξ(a) (4.5)

The number of vacua of this type is

Nvac =

(

Nf

Nc

)

=
Nf !

Nc!(Nf −Nc)!
(4.6)

Each vacuum has a mass gap in which there are N 2
c gauge bosons with M 2

γ = e2v2 +

|mξ(a)−mξ(b)|
2, and Nc(Nf −Nc) quark fields with mass M 2

q = |mξ(a)−mi|2 with i /∈ Ξ.

Turning on the masses has explicitly broken the SU(Nf ) flavor symmetry to

SU(Nf ) → U(1)
Nf−1
F (4.7)

while the U(Nc) gauge group is also broken completely in the vacuum. (Strictly speak-

ing it is a combination of the U(Nc) gauge group and U(1)
Nf−1
F that survives in the

vacuum).

4.2 Domain Wall Equations

The existence of isolated vacua implies the existence of a domain wall, a configuration

that interpolates from a given vacuum Ξ− at x3 → −∞ to a distinct vacuum Ξ+ at

x3 → +∞. As in each previous lecture, we can derive the first order equations satisfied

by the domain wall using the Bogomoln’yi trick. We’ll chose x3 to be the direction

transverse to the wall, and set ∂0 = ∂1 = ∂3 = 0 as well as A0 = A1 = A2 = 0. The

tension of the domain wall can be written as [39]

Twall =

∫

dx3 1

e2
Tr



D3φ+
e2

2
(

Nf
∑

i=1

qiq
†
i − v2)





2

−D3φ (

Nf
∑

i=1

qiq
†
i − v2)

+

Nf
∑

i=1

(

|D3qi + (φ−mi)qi|
2 − q†i (φ−mi)D3qi −D3q

†
i (φ−mi)qi

)

≥ v2 [Trφ]+∞

−∞ (4.8)

With our vacua Ξ− and Ξ+ at left and right infinity, we have the tension of the domain

wall bounded by

Twall ≥ v2[Trφ]+∞
−∞ = v2

∑

i∈Ξ+

mi − v2
∑

i∈Ξ
−

mi (4.9)
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and the minus signs have been chosen so that this quantity is positive (if this isn’t the

case we must swap left and right infinity and consider the anti-wall). The bound is

saturated when the domain wall equations are satisfied,

D3φ = −
e2

2
(

Nf
∑

i=1

qiq
†
i − v2) , D3qi = −(φ−mi)qi (4.10)

Just as the monopole equations Dφ = B arise as the dimensional reduction of the

instanton equations F = ?F , so the domain wall equations (4.10) arise from the di-

mensional reduction of the vortex equations. To see this, we look for solutions to the

vortex equations with ∂2 = 0 and relabel x1 → x3 and (A1, A2) → (A3, φ). Finally, the

analogue of turning on the vev in going from the instanton to the monopole, is to turn

on the masses mi in going from the vortex to the domain wall. These can be thought

of as a ”vev” for SU(Nf ) the flavor symmetry.

4.2.1 An Example

The simplest theory admitting a domain wall is U(1) with Nf = 2 scalars qi. The

domain wall equations are

∂3φ = −
e2

2
(|q1|

2 + |q2|
2 − v2) , D3qi = −(φ−mi)qi (4.11)

We’ll chose m2 = −m1 = m. The general solution to these equations is not known.

The profile of the wall depends on the value of the dimensionless constant γ = e2v2/m2.

For γ � 1, the wall can be shown to have a three layer structure, in which the qi fields

decrease to zero in the outer layers, while φ interpolates between its two expectation

values at a more leisurely pace [3]. The result is a domain wall with width Lwall ∼

m/e2v2. Outside of the wall, the fields asymptote exponentially to their vacuum values.

In the opposite limit γ � 1, the inner segment collapses and the two outer layers

coalesce, leaving us with a domain wall of width Lwall ∼ 1/m. In fact, if we take the

limit e2 → ∞, the first equation (4.11) becomes algebraic while the second is trivially

solved. We find the profile of the domain wall to be [4]

q1 =
v

A
e−m(x3−X)+iθ , q2 =

v

A
e+m(x3−X)−iθ (4.12)

where A2 = e−2m(x3−X) + e+2m(x3−X).

The solution (4.12) that we’ve found in the e2 → ∞ limit has two collective coordi-

nates, X and θ. The former is simply the position of the domain wall in the transverse
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Figure 1: The three layer structure of the domain wall when e2v2 � m2.

x3 direction. The latter is also easy to see: it arises from acting on the domain wall

with the U(1)F flavor symmetry of the theory [2]:

U(1)F : q1 → eiθq1 , q2 → e−iθq2 (4.13)

In each vacuum, this coincides with the U(1) gauge symmetry. However, in the interior

of the domain wall, it acts non-trivially, giving rise to a phase collective coordinate θ for

the solution. It can be shown that X and θ remain the only two collective coordinates

of the domain wall when we return to finite e2 [5].

4.2.2 Classification of Domain Walls

So we see above that the simplest domain wall has two collective coordinates. What

about the most general domain wall, characterized by the choice of vauca Ξ− and

Ξ+ at left and right infinity. At first sight it appears a little daunting to classify these

objects. After all, a strict classification of the topological charge requires a statement of

the vacuum at left and right infinity, and the number of vacua increases exponentially

with Nf . To ameliorate this sense of confusion, it will help to introduce a coarser

classification of domain walls which will capture some information about the topological

sector, without specifying the vacua completely. This classification, introduced in [6],

will prove most useful when relating our domain walls to the other solitons we’ve met

previously. To this end, define the Nf -vector

~m = (m1, . . . , mNf
) (4.14)

We can then write the tension of the domain wall as

Twall = v2~g · ~m (4.15)
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which defines a vector ~g that contains entries 0 and ±1 only. Following the classification

of monopoles in Lecture 2, let’s decompose this vector as

~g =

Nf
∑

i=1

ni~αi (4.16)

with ni ∈ Z and the ~αi the simple roots of su(Nf),

~α1 = (1,−1, 0, . . . , 0)

~α2 = (0, 1,−1, . . . , 0)

~αNf−1 = (0, . . . , 0, 1,−1)

Since the vector ~g can only contain 0’s, 1’s and −1’s, the integers ni cannot be arbitrary.

It’s not hard to see that this restriction means that neighboring ni’s are either equal

or differ by one: ni = ni+1 or ni = ni+1 ± 1.

4.3 The Moduli Space

A choice of ~g does not determine a choice of vacua at left and right infinity. Neverthe-

less, domain wall configurations which share the same ~g share certain characteristics,

including the number of collective coordinates. The collective coordinates carried by

a given domain wall was calculated in a number of situations in [7, 8, 9]. Using our

classification, the index theorem tells us that there are solutions to the domain wall

equations (4.10) only if ni ≥ 0 for all i. Then the number of collective coordinates is

given by [6],

dimW~g = 2

Nf−1
∑

i=1

ni (4.17)

where W~g denotes the moduli space of any set of domain walls with charge ~g. Again,

this should be looking familiar! Recall the result for monopoles with charge ~g was

dim(M~g) = 4
∑

a na. The interpretation of the result (4.17) is, as for monopoles, that

there are Nf −1 elementary types of domain walls associated to the simple roots ~g = ~αi.

A domain wall sector in sector ~g then splits up into
∑

i ni elementary domain walls,

each with its own position and phase collective coordinate.

4.3.1 The Moduli Space Metric

The low-energy dynamics of multiple, parallel, domain walls is described, in the usual

fashion, by a sigma-model from the domain wall worldvolume to the target space is
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W~g. As with other solitons, the domain walls moduli space W~g inherits a metric from

the zero modes of the solution. In notation such that q = qa
i is an Nc ×Nf matrix, the

linearized domain wall equations (4.10)

D3δφ− i[δA3, φ] = −
e2

2
(δq q† + qδq†)

D3δq − iδA3 q = −(φδq + δφ q − δq m) (4.18)

where m = diag(m1, . . . , mNf
) is an Nf × Nf matrix. Again, these are to be supple-

mented by a background gauge fixing condition,

D3δA3 − i[φ, δφ] = i
e2

2
(qδq† − δq q†) (4.19)

and the metric on the moduli space W~g is defined by the overlap of these zero modes,

gαβ =

∫

dx3 Tr

(

1

e2
[δαA3 δβA3 + δαφ δβφ] + δαq δβq

† + δβq δαq
†

)

(4.20)

By this stage, the properties of the metric on the soliton moduli space should be

familiar. They include.

• The metric is Kähler.

• The metric is smooth. There is no singularity as two domain walls approach each

other.

• The metric inherits a U(1)N−1 isometry from the action of the unbroken flavor

symmetry (4.7) acting on the domain wall.

4.3.2 Examples of Domain Wall Moduli Spaces

Let’s give some simple examples of domain wall moduli spaces.

One Domain Wall

We’ve seen that a single elementary domain wall ~g = ~α1 (for example, the domain wall

described above in the theory with Nc = 1 and Nf = 2) has two collective coordinates:

its center of mass X and a phase θ. The moduli space is

Wα
∼= R× S1 (4.21)

The metric on this space is simple to calculate. It is

ds2 = (v2 ~m · ~g) dX2 + v2 dθ2 (4.22)

with the phase collective coordinate living in θ ∈ [0, 2π).
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Two Domain Walls

We can’t have two domain walls of the same type, say ~g = 2~α1, since there is no choice

of vacua that leads to this charge. Two elementary domain walls must necessarily be

of different types, ~g = ~αi + ~αj for i 6= j. Let’s consider ~g = ~α1 + ~α2.

The moduli space is simplest to describe if the two domain walls have the same mass,

so ~m · ~αa = ~m · ~αb. The moduli space is

W~α1+~α2
∼= R ×

S1 ×Mcigar

Z2

(4.23)

where the interpretation of the R factor and S1 factor are the same as before. The

relative moduli space has the topology and asymptotic form of a cigar, The relative

Figure 2: The relative moduli space of two domain walls is a cigar.

separation between domain walls is denoted by R. The tip of the cigar, R = 0, corre-

sponds to the two domain walls sitting on top of each other. At this point the relative

phase of the two domain walls degenerates, resulting in a smooth manifold. The metric

on this space has been computed in the e2 → ∞ limit, although it’s not particularly

illuminating [4] and gives a good approximation to the metric at large finite e2 [10].

Asymptotically, it deviates from the flat metric on the cylinder by exponentially sup-

pressed corrections e−R, as one might expect since the profile of the domain walls is

exponentially localized.

4.4 Dyonic Domain Walls

You will have noticed that, rather like monopoles, the domain wall moduli space in-

cludes a phase collective coordinate S1 for each domain wall. For the monopole, excita-

tions along this S1 give rise to dyons, objects with both magnetic and electric charges.

For domain walls, excitations along this S1 also give rise to dyonic objects, now carry-

ing both topological (kink) charge and flavor charge. Abraham and Townsend called

these objects ”Q-kinks” [2].
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First order equations of motion for these dyonic domain walls may be obtained by

completing the square in the Lagrangian (4.1), now looking for configurations that

depend on both x0 and x3, allowing for a non-zero electric field F03. We have

Twall =

∫

dx3 1

e2
Tr



cosαD3φ+
e2

2
(

Nf
∑

i=1

|qiq
†
i − v2)





2

− cosαD3φ (

Nf
∑

i=1

qiq
†
i − v2)

+

Nf
∑

i=1

(

|D3qi + cosα (φ−mi)qi|
2 − cosα (q†i (φ−mi)D3qi + h.c.)

)

+
1

e2
Tr(F03 − sinαD3φ)2 +

1

e2
sinαF03D3φ

+

Nf
∑

i=1

(

|D0qi + i sinα(φ−mi)qi|
2 − sinα(iq†i (φ−mi)D0qi + h.c)

)

As usual, insisting upon the vanishing of the total squares yields the Bogomoln’yi

equations. These are now to augmented with Gauss’ law,

D3F03 = ie2
Nf
∑

i=1

(qiD0q
†
i − (D0qi)q

†
i ) (4.24)

Using this, we may re-write the cross terms in the energy-density to find the Bogo-

moln’yi bound,

Twall ≥ ±v2[Trφ]+∞
−∞ cosα + (~m · ~S) sinα (4.25)

where ~S is the Noether charge associated to
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Figure 3:

the surviving U(1)Nf−1 flavor symmetry, an Nf -

vector with ith component given by

Si = i(qiD0q
†
i − (D0qi)q

†
i ) (4.26)

Maximizing with respect to α results in the Bo-

gomoln’yi bound for dyonic domain walls,

H ≥

√

v4(~m · ~g)2 + (~m · ~S)2 (4.27)

This square-root form is familiar from the spectrum of dyonic monopoles that we saw

in Lecture 2. More on this soon. For now, some further comments, highlighting the

some similarities between dyonic domain walls and monopoles.
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• There is an analog of the Witten effect. In two dimensions, where the domain

walls are particle-like objects, one may add a theta term of the form θF01. This

induces a flavor charge on the domain wall, proportional to its topological charge,
~S ∼ ~g [11].

• One can construct dyonic domain walls with ~g and ~S not parallel if we turn on

complex masses and, correspondingly, consider a complex adjoint scalar φ [12, 13].

The resulting 1/4 and 1/8-BPS states are the analogs of the 1/4-BPS monopoles

we briefly mentioned in Lecture 2.

• The theory with complex masses also admits interesting domain wall junction

configurations [14, 15]. Most notably, Eto et al. have recently found beautiful

webs of domain walls, reminiscent of (p, q)5-brane webs of IIB string theory, with

complicated moduli as the strands of the web shift, causing cycles to collapse

and grow [16, 17]. Examples include the intricate honeycomb structure shown in

figure 3 (taken from [16]).

Other aspects of these domain walls were discussed in [18, 19, 20, 21].

4.5 The Ordering of Domain Walls

The cigar moduli space for two domain walls illustrates an important point: domain

walls cannot pass each other. In contrast to other solitons, they must satisfy a particular

ordering on the line. This is apparent in the moduli space of two domain walls since

the relative separation takes values in R ∈ R+ rather than R. The picture in spacetime

shown in figure 4.

R
t

x

φφ φ= m = m = m
1 2 3

y

Figure 4: Two interacting domain walls cannot pass through each other. The ~α1 domain

wall is always to the left of the ~α2 domain wall.
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However, it’s not always true that domain walls cannot pass through each other.

Domain walls which live in different parts of the flavor group, so have ~αi · ~αj = 0, do

not interact so can happily move through each other. When these domain walls are

two of many in a topological sector ~g, an interesting pattern of interlaced walls arises,

determined by which walls bump into each other, and which pass through each other.

This pattern was first explored in [9]. Let’s see how the ordering emerges. Start at

left infinity in a particular vacuum Ξ−. Then each elementary domain wall shifts the

vacuum by increasing a single element ξ(a) ∈ Ξ by one. The restriction that the Nc

elements are distinct means that only certain domain walls can occur. This point is

one that is best illustrated by a simple example:

An Example: Nc = 2, Nf = 4

Consider the domain walls in the U(2) theory with Nf = 4 flavors. We’ll start at left

infinity in the vacuum Ξ− = {1, 2} and end at right infinity in the vacuum Ξ+ = {3, 4}.

There are two different possibilities for the intermediate vacua. They are:

Ξ− = {1, 2} −→ {1, 3} −→ {1, 4} −→ {2, 4} −→ {3, 4} = Ξ+

Ξ− = {1, 2} −→ {1, 3} −→ {2, 3} −→ {2, 4} −→ {3, 4} = Ξ+

In terms of domain walls, these two ordering become,

~α2 −→ ~α3 −→ ~α1 −→ ~α2

~α2 −→ ~α1 −→ ~α3 −→ ~α2 (4.28)

We see that the two ~α2 domain walls must play bookends to the ~α1 and ~α3 domain

walls. However, one expects that these middle two walls are able to pass through each

other.

The General Ordering of Domain Walls

We may generalize the discussion above to deduce the rule for ordering of general

domain walls [9]. One finds that the ni elementary ~αi domain walls must be interlaced

between the ~αi−1 and ~αi+1 domain walls. (Recall that ni = ni+1 or ni = ni+1 ± 1 so the

concept of interlacing is well defined). The final pattern of domain walls is captured in

figure 5, where x3 is now plotted horizontally and the vertical position of the domain

wall simply denotes its type. We shall see this vertical position take on life in the

D-brane set-up we describe shortly.

Notice that the ~α1 domain wall is trapped between the two ~α2 domain walls. These

in turn are trapped between the three ~α3 domain walls. However, the relative positions

of the ~α1 and middle ~α3 domain walls are not fixed: these objects can pass through

each other.
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Figure 5: The ordering of many domain walls. The horizontal direction is their position,

while the vertical denotes the type of domain wall.

4.6 What Became Of......

Now let’s play our favorite game and ask what happened to the other solitons now that

we’ve turned on the masses. We start with.....

4.6.1 Vortices

The vortices described in the previous lecture enjoyed zero modes arising from their

embedding in SU(N)diag ⊂ U(Nc) × SU(Nf ). Let go back to the situation with Nf =

Nc = N , but with the extra terms from (4.1) added to the Lagrangian,

V =
1

e2
Tr (Dµφ)2 +

N
∑

i=1

q†i (φ−mi)
2qi (4.29)

As we’ve seen, this mass term breaks SU(N)diag → U(1)N−1
diag , which means we can no

longer rotate the orientation of the vortices within the gauge and flavor groups. We

learn that the masses are likely to lift some zero modes of the vortex moduli space

[22, 23, 24].

The vortex solutions that survive are those whose energy isn’t increased by the extra

terms in V above. Or, in other words, those vortex configurations which vanish when

evaluated on V above. If we don’t want the vortex to pick up extra energy from the

kinetic terms Dφ2, we need to keep φ in its vacuum,

φ = diag(φ1, . . . , φN) (4.30)

which means that only the components qa
i ∼ δa

i can turn on keeping V = 0.
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For the single vortex k = 1 in U(N), this means that the internal moduli space

CP
N−1 is lifted, leaving behind N different vortex strings, each with magnetic field in

a different diagonal component of the gauge group,

B3 = diag(0, . . . , B?
3 , . . . , 0)

q = diag(v, . . . , q?, . . . , v) (4.31)

In summary, rather than having a moduli space of vortex strings, we are left with N

different vortex strings, each carrying magnetic flux in a different U(1) ⊂ U(N).

How do we see this from the perspective of the vortex worldsheet? We can re-derive

the vortex theory using the brane construction of the previous lecture, but now with the

D6-branes separated in the x4 direction, providing masses mi for the hypermultiplets qi.

After performing the relevant brane-game manipulations, we find that these translate

into masses mi for the chiral multiplets in the vortex theory. The potential for the

vortex theory (3.30) is replaced by,

V =
1

g2
Tr |[σ, σ†]|2 + Tr |[σ, Z]|2 + Tr |[σ, Z†]|2

+
N
∑

a=1

ψ†
a(σ −ma)

2ψa +
g2

2
Tr

(

∑

a

ψaψ
†
a + [Z,Z†] − r 1k

)2

(4.32)

where r = 2π/e2 as before. The masses mi of the four-dimensional theory have de-

scended to masses ma on the vortex worldsheet.

To see the implications of this, consider the theory on a single k = 1 vortex. The

potential is simply,

Vk=1 =
N
∑

a=1

(σ −ma)
2|ψa|

2 +
g2

2
(

N
∑

a=1

|ψa|
2 − r)2 (4.33)

Whereas before we could set σ = 0, leaving ψa to parameterize CP
N−1, now the Higgs

branch is lifted. We have instead N isolated vacua,

σ = ma , |ψb|
2 = rδab (4.34)

These correspond to the N different vortex strings we saw above.

A Potential on the Vortex Moduli Space

We can view the masses mi as inducing a potential on the Higgs branch of the vortex

theory after integrating out σ. This potential is equal to the length of Killing vectors

on the Higgs branch associated to the U(1)N−1 ⊂ SU(N)diag isometry. This is the same

story we saw in Lecture 2.6, where the a vev for φ induced a potential on the instanton

moduli space.
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In fact, just as we saw for instantons, this result can also be derived directly within

the field theory itself [24]. Suppose we fix a vortex configuration (Az, q) that solves

the vortex equations before we introduce masses. We want to determine how much the

new terms (4.29) lift the energy of this vortex. We minimize V by solving the equation

of motion for φ in the background of the vortex,

D2φ =
e2

2

N
∑

i=1

{φ, qiq
†
i } − 2qiq

†
imi (4.35)

subject to the vev boundary condition φ→ diag(m1, . . . , mN) as r → ∞. But we have

seen this equation before! It is precisely the equation (3.21) that an orientational zero

mode of the vortex must satisfy. This means that we can write the excess energy of

the vortex in terms of the relevant orientational zero mode

V =

∫

d2x
2

e2
Tr δAz δAz̄ +

1

2

N
∑

i=1

δqi δq
†
i (4.36)

for the particular orientation zero mode δAz = Dzφ and δqi = i(φqi − qimi). We can

give a nicer geometrical interpretation to this following the discussion in Section 2.6.

Denote the Cartan subalgebra of SU(N)diag as ~H, and the associated Killing vectors

on Vk,N as ~kα. Then, since φ generates the transformation ~m · ~H, we can express our

zero mode in terms of the basis δAz = (~m · ~kα) δαAz and δqi = (~m · ~kα) δαqi. Putting

this in our potential and performing the integral over the zero modes, we have the final

expression

V = gαβ (~m · ~kα) (~m · ~kβ) (4.37)

This potential vanishes at the fixed points of the U(1)N−1 action. For the one-vortex

moduli space CP
N−1, it’s not hard to see that this gives rise to the N vacuum states

described above (4.34).

4.6.2 Monopoles

To see where the monopoles have gone, it’s best if we first look at the vortex worldsheet

theory [22]. This is now have a d = 1 + 1 dimensional theory with isolated vacua,

guaranteeing the existence of domain wall, or kink, in the worldsheet. In fact, for a

single k = 1 vortex, the theory on the worldsheet is precisely of the form (4.1) that

we started with at the beginning of this lecture. (For k > 1, the presence of the

adjoint scalar Z means that isn’t precisely the same action, but is closely related). The

equations describing kinks on the worldsheet are the same as (4.10),

∂3σ = g2(

N
∑

a=1

|ψa|
2 − r) , D3ψa = (σ −ma)ψa (4.38)
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where we should take the limit g2 → ∞, in which the first equation becomes algebraic.

What’s the interpretation of this kink on the worldsheet? We can start by examining

its mass,

Mkink = (~m · ~g) r =
2π

e2
(~φ · ~g) = Mmono (4.39)

So the kink has the same mass as the monopole! In fact, it also has the same quantum

numbers. To see this, recall that the different vacua on the vortex string correspond to

flux tubes lying in different U(1) ⊂ U(N) subgroups. For example, for N = 2, the kink

must take the form shown in figure 6. So whatever the kink is, it must soak up magnetic

B=( 1
0 ) B=(1 )0

kink x 3

Figure 6: The kink on the vortex string.

field B = diag(0, 1) and spit out magnetic field B = diag(1, 0). In other words, it is

a source for the magnetic field B = diag(1,−1). This is precisely the magnetic field

sourced by an SU(2) ’t Hooft-Polyakov monopole.

What’s happening here? We are dealing with a theory with a mass gap, so any

magnetic monopole that lives in the bulk can’t emit a long-range radial magnetic field

since the photon can’t propagate. We’re witnessing the Meissner effect in a non-abelian

superconductor. The monopole is confined, its magnetic field departing in two semi-

classical flux tubes. This effect is, of course, well known and it is conjectured that a dual

effect leads to the confinement of quarks in QCD. Here we have a simple, semi-classical

realization in which to explore this scenario.

Can we find the monopole in the d = 3 + 1 dimensional bulk? Although no solution

is known, it turns out that we can write down the Bogomoln’yi equations describing

the configuration [22]. Let’s go back to our action (4.1) and complete the square in a

different way. We now insist only that ∂0 = A0 = 0, and write the Hamiltonian as,

H =

∫

d3x
1

e2
Tr

[

(D1φ+B1)
2 + (D2 +B2)

2 + (D3φ+B3 −
e2

2
(

N
∑

i=1

qiq
†
i − v2))2

]

+
N
∑

i=1

|(D1 − iD2)qi|
2 +

N
∑

i=1

|D3qi − (φ−mi)qi|
2 + Tr [−v2B3 −

2

e2
∂i(φBi)]
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≥

(
∫

dx3 Tvortex

)

+Mmono (4.40)

where the inequality is saturated when the terms in the brackets vanish,

D1φ+B1 = 0 , D1qi = iD2qi

D2φ+B2 = 0 , D3qi = (φ−mi)qi (4.41)

D3φ+B3 =
e2

2
(

N
∑

i=1

qiq
†
i − v2)

As you can see, these are an interesting mix of the monopole equations and the vortex

equations. In fact, they also include the domain wall equations — we’ll see the meaning

of this when we come to discuss the applications. These equations should be thought

of as the master equations for BPS solitons, reducing to the other equations in various

limits. Notice moreover that these equations are over-determined, but it’s simple to

check that they satisfy the necessary integrability conditions to admit solutions. How-

ever, no non-trivial solutions are known analytically. (Recall that even the solution for

a single vortex is not known in closed form). We expect that there exist solutions that

look like figure 7.

B B~ B~(~ )( ( )−1
0 

−1
1)0 

1

Figure 7: The confined magnetic monopole.

The above discussion was for k = 1 and Nf = Nc. Extensions to k ≥ 2 and also

to Nf ≥ Nc also exist, although the presence of the adjoint scalar Z on the vortex

worldvolume means that the kinks on the string aren’t quite the same as the domain

wall equations (4.10). But if we set Z = 0, so that the strings lie on top of each other,

then the discussion of domain walls in four-dimensions carries over to kinks on the

string. In fact, it’s not hard to check that we’ve chosen our notation wisely: magnetic

monopoles of charge ~g descend to kinks on the vortex strings with topological charge

~g.
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In summary,

Kink on the Vortex String = Confined Magnetic Monopole

The BPS confined monopole was first described in [22], but the idea that kinks on string

should be interpreted as confined monopoles arose previously in [25] in the context of ZN

flux tubes. More recently, confined monopoles have been explored in several different

theories [26, 27, 28, 29]. We’ll devote Section 4.7 to more discussion on this topic.

4.6.3 Instantons

We now ask what became of instantons. At first glance, it doesn’t look promising

for the instanton! In the bulk, the FI term v2 breaks the gauge group, causing the

instanton to shrink. And the presence of the masses means that even in the center of

various solitons, there’s only a U(1) restored, not enough to support an instanton. For

example, an instanton wishing to nestle within the core of the vortex string shrinks to

vanishing size and it looks as if the theory (4.1) admits only singular, small instantons.

While the above paragraph is true, it also tells us how we should change our theory

to allow the instantons to return: we should consider non-generic mass parameters,

so that the SU(Nf ) flavor symmetry isn’t broken to the maximal torus, but to some

non-abelian subgroup. Let’s return to the example discussed in Section 4.5: U(2) gauge

theory with Nf = 4 flavors. Rather than setting all masses to be different, we chose

m1 = m2 = m and m3 = m4 = −m. In this limit, the breaking of the flavor symmetry

is SU(4) → S[U(2) × U(2)], and this has interesting consequences.

To find our instantons, we look at the domain wall which interpolates between the

two vacua φ = m12 and φ = −m12. When all masses were distinct, this domain wall

had 8 collective coordinates which had the interpretation of the position and phase of 4

elementary domain walls (4.28). Now that we have non-generic masses, the domain wall

retains all 8 collective coordinates, but some develop a rather different interpretation:

they correspond to new orientation modes in the unbroken flavor group. In this way,

part of the domain wall theory becomes the SU(2) chiral Lagrangian [30].

Inside the domain wall, the non-abelian gauge symmetry is restored, and the in-

stantons may safely nestle there, finding refuge from the symmetry breaking of the

bulk. One can show that, from the perspective of the domain wall worldvolume theory,

they appear as Skyrmions [31]. Indeed, closer inspection reveals that the low-energy

dynamics of the domain wall also includes a four derivative term necessary to stabi-

lize the Skyrmion, and one can successfully compare the action of the instanton and

Skyrmion. The relationship between instantons and Skyrmions was first noted long
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ago by Atiyah and Manton [32], and has been studied recently in the context of decon-

struction [33, 34, 35].

4.7 The Quantum Vortex String

So far our discussion has been entirely classical. Let’s now turn to the quantum theory.

We have already covered all the necessary material to explain the main result. The

basic idea is that d = 1 + 1 worldsheet theory on the vortex string captures quantum

information about the d = 3 + 1 dimensional theory in which it’s embedded. If we

want certain information about the 4d theory, we can extract it using much simpler

calculations in the 2d worldsheet theory.

I won’t present all the calculations here, but instead simply give a flavor of the

results [23, 24]. The precise relationship here holds for N = 2 theories in d = 3 + 1,

corresponding to N = (2, 2) theories on the vortex worldsheet. The first hint that

the 2d theory contains some information about the 4d theory in which its embedded

comes from looking at the relationship between the 2d FI parameter and the 4d gauge

coupling,

r =
4π

e2
(4.42)

This is a statement about the classical vortex solution. Both e2 in 4d and r in 2d run

at one-loop. However, the relationship (4.42) is preserved under RG flow since the beta

functions computed in 2d and 4d coincide,

r(µ) = r0 −
Nc

2π
log

(

µUV

µ

)

(4.43)

This ensures that both 4d and 2d theories hit strong coupling at the same scale Λ =

µ exp(−2πr/Nc).

Exact results about the 4d theory can be extracted using the Seiberg-Witten solution

[36]. In particular, this allows us to determine the spectrum of BPS states in the theory.

Similarly, the exact spectrum of the 2d theory can also be determined by computing

the twisted superpotential [11, 37]. The punchline is that the spectrum of the two

theories coincide. Let’s see what this means. We saw in (4.39) that the classical kink

mass coincides with the classical monopole mass

Mkink = Mmono (4.44)

This equality is preserved at the quantum level. Let me stress the meaning of this. The

left-hand side is computed in the d = 1 + 1 dimensional theory. When (mi −mj) � Λ,
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this theory is weakly coupled and Mkink receives a one-loop correction (with, obviously,

two-dimensional momenta flowing in the loop). Although supersymmetry forbids higher

loop corrections, there are an infinite series of worldsheet instanton contributions. The

final expression for the mass of the kink schematically of the form,

M = Mclas +Mone−loop +
∞
∑

n=1

Mn−inst (4.45)

The right-hand-side of (4.44) is computed in the d = 3+1 dimensional theory, which is

also weakly coupled for (mi−mJ) � Λ. The monopole mass Mmono receives corrections

at one-loop (now integrating over four-dimensional momenta), followed by an infinite

series of Yang-Mills instanton corrections. And term by term these two series agree!

The agreement of the worldsheet and Yang-Mills instanton expansions apparently

has its microscopic origin in the results if the previous lecture. Recall that performing

an instanton computation requires integration over the moduli space (V for the world-

sheet instantons; I for Yang-Mills). Localization theorems hold when performing the

integrals over Ik,N in N = 2 super Yang-Mills, and the final answer contains contribu-

tions from only a finite number of points in Ik,N [38]. It is simple to check that all of

these points lie on Vk,N which, as we have seen, is a submanifold of Ik,N .

The equation (4.44) also holds in strong coupling regimes of the 2d and 4d theo-

ries where no perturbative expansion is available. Nevertheless, exact results allow

the masses of BPS states to be computed and successfully compared. Moreover, the

quantum correspondence between the masses of kinks and monopoles is not the only

agreement between the two theories. Other results include:

• The elementary internal excitations of the string can be identified with W-bosons

of the 4d theory. When in the bulk, away from the string, these W-bosons are

non-BPS. But they can reduce their mass by taking refuge in the core of the

vortex whereupon they regain their BPS status.

This highlights an important point: the spectrum of the 4d theory, both for

monopoles and W-bosons, is calculated in the Coulomb phase, when the FI param-

eter v2 = 0. However, the vortex string exists only in the Higgs phase v2 6= 0. What’s

going on? A heuristic explanation is as follows: inside the vortex, the Higgs field q dips

to zero and the gauge symmetry is restored. The vortex theory captures information

about the 4d theory on its Coulomb branch.

• As we saw in Sections 2.3 and 4.4, both the 4d theory and the 2d theory contain

dyons. We’ve already seen that the spectrum of both these objects is given by
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the ”square-root” formula (2.41) and (4.27). Again, these agree at the quantum

level.

• Both theories manifest the Witten effect: adding a theta angle to the 4d theory

induces an electric charge on the monopole, shifting its mass. This also induces

a theta angle on the vortex worldsheet and, hence, turns the kinks into dyons.

• We have here described the theory with Nf = Nc. For Nf > NC , the story can be

repeated and again the spectrum of the vortex string coincides with the spectrum

of the 4d theory in which it’s embedded.

In summary, we have known for over 20 years that gauge theories in 4d share many

qualitative features with sigma models in 2d, including asymptotic freedom, a dy-

namically generated mass gap, large N expansions, anomalies and the presences of

instantons. However, the vortex string provides a quantitative relationship between

the two: in this case, they share the same quantum spectrum.

4.8 The Brane Construction

In Lecture 3, we derived the brane construction for U(Nc) gauge theory with Nf hyper-

multiplets. To add masses, one must separate the hypermultiplets in the x4 direction.

One can now see the number of vacua (4.6) since each of the Nc D4-branes must end

on one of the Nf D6-branes.

x

x

x

4

6

9

NS5

D4

D6

Figure 8: The D-brane configuration for an elementary ~g = ~α1 domain wall when Nc = 1

and Nf = 3.

To describe a domain wall, the D4-branes must start in one vacua, Ξ− at x3 → −∞,

and interpolate to the final vacua Ξ+ as x3 → +∞. Viewing this integrated over

all x3, we have the picture shown in figure 8. To extract the dynamics of domain

walls, we need to understand the worldvolume theory of the curved D4-brane. This
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isn’t at all clear. Related issues have troubled previous attempts to extract domain

wall dynamics from D-brane set-up [39, 40], although some qualitative features can be

seen. However, we can make progress by studying this system in the limit e2 → ∞,

so that the two NS5-branes and the Nf D6-branes lie coincident in the x6 direction

[41]. The portions of the D4-branes stretched in x6 vanish, and we’re left with D4-

branes with worldvolume 01249, trapped in squares in the 49 directions where they are

sandwiched between the NS5 and D6-branes. Returning to the system of domain walls

in an arbitrary topological sector ~g =
∑

i ni~αi, we have the system drawn in figure 9.

x

x4

9

NS5

D6

D4 D42xD4 2xD4 2xD4

m m m m m m1 2 3 5 64

Figure 9: The D-brane configuration in the e2 → ∞ limit.

We can now read off the gauge theory living on the D4-branes. One might expect

that it is of the form
∏

i U(ni). This is essentially correct. The NS5-branes project

out the A9 component of the gauge field, however the A4 component survives and each

U(na) gauge theory lives in the interval mi ≤ x4 ≤ mi+1. In each segment, we have A4

and X3, each an ni × ni matrix. These fields satisfy

dX3

dx4
− i[A4, X3] = 0 (4.46)

modulo U(ni) gauge transformations acting on the interval mi ≤ x4 ≤ mi+1, and

vanishing at the boundaries. These equations are kind of trivial: the interesting details

lie in the boundary conditions. As in the case of monopoles, the interactions between

neighbouring segments depends on the relative size of the matrices:

ni = ni+1: The U(ni) gauge symmetry is extended to the interval mi ≤ x4 ≤ mi+2

and an impurity is added to the right-hand-side of Nahm’s equations, which now read

dX3

dx4

− i[A4, X3] = ψψ†δ(x4 −mi+1) (4.47)
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where the impurity degree of freedom ψ transforms in the fundamental representation of

the U(ni) gauge group, ensuring the combination ψψ† is a ni ×ni matrix transforming,

like X1, in the adjoint representation. These ψ degrees of freedom are chiral multiplets

which survive the NS5-brane projection.

ni = ni+1 − 1: In this case X3 → (X3)−, a ni × ni matrix, as x4 → (mi)− from the

left. To the right of mi, X3 is a (ni + 1) × (ni + 1) matrix obeying

X3 →

(

y a†

a (X)−

)

as x4 → (mi)+ (4.48)

where yµ ∈ R and each aµ is a complex ni-vector. The obvious analog of this boundary

condition holds when ni = ni+1 + 1.

These boundary conditions are obviously related to the Nahm boundary conditions

for monopoles that we met in Lecture 2.

4.8.1 The Ordering of Domain Walls Revisited

We now come to the important point: the ordering of domain walls. Let’s see how the

brane construction captures this. We can use the gauge transformations to make A4

constant over the interval mi ≤ x4 ≤ mi+1. Then (4.46) can be trivially integrated in

each segment to give

X3(x
4) = eiA4x4

X̂3e
−iA4x4

(4.49)

Then the positions of the ~αi domain walls are given by the eigenvalues of X3 restricted

to the interval mi ≤ x4 ≤ mi+1. Let us denote this matrix as X
(i)
3 and the eigenvalues as

λ
(i)
m , where m = 1, . . . ni. We have similar notation for the ~αi+1 domain walls. Suppose

first that ni = ni+1. Then the impurity (4.47) relates the two sets of eigenvalues by the

jumping condition

X
(i+1)
1 = X

(i)
1 + ψψ† (4.50)

We will now show that this jumping condition (4.50) correctly captures the interlacing

nature of neighboring domain walls.

To see this, consider firstly the situation in which ψ†ψ � ∆λ
(i)
m so that the matrix ψψ†

may be treated as a small perturbation of X
(i)
1 . The positivity of ψψ† ensures that each

λ
(i+1)
m ≥ λ

(i)
m . Moreover, it is simple to show that the λ

(i+1)
m increase monotonically with

ψ†ψ. This leaves us to consider the other extreme, in which ψ†ψ → ∞. It this limit ψ

becomes one of the eigenvectors of X
(i+1)
1 with corresponding eigenvalue λ

(i+1)
ni = ψ†ψ,
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corresponding to the limit in which the last domain wall is taken to infinity. What we

want to show is that the remaining ni − 1 ~αi+1 domain walls are trapped between the

ni ~αi domain walls as depicted in figure 5. Define the ni × ni projection operator

P = 1 − ψ̂ψ̂† (4.51)

where ψ̂ = ψ/
√

ψ†ψ. The positions of the remaining (ni − 1) ~αi+1 domain walls are

given by the (non-zero) eigenvalues of PX
(i)
1 P . We must show that, given a rank n

hermitian matrix X, the eigenvalues of PXP are trapped between the eigenvalues of

X. This well known property of hermitian matrices is simple to show:

det(PXP − µ) = det(XP − µ)

= det(X − µ−Xψ̂ψ̂†)

= det(X − µ) det(1 − (X − µ)−1Xψ̂ψ̂†)

Since ψ̂ψ̂† is rank one, we can write this as

det(PXP − µ) = det(X − µ) [1 − Tr((X − µ)−1Xψ̂ψ̂†)]

= −µ det(X − µ) Tr((X − µ)−1ψ̂ψ̂†)

= −µ

[

n
∏

m=1

(λm − µ)

] [

n
∑

m=1

|ψ̂m|2

λm − µ

]

(4.52)

where ψ̂m is the mth component of the vector ψ. We learn that PXP has one zero

eigenvalue while, if the eigenvalues λm of X are distinct, then the eigenvalues of PXP

lie at the roots the function

R(µ) =
n
∑

m=1

|ψ̂m|2

λm − µ
(4.53)

The roots of R(µ) indeed lie between the eigenvalues λm. This completes the proof

that the impurities (4.47) capture the correct ordering of the domain walls.

The same argument shows that the boundary condition (4.48) gives rise to the correct

ordering of domain walls when ni+1 = ni + 1, with the ~αi domain walls interlaced

between the ~αi+1 domains walls. Indeed, it is not hard to show that (4.48) arises from

(4.47) in the limit that one of the domain walls is taken to infinity.

4.8.2 The Relationship to Monopoles

You will have noticed that the brane construction above is closely related to the Nahm

construction we discussed in Lecture 2. In fact, just as the vortex moduli space Vk,N
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is related to the instanton moduli space Ik,N , so the domain wall moduli space W~g is

related to the monopole moduli space M~g. The domain wall theory is roughly a subset

of the monopole theory. Correspondingly, the domain wall moduli space is a complex

submanifold of the monopole moduli space. To make this more precise, consider the

isometry rotating the monopoles in the x1−x2 plane (mixed with a suitable U(1) gauge

action). It we denote the corresponding Killing vector as h, then

W~g
∼= M~g|h=0 (4.54)

This is the analog of equation (3.36), relating the vortex and instanton moduli spaces.

Nahm’s equations have appeared previously in describing domain walls in the N = 1?

theory [42]. I don’t know how those domain walls are related to the ones discussed here.

4.9 Applications

We’ve already seen one application of kinks in section 4.7, deriving a relationship

between 2d sigma models and 4d gauge theories. I’ll end with a couple of further

interesting applications.

4.9.1 Domain Walls and the 2d Black Hole

Recall that we saw in Section 4.3.2 that the relative moduli space of a two domain

walls with charge ~g = ~α1 + ~α2 is the cigar shown in figure 2. Suppose we consider

domain walls as strings in a d = 2 + 1 dimensional theory, so that the worldvolume

of the domain walls is d = 1 + 1 dimensional. Then the low-energy dynamics of two

domain walls is described by a sigma-model on the cigar.

There is a very famous conformal field theory with a cigar target space. It is known

as the two-dimensional black hole [43]. It has metric,

ds2
BH = k2[dR2 + tanh2R dθ2] (4.55)

The non-trivial curvature at the tip of the cigar is cancelled by a dilaton which has the

profile

Φ = Φ0 − 2 coshR (4.56)

So is the dynamics of the domain wall system determined by this conformal field theory?

Well, not so obviously: the metric on the domain wall moduli space W~α1+~α2
does

not coincide with (4.55). However, d = 1 + 1 dimensional theory is not conformal

and the metric flows as we move towards the infra-red. There is a subtlety with the
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dilaton which one can evade by endowing the coordinate R with a suitable anomalous

transformation under RG flow. With this caveat, it can be shown that the theory on

two domain walls in d = 2 + 1 dimensions does indeed flow towards the conformal

theory of the black hole with the identification k = 2v2/m [44].

The conformal field theory of the 2d black hole is dual to Liouville theory [45, 46].

If we deal with supersymmetric theories, this N = (2, 2) conformal field theory has

Lagrangian

LLiouville =

∫

d4θ
1

2k
|Y |2 +

µ

2

∫

d2θ e−Y + h.c. (4.57)

and the equivalence between the two theories was proven using the techniques of mirror

symmetry in [47]. In fact, one can also prove this duality by studying the dynamics

of domain walls. Which is rather cute. We work with the N = 4 (eight supercharges)

U(1) gauge theory in d = 2+1 with Nf charged hypermultiplets. As we sketched above,

if we quantize the low-energy dynamics of the domain walls, we find the N = (2, 2)

conformal theory on the cigar. However, there is an alternative way to proceed: we

could choose first to integrate out some of the matter in three dimensions. Let’s get

rid of the charged hypermultiplets to leave a low-energy effective action for the vector

multiplet. As well as the gauge field, the vector multiplet contains a triplet of real

scalars φ, the first of which is identified with the φ we met in (4.1). The low-energy

dynamics of this effective theory in d = 2 + 1 dimensions can be shown to be

Leff = H(φ) ∂µφ · ∂µφ +H−1(φ)(∂µσ + ω · ∂µφ)2 − v4H−1 (4.58)

Here σ is the dual photon (see (2.62)) and ∇× ω = ∇H, while the harmonic function

H includes the corrections from integrating out the Nf hypermultiplets,

H(φ) =
1

e2
+

Nf
∑

i=1

1

|φ − mi|
(4.59)

where each triplet mi is given by mi = (mi, 0, 0). We can now look for domain walls in

this d = 2+1 effective theory. Since we want to study two domain walls, let’s setNf = 3.

We see that the theory then has three, isolated vacua, at φ = (φ, 0, 0) = (mi, 0, 0).

We now want to study the domain wall that interpolates between the two outer vacua

φ = m1 and φ = m3. It’s not hard to show that, in contrast to the microscopic theory

(4.1), there is no domain wall solutions interpolating between these vacua. One can

find a ~α1 domain wall interpolating between φ = m1 and φ = m2. There is also a ~α2

domain wall interpolating between φ = m2 and φ = m3. But no ~α1 + ~α2 domain wall
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between the two extremal vacua φ = m1 and φ = m3. The reason is essentially that

only a single scalar, φ, changes in the domain wall profile, with equations of motion

given by flow equations,

∂3φ = v2H−1(φ) (4.60)

But since we have only a single scalar field, it must actually pass through the middle

vacuum (as opposed to merely getting close) at which point the flow equations tell us

∂3φ = 0 and it doesn’t move anymore.

Although there is no solution interpolating between φ = m1 and φ = m2, one can

always write down an approximate solution simply by superposing the ~α1 and ~α2 domain

walls in such a way that they are well separated. One can then watch the evolution

of this configuration under the equations of motion and, from this, extract an effective

force between the domain wall [48]. For the case in hand, this calculation was performed

in [44], where it was shown that the force is precisely that arising from the Liouville

Lagrangian (4.57). In this way, we can use the dynamics of domain walls to derive the

mirror symmetry between the cigar and Liouville theory.

4.9.2 Field Theory D-Branes

As we saw in Section 4.3.2 of this lecture, the moduli space of a single domain wall

is W ∼= R × S1. This means that the theory living on the d = 2 + 1 dimensional

worldvolume of the domain wall contains a scalar X, corresponding to fluctuations of

the domain wall in the x3 direction, together with a periodic scalar θ determining the

phase of the wall. But in d = 2 + 1 dimensions, a periodic scalar can be dualized in

favor of a photon living on the wall 4πv2∂µθ = εµνρF
νρ. Thus the low-energy dynamics

of the wall can alternatively be described by a free U(1) gauge theory with a neutral

scalar X,

Lwall = 1
2
Twall

(

(∂µX)2 +
1

16π2v4
FµνF

µν

)

(4.61)

This is related to the mechanism for gauge field localization described in [49].

As we have seen above, the theory also contains vortex strings. These vortex strings

can end on the domain wall, where their ends are electrically charged. In other words,

the domain walls are semi-classical D-branes for the vortex strings. These D-branes

were first studied in [50, 3, 30]. (Semi-classical D-brane configurations in other theories

have been studied in [51, 52, 53] in situations without the worldvolume gauge field). The

simplest way to see that the domain wall is D-brane is using the BIon spike described

in Section 2.7.4, where we described monopole as D-branes in d = 5 + 1 dimensions.
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We can also see this D-brane solution from the perspective of the bulk theory. In fact,

the solution obeys the equations (4.41) that we wrote down before. To see this, let’s

complete the square again but we should be more careful in keeping total derivatives.

In a theory with multiple vacua, we have

H =

∫

d3x
1

2e2
Tr

[

(D1φ+B1)
2 + (D2 +B2)

2 + (D3φ+B3 − e2(
N
∑

i=1

qiq
†
i − v2))2

]

+

N
∑

i=1

|(D1 − iD2)qi|
2 +

N
∑

i=1

|D3qi − (φ−mi)qi|
2 + Tr [−v2B3 −

1

e2
∂i(φBi) + v2∂3φ]

≥

(
∫

dx1dx2 Twall

)

+

(
∫

dx3 Tvortex

)

+Mmono (4.62)

and we indeed find the central charge appropriate for the domain wall. In fact these

equations were first discovered in abelian theories to describe D-brane objects [3].

These equations have been solved analytically in the limit e2 → ∞ [50, 20]. Moreover,

when multiple domain walls are placed in parallel along the line, one can construct

solutions with many vortex strings stretched between them as figure 10, taken from

[20], graphically illustrates.
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Figure 10: Plot of a field theoretic D-brane configuration [20].

Some final points on the field theoretic D-branes

• In each vacuum there are Nc different vortex strings. Not all of them can end on

the bordering domain walls. There exist selection rules describing which vortex

string can end on a given wall. For the ~αi domain wall, the string associated to qi

can end from the left, while the string associated to qi+1 can end from the right

[6].
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• For finite e2, there is a negative binding energy when the string attaches itself to

the domain wall, arising from the monopole central charge in (4.62). Known as

a boojum, it was studied in this context in [6, 54]. (The name boojum was given

by Mermin to a related configuration in superfluid 3He [55]).

• An interesting question: is the U(1) gauge symmetry on the domain wall world-

volume enhanced as domain walls approach? The answer is: not always. But

sometimes! There are new light states that appear as the domain walls approach,

but whether these states are associated to scalar particles, giving new light mat-

ter, or vector particles, giving gauge symmetry enhancement, depends on the

details of the domain wall configuration. Full details will be reported elsewhere

[56].
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