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Abstract: In this second lecture we describe the physics of ’t Hooft-Polyakov mag-

netic monopoles when embedded in supersymmetric SU(N) gauge theories. We cover

properties of the solutions and the moduli spaces of monopoles and review how Nahm’s

equations arise in their natural D-brane setting. We end with several applications, in-

cluding S-duality, the dynamics of three-dimensional gauge theories and field theoretic

D-branes.
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2. Monopoles

The tale of magnetic monopoles is well known. They are postulated particles with

long-range, radial, magnetic field Bi, i = 1, 2, 3,

Bi =
g r̂i

4πr2
(2.1)

where g is the magnetic charge. Monopoles have never been observed and one of

Maxwell’s equations, ∇ · B = 0, insists they never will be. Yet they have been a

recurrent theme in high energy particle physics for the past 30 years! Why?

The study of monopoles began with Dirac [1] who showed how one could formulate

a theory of monopoles consistent with a gauge potential Aµ. The requirement that the

electron doesn’t see the inevitable singularities in Aµ leads to the famed quantization

condition

eg = 2πn n ∈ Z (2.2)

However, the key step in the rehabilitation of magnetic monopoles was the observation

of ’t Hooft [2] and Polyakov [3] that monopoles naturally occur in non-abelian gauge

theories, making them a robust prediction of grand unified theories based on semi-

simple groups. In this lecture we’ll review the formalism of ’t Hooft-Polyakov monopoles

in SU(N) gauge groups, including the properties of the solutions and the D-brane

realization of the Nahm construction. At the end we’ll cover several applications to

quantum gauge theories in various dimensions.

There are a number of nice reviews on monopoles in the literature. Aspects of the

classical solutions are dealt with by Sutcliffe [4] and Shnir [5]; the mathematics of

monopole scattering can be found in the book by Atiyah and Hitchin [6]; the applica-

tion to S-duality of quantum field theories is covered in the review by Harvey [7]. A

comprehensive review of magnetic monopoles by Weinberg and Yi will appear shortly

[8].

2.1 The Basics

To find monopoles, we first need to change our theory from that of Lecture 1. We add

a single real scalar field φ ≡ φa
b, transforming in the adjoint representation of SU(N).

The action now reads

S = Tr

∫

d4x
1

2e2
FµνF

µν +
1

e2
(Dµφ)2 (2.3)
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where we’re back in Minkowski signature (+,−,−,−). The spacetime index runs over

µ = 0, 1, 2, 3 and we’ll also use the purely spatial index i = 1, 2, 3. Actions of this type

occur naturally as a subsector of N = 4 and N = 2 super Yang-Mills theories. There

is no potential for φ so, classically, we are free to chose the vacuum expectation value

(vev) as we see fit. Gauge inequivalent choices correspond to different ground states of

the theory. By use of a suitable gauge transformation, we may set

〈φ〉 = diag(φ1, . . . , φN) = ~φ · ~H (2.4)

where the fact we’re working in SU(N) means that
∑N

a=1 φa = 0. We’ve also introduced

the notation of the root vector ~φ, with ~H a basis for the (N − 1)-dimensional Cartan

subalgebra of su(N). If you’re not familiar with roots of Lie algebras and the Cartn-

Weyl basis then you can simply think of ~H as the set of N matrices, each with a single

entry 1 along the diagonal. (This is actually the Cartan subalgebra for u(N) rather

than su(N) but this will take care of itself if we remember that
∑

a φa = 0). Under the

requirement that φa 6= φb for a 6= b the gauge symmetry breaks to the maximal torus,

SU(N) → U(1)N−1 (2.5)

The spectrum of the theory consists of (N − 1) massless photons and scalars, together

with 1
2
N(N − 1) massive W-bosons with mass M 2

W = (φa − φb)
2. In the following we

will use the Weyl symmetry to order φa < φa+1.

In the previous lecture, instantons arose from the possibility of winding field con-

figurations non-trivially around the S3
∞ infinity of Euclidean spacetime. Today we’re

interested in particle-like solitons, localized in space rather than spacetime. These ob-

jects are supported by the vev (2.4) twisting along its gauge orbit as we circumvent the

spatial boundary S2
∞. If we denote the two coordinates on S2

∞ as θ and ϕ, then solitons

are supported by configurations with 〈φ〉 = 〈φ(θ, ϕ)〉. Let’s classify the possible wind-

ings. A vev of the form (2.4) is one point in a space of gauge equivalent vacua, given

by SU(N)/U(1)N−1 where the stabilizing group in the denominator is the unbroken

symmetry group (2.5) which leaves (2.4) untouched. We’re therefore left to consider

maps: S2
∞ → SU(N)/U(1)N−1, characterized by

Π2

(

SU(N)/U(1)N−1
) ∼= Π1

(

U(1)N−1
) ∼= ZN−1 (2.6)

This classification suggests that we should be looking for (N − 1) different types of

topological objects. As we shall see, these objects are monopoles carrying magnetic

charge in each of the (N − 1) unbroken abelian gauge fields (2.5).
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Why is winding of the scalar field φ at infinity associated with magnetic charge? To

see the precise connection is actually a little tricky — details can be found in [2, 3] and

in [9] for SU(N) monopoles — but there is a simple heuristic argument to see why the

two are related. The important point is that if a configuration is to have finite energy,

the scalar kinetic term Dµφ must decay at least as fast as 1/r2 as we approach the

boundary r → ∞. But if 〈φ〉 varies asymptotically as we move around S2
∞, we have

∂φ ∼ 1/r. To cancel the resulting infrared divergence we must turn on a corresponding

gauge potential Aθ ∼ 1/r, leading to a magnetic field of the form B ∼ 1/r2.

Physically, we would expect any long range magnetic field to propagate through

the massless U(1) photons. This is indeed the case. If Diφ → 0 as r → ∞ then

[Di,Dj]φ = −i[Fij , φ] → 0 as r → ∞. Combining these two facts, we learn that the

non-abelian magnetic field carried by the soliton is of the form,

Bi = ~g · ~H(θ, ϕ)
r̂i

4πr2
(2.7)

Here the notation ~H(θ, ϕ) reminds us that the unbroken Cartan subalgebra twists

within the su(N) Lie algebra as we move around the S2
∞.

2.1.1 Dirac Quantization Condition

The allowed magnetic charge vectors ~g may be determined

θ

x

z

y
ϕ

Figure 1:

by studying the winding of the scalar field φ around S2
∞. How-

ever, since the winding is related to the magnetic charge, and

the latter is a characteristic of the long range behavior of the

monopole, it’s somewhat easier to neglect the non-abelian struc-

ture completely and study just the U(1) fields. The equivalence

between the two methods is reflected in the equality between

first and second homotopy groups in (2.6).

For this purpose, it is notationally simpler to work in unitary,

or singular, gauge in which the vev 〈φ〉 = ~φ · ~H is fixed to be constant at infinity.

This necessarily re-introduces Dirac string-like singularities for any single-valued gauge

potential, but allows us to globally write the magnetic field in diagonal form,

Bi = diag(g1, . . . , gN)
r̂i

4πr2
(2.8)

where
∑N

a=1 ga = 0 since the magnetic field lies in su(N) rather than u(N).
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What values of ga are allowed? A variant of Dirac’s original argument, due to Wu and

Yang [10], derives the magnetic field (2.8) from two gauge potentials defined respectively

on the northern and southern hemispheres of S2
∞:

AN
ϕ =

1 − cos θ

4πr sin θ
~g · ~H

AS
ϕ = −1 + cos θ

4πr sin θ
~g · ~H (2.9)

where AN goes bad at the south pole θ = π, while AS sucks at the north pole θ = 0.

To define a consistent field strength we require that on the overlap θ 6= 0, π, the two

differ by a gauge transformation which, indeed, they do:

AN
i = U(∂i + AS

i )U−1 (2.10)

with U(θ, ϕ) = exp(−i~g · ~Hϕ/2π). Notice that as we’ve written it, this relationship

only holds in unitary gauge where ~H doesn’t depend on θ or ϕ, requiring that we work

in singular gauge. The final requirement is that our gauge transformation is single

valued, so U(ϕ) = U(ϕ + 2π) or, in other words, exp(i~g · ~H) = 1. This requirement is

simply solved by

ga ∈ 2πZ (2.11)

This is the Dirac quantization condition (2.2) in units in which the electric charge

e = 1, a convention which arises from scaling the coupling outside the action in (2.3).

In fact, in our theory the W-bosons have charge 2 under any U(1) while matter in the

fundamental representation would have charge 1.

There’s another notation for the magnetic charge vector ~g that will prove useful. We

write

~g = 2π
N−1
∑

a=1

na ~αa (2.12)

where na ∈ Z by the Dirac quantization condition1 and ~αa are the simple roots of

su(N). The choice of simple roots is determined by defining ~φ to lie in a positive Weyl

chamber. What this means in practice, with our chosen ordering φa < φa+1, is that we

can write each root as an N -vector, with

~α1 = (1,−1, 0, . . . , 0)

~α2 = (0, 1,−1, . . . , 0) (2.13)

1For monopoles in a general gauge group, the Dirac quantization condition becomes ~g = 4π
∑

a
na~α?

a

where ~α?

a
are simple co-roots.
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through to

~αN−1 = (0, 0, . . . , 1,−1) (2.14)

Then translating between two different notations for the magnetic charge vector we

have

~g = diag(g1, . . . , gN) (2.15)

= 2π diag(n1 , n2 − n1, . . . , nN−1 − nN−2 , −nN−1)

The advantage of working with the integers na, a = 1, . . . , N − 1 will become apparent

shortly.

2.1.2 The Monopole Equations

As in Lecture 1, we’ve learnt that the space of field configurations decomposes into

different topological sectors, this time labelled by the vector ~g or, equivalently, the

N − 1 integers na. We’re now presented with the challenge of finding solutions in the

non-trivial sectors. We can again employ a Bogomoln’yi bound argument (this time

actually due to Bogomoln’yi [11]) to derive first order equations for the monopoles.

We first set ∂0 = A0 = 0, so we are looking for time independent configurations with

vanishing electric field. Then the energy functional of the theory gives us the mass of

a magnetic monopole,

Mmono = Tr

∫

d3x
1

e2
B2

i +
1

e2
(Diφ)2

= Tr

∫

d3x
1

e2
(Bi ∓Diφ)2 ± 2

e2
BiDiφ

≥ 2

e2

∫

d3x ∂i Tr(Biφ) (2.16)

where we’ve used the Bianchi identity DiBi = 0 when integrating by parts to get the

final line. As in the case of instantons, we’ve succeeded in bounding the energy by

a surface term which measures a topological charge. Comparing with the expressions

above we have

Mmono ≥
|~g · ~φ|
e2

=
2π

e2

N−1
∑

a=1

naφa (2.17)

with equality if and only if the monopole equations (often called the Bogomoln’yi

equations) are obeyed,

Bi = Diφ if ~g · ~φ > 0

Bi = −Diφ if ~g · ~φ < 0 (2.18)
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For the rest of this lecture we’ll work with ~g · ~φ > 0 and the first of these equations.

Our path will be the same as in lecture 1: we’ll first examine the simplest solution to

these equations and then study its properties before moving on to the most general

solutions. So first:

2.1.3 Solutions and Collective Coordinates

The original magnetic monopole described by ’t Hooft and Polyakov occurs in SU(2)

theory broken to U(1). We have SU(2)/U(1) ∼= S2 and Π2(S
2) ∼= Z. Here we’ll describe

the simplest such monopole with charge one. To better reveal the topology supporting

this monopole (as well as to demonstrate explicitly that the solution is smooth) we’ll

momentarily revert back to a gauge where the vev winds asymptotically. The solution

to the monopole equation (2.18) was found by Prasad and Sommerfield [12]

φ =
r̂iσ

i

r
(vr coth(vr) − 1)

Aµ = −εiµj

r̂jσi

r

(

1 − vr

sinh vr

)

(2.19)

This solution asymptotes to 〈φ〉 = vσir̂i, where σi are the Pauli matrices (i.e. comparing

notation with (2.4) in, say, the r̂3 direction, we have v = −φ1 = φ2). The SU(2)

solution presented above has 4 collective coordinates, although none of them are written

explicitly. Most obviously, there are the three center of mass coordinates. As with

instantons, there is a further collective coordinate arising from acting on the soliton

with the unbroken gauge symmetry which, in this case, is simply U(1).

For monopoles in SU(N) we can always generate solutions by embedding the con-

figuration (2.19) above into a suitable SU(2) subgroup. Note however that, unlike the

situation for instantons, we can’t rotate from one SU(2) embedding to another since

the SU(N) gauge symmetry is not preserved in the vacuum. Each SU(2) embedding

will give rise to a different monopole with different properties — for example, they will

have magnetic charges under different U(1) factors.

Of the many inequivalent embeddings of SU(2) into SU(N), there are (N−1) special

ones. These have generators given in the Cartan-Weyl basis by ~α · ~H and E±~α where

~α is one of the simple roots (2.13). In a less sophisticated language, these are simply

the (N − 1) contiguous 2 × 2 blocks which lie along the diagonal of an N ×N matrix.

Embedding the monopole in the ath such block gives rise to the magnetic charge ~g = ~αa.
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2.2 The Moduli Space

For a monopole with magnetic charge ~g, we want to know how many collective coor-

dinates are contained within the most general solution. The answer was given by E.

Weinberg [14]. There are subtleties that don’t occur in the instanton calculation, and

a variant of the Atiyah-Singer index theorem due to Callias is required [15]. But the

result is very simple. Define the moduli space of monopoles with magnetic charge ~g to

be M~g. Then the number of collective coordinates is

dim(M~g) = 4

N−1
∑

a=1

na (2.20)

The interpretation of this is as follows. There exist (N − 1) ”elementary” monopoles,

each associated to a simple root ~αa, carrying magnetic charge under exactly one of

the (N − 1) surviving U(1) factors of (2.5). Each of these elementary monopoles has

4 collective coordinates. A monopole with general charge ~g can be decomposed into
∑

a na elementary monopoles, described by three position coordinates and a phase

arising from U(1) gauge rotations.

You should be surprised by the existence of this large

Figure 2:

class of solutions since it implies that monopoles can be placed

at arbitrary separation and feel no force. But this doesn’t

happen for electrons! Any objects carrying the same charge,

whether electric or magnetic, repel. So what’s special about

monopoles? The point is that monopoles also experience a sec-

ond long range force due to the massless components of the

scalar field φ. This gives rise to an attraction between the

monopoles that precisely cancels the electromagnetic repulsion

[16]. Such cancellation of forces only occurs when there is no potential for φ as in (2.3).

The interpretation of the collective coordinates as posi-

Figure 3:

tions of particle-like objects holds only when the monopoles are

more widely separated than their core size. As the monopoles

approach, weird things happen! Two monopoles form a torus.

Three monopoles form a tetrahedron, seemingly splitting into

four lumps of energy as seen in figure 2. Four monopoles form a

cube as in figure 3. (Both of these figures are taken from [17]).

We see that monopoles really lose their individual identities as

the approach and merge into each other. Higher monopoles form

platonic solids, or buckyball like objects.
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2.2.1 The Moduli Space Metric

The metric on M~g is defined in a similar fashion to that on the instanton moduli space

Ik,N . To be more precise, it’s defined in an identical fashion. Literally! The key point

is that the monopole equations B = Dφ and the instanton equations F = ?F are

really the same: the difference between the two lies in the boundary conditions. To

see this, consider instantons with ∂4 = 0 and endow the component of the gauge field

A4 ≡ φ with a vev 〈φ〉. We end up with the monopole equations. So using the notation

δφ = δA4, we can reuse the linearized self-dual equations (1.14) and the gauge fixing

condition (1.17) from the Lecture 1 to define the monopole zero modes. The metric on

the monopole moduli space M~g is again given by the overlap of zero modes,

gαβ =
1

e2
Tr

∫

d3x (δαAi δβAi + δαφ δβφ) (2.21)

The metric on the monopole moduli space has the following properties:

• The metric is hyperKähler .

• The metric enjoys an SO(3) × U(1)N−1 isometry. The former descends from

physical rotations of the monopoles in space. The latter arise from the unbro-

ken gauge group. The U(1)N−1 isometries are tri-holomorphic, while the SO(3)

isometry rotates the three complex structures.

• The metric is smooth. There are no singular points analogous to the small instan-

ton singularities of Ik,N because, as we have seen, the scale of the monopole isn’t

a collective coordinate. It is fixed to be Lmono ∼ 1/MW , the Compton wavelength

of the W-bosons.

• Since the metrics on Ik,N and M~g arise from the same equations, merely endowed

with different boundary conditions, one might wonder if we can interpolate be-

tween them. In fact we can. In the study of instantons on R3×S1, with a non-zero

Wilson line around the S1, the 4N collective coordinates of the instanton gain

the interpretation of the positions of N ”fractional instantons” [18, 19]. These

are often referred to as calorons and are identified as the monopoles discussed

above. By taking the radius of the circle to zero, and some calorons to infinity,

we can interpolate between the metrics on M~g and Ik,N [20].

2.2.2 The Physical Interpretation of the Metric

For particles such as monopoles in d = 3+1 dimensions, the metric on the moduli space

has a beautiful physical interpretation first described by Manton [21]. Suppose that the

– 9 –



monopoles move slowly through space. We approximate the motion by assuming that

the field configurations remain close to the static solutions, but endow the collective

coordinates Xα with time dependence: Xα → Xα(t). If monopoles collide at very high

energies this approximation will not be valid. As the monopoles hit they will spew out

massive W-bosons and, on occasion, even monopole-anti-monopole pairs. The resulting

field configurations will look nothing like the static monopole solutions. Even for very

low-energy scattering it’s not completely clear that the approximation is valid since

the theory doesn’t have a mass gap and the monopoles can emit very soft photons.

Nevertheless, there is much evidence that this procedure, known as the moduli space

approximation, does capture the true physics of monopole scattering at low energies.

The time dependence of the fields is

Aµ = Aµ(Xα(t)) , φ = φ(Xα(t)) (2.22)

which reduces the dynamics of an infinite number of field theory degrees of freedom to

a finite number of collective coordinates. We must still satisfy Gauss’ law,

DiEi − i[φ,D0φ] = 0 (2.23)

which can be achieved by setting A0 = ΩαẊ
α, where the Ωα are the extra gauge rota-

tions that we introduced in (1.15) to ensure that the zero modes satisfy the background

gauge fixing condition. This means that the time dependence of the fields is given in

terms of the zero modes,

Ei = F0i = δαAi Ẋ
α

D0φ = δαφ Ẋ
α (2.24)

Plugging this into the action (2.3) we find

S = Tr

∫

d4x
1

e2
(

E2
i +B2

i + (D0φ)2 + (Diφ)2
)

=

∫

dt
(

Mmono + 1
2
gαβẊ

αẊβ
)

(2.25)

The upshot of this is analysis is that the low-energy dynamics of monopoles is given

by the d = 0+1 sigma model on the monopole moduli space. The equations of motion

following from (2.25) are simply the geodesic equations for the metric gαβ. We learn

that the moduli space metric captures the velocity-dependent forces felt by monopoles,

such that low-energy scattering is given by geodesic motion.
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In fact, this logic can be reversed. In certain circumstances it’s possible to figure out

the trajectories followed by several moving monopoles. From this one can construct

a metric on the configuration space of monopoles such that the geodesics reconstruct

the known motion. This metric agrees with that defined above in a very different way.

This procedure has been carried out for a number of examples [22, 23, 24].

2.2.3 Examples of Monopole Moduli Spaces

Let’s now give a few examples of monopole moduli spaces. We start with the simple

case of a single monopole where the metric may be explicitly computed.

One Monopole

Consider the ~g = ~α1 monopole, which is nothing more that the charge one SU(2)

solution we saw previously (2.19). In this case we can compute the metric directly. We

have two different types of collective coordinates:

i) The three translational modes. The linearized monopole equation and gauge

fixing equation are solved by δ(i)Aj = −Fij and δ(i)φ = −Diφ, so that the overlap

of zero modes is

Tr
1

e2

∫

d3x (δ(i)Ak δ(j)Ak + δ(i)φ δ(j)φ) = Mmono δij (2.26)

ii) The gauge mode arises from transformation U = exp(iφχ/v), where the normal-

ization has been chosen so that the collective coordinate χ has periodicity 2π.

This gauge transformation leaves φ untouched while the transformation on the

gauge field is δAi = (Diφ)/v.

Putting these two together, we find that single monopole moduli space is

M~α
∼= R3 × S1 (2.27)

with metric

ds2 = Mmono

(

dX idX i +
1

v2
dχ2

)

(2.28)

where Mmono = 4πv/e2 in the notation used in the solution (2.19).
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Two Monopoles

Two monopoles in SU(2) have magnetic charge ~g = 2α1. The direct approach to com-

pute the metric that we have just described becomes impossible since the most general

analytic solution for the two monopole configuration is not available. Nonetheless,

Atiyah and Hitchin were able to determine the two monopole moduli space using sym-

metry considerations alone, most notably the constraints imposed by hyperKählerity

[6, 25]. It is

M2~α
∼= R3 × S1 ×MAH

Z2

(2.29)

where R3 describes the center of mass of the pair of monopoles, while S1 determines

the overall phase 0 ≤ χ ≤ 2π. The four-dimensional hyperKähler space MAH is the

famous Atiyah-Hitchin manifold. Its metric can be written as

ds2 = f(r)2dr2 + a(r)2σ2
1 + b(r)2σ2

2 + c(r)2σ2
3 (2.30)

Here the radial coordinate r measures the separation between the monopoles in units

of the monopole mass. The σi are the three left-invariant SU(2) one-forms which, in

terms of polar angles 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ ≤ 2π, take the form

σ1 = − sinψ dθ + cosψ sin θ dφ

σ2 = cosψ dθ + sinψ sin θ dφ

σ3 = dψ + cos θ dφ (2.31)

For far separated monopoles, θ and φ determine the angular separation while ψ is the

relative phase. The Z2 quotient in (2.29) acts as

Z2 : χ→ χ+ π , ψ → ψ + π (2.32)

The hyperKähler condition can be shown to relate the four functions f, a, b and c

through the differential equation

2bc

f

da

dr
= (b− c)2 − a2 (2.33)

together with two further equations obtained by cyclically permuting a, b and c. The

solutions can be obtained in terms of elliptic integrals but it will prove more illuminating

to present the asymptotic expansion of these functions. Choosing coordinates such that
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f(r) = −b(r)/r,

a2 = r2

(

1 − 2

r

)

− 8r3e−r + . . .

b2 = r2

(

1 − 2

r

)

+ 8r3e−r + . . . (2.34)

c2 = 4

(

1 − 2

r

)−1

+ . . .

If we suppress the exponential corrections, the metric describes the velocity dependant

forces between two monopoles interacting through their long range fields. In fact,

this asymptotic metric can be derived by treating the monopoles as point particles

and considering their Liénard-Wiechert potentials. Note that in this limit there is an

isometry associated to the relative phase ψ. However, the minus sign before the 2/r

terms means that the metric is singular. The exponential corrections above contain the

information about the behavior of the monopoles as their non-abelian cores overlap,

and the full metric is smooth.

The Atiyah-Hitchin metric appears in several places in string theory and supersym-

metric gauge theories, including the M-theory lift of the type IIA O6-plane [26], the

solution of the quantum dynamics of 3d gauge theories [27], in intersecting brane config-

urations [28], the heterotic string compactified on ALE spaces [29, 30] and NS5-branes

on orientifold 8-planes [31]. In each of these places, there is often a relationship to

magnetic monopoles underlying the appearance of this metric.

For higher charge monopoles of the same type ~g = n~α, the leading order terms in

the asymptotic expansion of the metric, associated with the long-range fields of the

monopoles, have been computed. The result is known as the Gibbons-Manton metric

[23]. The full metric on the monopole moduli space remains an open problem.

Two Monopoles of Different Types

As we have seen, higher rank gauge groups SU(N) for N ≥ 3 admit monopoles of

different types. If a ~g = ~αa monopole and a ~g = ~αb monopole live in entirely different

places in the gauge group, so that ~αa · ~αb = 0, then they don’t see each other and their

moduli space is simply the product (R3 × S1)2. However, if they live in neighboring

subgroups so that ~αa · ~αb = −1, then they do interact non-trivially.

The metric on the moduli space of two neighboring monopoles, sometimes referred

to as the (1, 1) monopole, was first computed by Connell [32]. But he chose not to

publish. It was rediscovered some years later by two groups when the connection with
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electro-magnetic duality made the study of monopoles more pressing [33, 34]. It is

simplest to describe if the two monopoles have the same mass, so ~φ · ~αa = ~φ · ~αb. The

moduli space is then

M~α1+~α2
∼= R3 × S1 ×MTN

Z2
(2.35)

where the interpretation of the R3 factor and S1 factor are the same as before. The

relative moduli space is the Taub-NUT manifold, which has metric

ds2 =

(

1 +
2

r

)

(dr2 + r2(σ2
1 + σ2

2)) +

(

1 +
2

r

)−1

σ2
3 (2.36)

The +2/r in the metric, rather than the −2/r of Atiyah-Hitchin, means that the metric

is smooth. The apparent singularity at r = 0 is merely a coordinate artifact, as you can

check by transforming to the variables R =
√
r. Once again, this 1/r terms capture the

long range interactions of the monopoles, with the minus sign traced to the fact that

each sees the other with opposite magnetic charge (essentially because ~α1 · ~α2 = −1).

There are no exponential corrections to this metric. The non-abelian cores of the two

monopoles do not interact.

The exact moduli space metric for a string of neighboring monopoles, ~g =
∑

a ~αa

has been determined. Known as the Lee-Weinberg-Yi metric, it is a higher dimensional

generalization of the Taub-NUT metric [24]. It is smooth and has no exponential

corrections.

2.3 Dyons

Consider the one-monopole moduli space R3 × S1. Motion in R3 is obvious. But what

does motion along the S1 correspond to?

We can answer this by returning to our specific SU(2) solution (2.19). We determined

that the zero mode for the U(1) action is δAi = Diφ and δφ = 0. Translating to the

time dependence of the fields (2.24), we find

Ei =
(Diφ)

v
χ̇ =

Bi

v
e2χ̇ (2.37)

We see that motion along the S1 induces an electric field for the monopole, proportional

to its magnetic field. In the unbroken U(1), this gives rise to a long range electric field,

Tr(Eiφ) =
qve2r̂i

2πr2
(2.38)
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where, comparing with the normalization above, the electric charge q is given by

q =
2πχ̇

ve2
(2.39)

Note that motion in R3 also gives rise to an electric field, but this is the dual to the

familiar statement that a moving electric charge produces a magnetic field. Motion in

S1, on the other hand, only has the effect of producing an electric field [35].

A particle with both electric and magnetic charges is called a dyon, a term first

coined by Schwinger [36]. Since we have understood this property from the perspective

of the monopole worldline, can we return to our original theory (2.3) and find the

corresponding solution there? The answer is yes. We relax the condition Ei = 0 when

completing the Bogomoln’yi square in (2.16) and write

Mdyon = Tr

∫

d3x
1

e2
(Ei − cosαDiφ)2 +

1

e2
(Bi − sinαDiφ)2

+
2

e2
Tr

∫

d3x ∂i (cosαEiφ+ sinαBiφ) (2.40)

which holds for all α. We write the long range magnetic field as Ei = ~q · ~H e2r̂i/4πr2.

Then by adjusting α to make the bound as tight as possible, we have

Mdyon ≥

√

√

√

√

(

~q · ~φ
)2

+

(

~g · ~φ
e2

)2

(2.41)

and, given a solution to the monopole, it is easy to find a corresponding solution for

the dyon for which this bound is saturated, with the fields satisfying

Bi = sinαDiφ and Ei = cosαDiφ (2.42)

This method of finding solutions in the worldvolume theory of a soliton, and subse-

quently finding corresponding solutions in the parent 4d theory, will be something we’ll

see several more times in later sections.

I have two further comments on dyons.

• We could add a theta term θF ∧ F to the 4d theory. Careful calculation of the

electric Noether charges shows that this induces an electric charge ~q = θ~g/2π on

the monopole. In the presence of the theta term, monopoles become dyons. This

is known as the Witten effect [37].
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• Both the dyons arising from (2.42), and those arising from the Witten effect, have

~q ∼ ~g. One can create dyons whose electric charge vector is not parallel to the

magnetic charge by turning on a vev for a second, adjoint scalar field [38, 39].

These states are 1/4-BPS in N = 4 super Yang-Mills and correspond to (p, q)-

string webs stretched between D3-branes. From the field theory perspective, the

dynamics of these dyons is described by motion on the monopole moduli space

with a potential induced by the second scalar vev [40, 41, 42].

2.4 Fermi Zero Modes

As with instantons, when the theory includes fermions they may be turned on in the

background of the monopole without raising the energy of the configuration. A Dirac

fermion λ in the adjoint representation satisfies

iγµDµλ− i[φ, λ] = 0 (2.43)

Each such fermion carried 4
∑

a na zero modes.

Rather than describing this in detail, we can instead resort again to supersymmetry.

In N = 4 super Yang-Mills, the monopoles preserve one-half the supersymmetry, cor-

responding to N = (4, 4) on the monopole worldvolume. While, monopoles in N = 2

supersymmetric theories preserve N = (0, 4) on their worldvolume. Monopoles in

N = 1 theories are not BPS; they preserve no supersymmetry on their worldvolume.

There is also an interesting story with fermions in the fundamental representation,

leading to the phenomenon of solitons carrying fractional fermion number [43]. A nice

description of this can be found in [7].

2.5 Nahm’s Equations

In the previous section we saw that the ADHM construction gave a powerful method

for understanding instantons, and that it was useful to view this from the perspective

of D-branes in string theory. You’ll be pleased to learn that there exists a related

method for studying monopoles. It’s known as the Nahm construction [44]. It was

further developed for arbitrary classical gauge group in [45], while the presentation in

terms of D-branes was given by Diaconescu [46].

We start with N = 4 U(N) super Yang-Mills, realized on the worldvolume of D3-

branes. To reflect the vev 〈φ〉 = diag(φ1 . . . , φN), we separate the D3-branes in a

transverse direction, say the x6 direction. The ath D3-brane is placed at position

x6 = φa.
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...............

...............

Figure 4: The D-brane set-up for monopoles of charge ~g =
∑

a na~αa.

As is well known, the W-bosons correspond to fundamental strings stretched between

the D3-branes. The monopoles are their magnetic duals, the D-strings. At this point

our notation for the magnetic charge vector ~g =
∑

a na~αa becomes more visual. This

monopole in sector ~g is depicted by stretching na D-strings between the ath and (a+1)th

D3-branes.

Our task now is to repeat the analysis of lecture 1 that led to the ADHM construction:

we must read off the theory on the D1-branes, which we expect give us a new perspective

on the dynamics of magnetic monopoles. From the picture it looks like the dynamics

of the D-strings will be governed by something like a
∏

a U(na) gauge theory, with

each group living on the interval φa ≤ x6 ≤ φa+1. And this is essentially correct. But

what are the relevant equations dictating the dynamics? And what happens at the

boundaries?

To get some insight into this, let’s start by considering n infinite D-strings, with

worldvolume x0, x6, and with D3-brane impurities inserted at particular points x6 = φa,

as shown below.

The theory on the D-strings is a d = 1+1 U(n) gauge theory with 16 supercharges

(known as N = (8, 8)). Each D3-brane impurity donates a hypermultiplet to the

theory, breaking supersymmetry by half to N = (4, 4). As in lecture 1, we write the

hypermultiplets as

ωa =

(

ψa

ψ̃†
a

)

a = 1, . . . , N (2.44)

where ψa transforms in the n of U(n), while ψ̃a transforms in the n̄. The coupling of

these impurities (or defects as they’re also known) is uniquely determined by super-

symmetry, and again occurs in a triplet of D-terms (or, equivalently, a D-term and an
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φ 1 φ 2 φ 3 φ N

Figure 5: The D3-branes give rise to impurities on the worldvolume of the D1-branes.

F-term). In lecture 1, I unapologetically quoted the D-term and F-term arising in the

ADHM construction (equation (1.44)) since they can be found in any supersymmetry

text book. However, now we have an impurity theory which is a little less familiar.

Nonetheless, I’m still going to quote the result, but this time I’ll apologize. We could

derive this interaction by examining the supersymmetry in more detail, but it’s easier

to simply tell you the answer and then give a couple of remarks to try and convince

you that it’s right. It turns out that the (admittedly rather strange) triplet of D-terms

occurring in the Lagrangian is

Tr

(

∂X i

∂x6
− i[A6, X

i] − i

2
εijk[X

j, Xk] +
N
∑

a=1

ω†
aσ

iωa δ(x
6 − φa)

)2

(2.45)

In the ground state of the D-strings, this term must vanish. Some motivating remarks:

• The configuration shown in figure 5 arises from T-dualizing the D0-D4 system.

This viewpoint makes it clear that A6 is the right bosonic field to partner X i in

a hypermultiplet.

• Set ∂6 = 0. Then, relabelling A6 = X4, this term is almost the same as the

triplet of D-terms appearing in the ADHM construction. The only difference is

the appearance of the delta-functions.

• We know that D-strings can end on D3-branes. The delta-function sources in

the D-term are what allow this to happen. For example, consider a single n = 1

D-string, so that all commutators above vanish. We choose ψ̃ = 0, to find the

triplet of D-terms

∂6X
1 = 0 , ∂6X

2 = 0 , ∂6X
3 = |ψ|2δ(0) (2.46)
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which allows the D-string profile to take the necessary step (function) to split on

the D3-brane as shown below.

If that wasn’t enough motivation, one can find the full su-

Figure 6:

persymmetry analysis in the original papers [47, 48] and, in

most detail, in [49]. Accepting (2.45) we can make progress

in understanding monopole dynamics by studying the limit in

which several D-string segments, including the semi-infinite end

segments, move off to infinity, leaving us back with the picture

of figure 4.

The upshot of this is that the dynamics of the ~g =
∑

a na~αa

monopoles are described as follows: In the interval φa ≤ x6 ≤
φa+1, we have a U(na) gauge theory, with three adjoint scalars X i, i = 1, 2, 3 satisfying

dX i

dx6
− i[A6, X

i] − 1
2
εijk[X i, Xj] = 0 (2.47)

These are Nahm’s equations. The boundary conditions imposed at the end of the

interval depend on the number of monopoles in the neighbouring segment. (Set n0 =

nN = 0 in what follows)

na = na+1: The U(na) gauge symmetry is extended to the interval φa ≤ x6 ≤ φa+2

and an impurity is added to the right-hand-side of Nahm’s equations

dX i

dx6
− i[A6, X

i] − 1
2
εijk[X i, Xj] = ω†

a+1σ
iωa+1 δ(x

6 − φa+1) (2.48)

This, of course, follows immediately from (2.45).

na = na+1 − 1: In this case, X i → (Xi)−, a set of three constant na × na matrices as

x6 → (φa+1)−. To the right of the impurity, the X i are (na + 1) × (na + 1) matrices.

They are required to satisfy the boundary condition

X i →
(

yi ai†

ai (X i)−

)

as x6 → (φa+1)+ (2.49)

where yi ∈ R and each ai is a complex na-vector. One can derive this boundary

condition without too much trouble by starting with (2.48) and taking |ω| → ∞ to

remove one of the monopoles [50].
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na ≤ na+1 − 2 Once again X i → (X i)− as x6 → (φa+1)− but, from the other side,

the matrices Xµ now have a simple pole at the boundary,

X i →
(

J i/s+ Y i O(sγ)

O(sγ) (X i)−

)

as x6 → (φa+1)+ (2.50)

Here s = (x6−φa+1) is the distance to the impurity. The matrices J i are the irreducible

(na+1 − na) × (na+1 − na) representation of su(2), and Y i are now constant (na+1 −
na) × (na+1 − na) matrices. Note that the simple pole structure is compatible with

Nahm’s equations, with both the derivative and the commutator term going like 1/s2.

Finally, γ = 1
2
(na+1 − na − 1), so the off-diagonal terms vanish as we approach the

boundary. The boundary condition (2.50) can also be derived from (2.49) by removing

a monopole to infinity [50] except for the requirement that J i is irreducible. And this is

important! Without this restriction, one can’t even build a solution in the right gauge

group. As far as I’m aware, it’s an open problem to derive the irreducibility of the J i

in the D-brane language.

When na > na+1, the obvious parity flipped version of the above conditions holds.

2.5.1 Constructing the Solutions

Just as in the case of ADHM construction, Nahm’s equations capture information about

both the monopole solutions and the monopole moduli space. The space of solutions

to Nahm’s equations (2.47), subject to the boundary conditions detailed above, is

isomorphic to the monopole moduli space M~g. The phases of each monopole arise

from the gauge field A6, while X i carry the information about the positions of the

monopoles. Moreover, there is a natural metric on the solutions to Nahm’s equations

which coincides with the metric on the monopole moduli space. I don’t know if anyone

has calculated the Atiyah-Hitchin metric using Nahm data, but a derivation of the

Lee-Weinberg-Yi metric was given in [51].

Given a solution to Nahm’s equations, one can explicitly construct the corresponding

solution to the monopole equation. The procedure is analogous to the construction of

instantons in 1.4.2, although its a little harder in practice as its not entirely algebraic.

We now explain how to do this. The first step is to build a Dirac-like operator from

the solution to (2.47). In the segment φa ≤ x6 ≤ φa+1, we construct the Dirac operator

∆ =
d

dx6
− iA6 − i(X i + ri)σi (2.51)
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where we’ve reintroduced the spatial coordinates ri into the game. We then look for

normalizable zero modes U which are solutions to the equation

∆U = 0 (2.52)

One can show that there are N such solutions, and so we consider U as a 2na × N -

dimensional matrix. Note that the dimension of U jumps as we move from one interval

to the next. We want to appropriately normalize U , and to do so choose to integrate

over all intervals, so that

∫ φN

φ1

dx6 U †U = 1N (2.53)

Once we’ve figured out the expression for U , a Higgs field φ and a gauge field Ai which

satisfy the monopole equation are given by,

φ =

∫ φN

φ1

dx6 x6 U †U , Ai =

∫ φN

φ1

dx6 U †∂6U (2.54)

The similarity between this procedure and that described in section 1.4.2 for instantons

should be apparent.

In fact, there’s a slight complication that I’ve brushed under the rug. The above

construction only really holds when na 6= na+1. If we’re in a situation where na = na+1

for some a, then we have to take the hypermultiplets ωa into account, since their value

affects the monopole solution. This isn’t too hard — it just amounts to adding some

extra discrete pieces to the Dirac operator ∆. Details can be found in [45].

A string theory derivation of the construction part of the Nahm construction was

recently given in [52].

An Example: The Single SU(2) Monopole Revisited

It’s very cute to see the single n = 1 solution (2.19) for the SU(2) monopole drop out

of this construction. This is especially true since the Nahm data is trivial in this case:

X i = A6 = 0!

To see how this arises, we look for solutions to

∆U =

(

d

dx6
− riσi

)

U = 0 (2.55)
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where U = U(x6) is a 2 × 2 matrix. This is trivially solved by

U =

√

r

sinh(2vr)

(

cosh(rx6) 12 + sinh(rx6) r̂iσi
)

(2.56)

which has been designed to satisfy the normalizability condition
∫ +v

−v
U †U dx6 = 12.

Armed with this, we can easily reproduce the monopole solution (2.19). For example,

the Higgs field is given by

φ =

∫ +v

−v

dx6 x6U †U =
r̂iσi

r
(vr coth(vr) − 1) (2.57)

as promised. And the gauge field Ai drops out just as easily. See — told you it was

cute! Monopole solutions with charge of the type (1, 1, . . . , 1) were constructed using

this method in [53].

2.6 What Became of Instantons

In the last lecture we saw that pure Yang-Mills theory contains instanton solutions.

Now we’ve added a scalar field, where have they gone?! The key point to note is that

the theory was conformal before φ gained its vev. As we saw in Lecture 1, this led to

a collective coordinate ρ, the scale size of the instanton. Now with 〈φ〉 6= 0 we have

introduced a mass scale into the game and no longer expect ρ to correspond to an exact

collective coordinate. This turns out to be true: in the presence of a non-zero vev 〈φ〉,
the instanton minimizes its action by shrinking to zero size ρ → 0. Although, strictly

speaking, no instanton exists in the theory with 〈φ〉 = 0, they still play a crucial role.

For example, the famed Seiberg-Witten solution can be thought of as summing these

small instanton corrections.

k D(p−4)−branes

N separated Dp−branes

Figure 7: Separating the Dp-branes gives rise to a mass for the hypermultiplets
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How can we see this behavior from the perspective of the worldvolume theory? We

can return to the D-brane set-up, now with the Dp-branes separated in one direction,

say x6, to mimic the vev 〈φ〉. Each Dp-D(p− 4) string is now stretched by a different

amount, reflecting the fact that each hypermultiplet has a different mass. The potential

on the worldvolume theory of the D-instantons is now

V =
1

g2

10
∑

m,n=5

[Xm, Xn]
2 +

∑

m,µ

[Xm, Xµ]
2 +

N
∑

a=1

ψa†(Xm − φm
a)

2ψa + ψ̃a(Xm − φm
a)

2ψ̃†
a

+g2 Tr (
N
∑

a=1

ψaψ
a† − ψ̃†

aψ̃
a + [Z,Z†] + [W,W †])2 + g2 Tr |

N
∑

a=1

ψaψ̃
a + [Z,W ]|2

We’ve actually introduced more new parameters here than we need, since the D3-branes

can be separated in 6 different dimensions, so we have the corresponding positions φm
a,

m = 4, . . . , 9 and a = 1, . . .N . Since we have been dealing with just a single scalar

field φ in this section, we will set φm
i = 0 except for m = 6 (I know...why 6?!). The

parameters φ6
a = φa are the components of the vev (2.4).

We can now re-examine the vacuum condition for the Higgs branch. If we wish to

try to turn on ψ and ψ̃, we must first set Xm = φa, for some a. Then the all ψb and ψ̃b

must vanish except for b = a. But, taking the trace of the D- and F-term conditions

tells us that even ψa and ψ̃a vanish. We have lost our Higgs branch completely. The

interpretation is that the instantons have shrunk to zero size. Note that in the case of

non-commutativity, the instantons don’t vanish but are pushed to the U(1) instantons

with, schematically, |ψ|2 ∼ ζ.

Although the instantons shrink to zero size, there’s still important information to be

gleaned from the potential above. One can continue to think of the instanton moduli

space Ik,N
∼= MHiggs as before, but now with a potential over it. This potential arises

after integrating out the Xm and it is not hard to show that it is of a very specific form:

it is the length-squared of a triholomorphic Killing vector on Ik,N associated with the

SU(N) isometry.

This potential on Ik,N can be derived directly within field theory without recourse

to D-branes or the ADHM construction [54]. This is the route we follow here. The

question we want to ask is: given an instanton solution, how does the presence of the

φ vev affect its action? This gives the potential on the instanton moduli space which

is simply

V =

∫

d4x Tr (Dµφ)2 (2.58)
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where Dµ is evaluated on the background instanton solution. We are allowed to vary φ

so it minimizes the potential so that, for each solution to the instanton equations, we

want to find φ such that

D2φ = 0 (2.59)

with the boundary condition that φ → 〈φ〉. But we’ve seen an equation of this form,

evaluated on the instanton background, before. When we were discussing the instanton

zero modes in section 1.2, we saw that the zero modes arising from the overall SU(N)

gauge orientation were of the form δAµ = DµΛ, where Λ tends to a constant at infinity

and satisfies the gauge fixing condition DµδAµ = 0. This means that we can re-write

the potential in terms of the overlap of zero modes

V =

∫

d4x Tr δAµδAµ (2.60)

for the particular zero mode δAµ = Dµφ associated to the gauge orientation of the

instanton. We can give a nicer geometrical interpretation to this. Consider the action

of the Cartan subalgebra ~H on Ik,N and denote the corresponding Killing vector as
~k = ~kα∂α. Then, since φ generates the transformation ~φ · ~H, we can express our zero

mode in terms of the basis δAµ = (~φ · ~kα) δαAµ. Putting this in our potential and

performing the integral over the zero modes, we have the final expression

V = gαβ (~φ · ~kα) (~φ · ~kβ) (2.61)

The potential vanishes at the fixed points of the U(1)N−1 action. This is the small

instanton singularity (or related points on the blown-up cycles in the resolved instanton

moduli space). Potentials of the form (2.61) were first discussed by Alvarez-Gaume and

Freedman who showed that, for tri-holomorphic Killing vectors k, they are the unique

form allowed in a sigma-model preserving eight supercharges [55].

The concept of a potential on the instanton moduli space Ik,N is the modern way

of viewing what used to known as the ”constrained instanton”, that is an approximate

instanton-like solution to the theory with 〈φ〉 6= 0 [56]. These potentials play an impor-

tant role in Nekrasov’s first-principles computation of the Seiberg-Witten prepotential

[59]. Another application occurs in the five-dimensional theory, where instantons are

particles. Here the motion on the moduli space may avoid the fate of falling to the

zeroes of (2.61) by spinning around the potential like a motorcyclist on the wall of

death. These solutions of the low-energy dynamics are dyonic instantons which carry

electric charge in five dimensions [54, 57, 58].
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2.7 Applications

Time now for the interesting applications, examining the role that monopoles play in

the quantum dynamics of supersymmetric gauge theories in various dimensions. We’ll

look at monopoles in 3, 4, 5 and 6 dimensions in turn.

2.7.1 Monopoles in Three Dimensions

In d = 2+1 dimensions, monopoles are finite action solutions to the Euclidean equations

of motion and the role they play is the same as that of instantons in d = 3+1 dimensions:

in a semi-classical evaluation of the path-integral, one must sum over these monopole

configurations. In 1975, Polyakov famously showed how a gas of these monopoles leads

to linear confinement in non-supersymmetric Georgi-Glashow model [60] (that is, an

SU(2) gauge theory broken to U(1) by an adjoint scalar field).

In supersymmetric theories, monopoles give rise to somewhat different physics. The

key point is that they now have fermionic zero modes, ensuring that they can only

contribute to correlation functions with a suitable number of fermionic insertions to

soak up the integrals over the Grassmannian collective coordinates. In N = 1 and

N = 2 theories2 in d = 2 + 1 dimensions, instantons generate superpotentials, lifting

moduli spaces of vacua [61]. In N = 8 theories, instantons contribute to particular 8

fermi correlation functions which have a beautiful interpretation in terms of membrane

scattering in M-theory [62, 63]. In this section, I’d like to describe one of the nicest

applications of monopoles in three dimensions which occurs in theories with N = 4

supersymmetry, or 8 supercharges.

We’ll consider N = 4 SU(2) super Yang-Mills. The superpartners of the gauge field

include 3 adjoint scalar fields, φα, α = 1, 2, 3 and 2 adjoint Dirac fermions. When the

scalars gain an expectation value 〈φα〉 6= 0, the gauge group is broken SU(2) → U(1)

and the surviving, massless, bosonic fields are 3 scalars and a photon. However, in

d = 2 + 1 dimensions, the photon has only a single polarization and can be exchanged

in favor of another scalar σ. We achieve this by a duality transformation:

Fij =
e2

2π
εijk∂

k σ (2.62)

2A (foot)note on nomenclature. In any dimension, the number of supersymmetries N counts the

number of supersymmetry generators in units of the minimal spinor. In d = 2+1 the minimal Majorana

spinor has 2 real components. This is in contrast to d = 3+1 dimensions where the minimal Majorana

(or equivalently Weyl) spinor has 4 real components. This leads to the unfortunate fact that N = 1

in d = 3+1 is equivalent to N = 2 in d = 2+1. It’s annoying. The invariant way to count is in terms

of supercharges. Four supercharges means N = 1 in four dimensions or N = 2 in three dimensions.
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where we have chosen normalization so that the scalar σ is periodic: σ = σ+2π. Since

supersymmetry protects these four scalars against becoming massive, the most general

low-energy effective action we can write down is the sigma-model

Llow−energy =
1

2e2
gαβ ∂iφ

α ∂iφβ (2.63)

where φα = (φ1, φ2, φ3, σ). Remarkably, as shown by Seiberg and Witten, the met-

ric gαβ can be determined uniquely [27]. It turns out to be an old friend: it is the

Atiyah-Hitchin metric (2.30)! The dictionary is φi = e2ri and σ = ψ. Comparing

with the functions a, b and c listed in (2.34), the leading constant term comes from

tree level in our 3d gauge theory, and the 1/r terms arise from a one-loop correction.

Most interesting is the e−r term in (2.34). This comes from a semi-classical monopole

computation in d = 2 + 1 which can be computed exactly [66]. So we find monopoles

arising in two very different ways: firstly as an instanton-like configuration in the 3d

theory, and secondly in an auxiliary role as the description of the low-energy dynamics.

The underlying reason for this was explained by Hanany and Witten [28], and we shall

see a related perspective in section 2.7.4.

So the low-energy dynamics of N = 4 SU(2) gauge theory is dictated by the two

monopole moduli space. It can also be shown that the low-energy dynamics of the

N = 4 SU(N) gauge theory in d = 2 + 1 is governed by a sigma-model on the moduli

space of N magnetic monopoles in an SU(2) gauge group [64]. There are 3d quiver

gauge theories related to monopoles in higher rank, simply laced (i.e. ADE) gauge

groups [28, 65] but, to my knowledge, there is no such correspondence for monopoles

in non-simply laced groups.

2.7.2 Monopoles and Duality

Perhaps the most important application of monopoles is the role they play in uncovering

the web of dualities relating various theories. Most famous is the S-duality of N = 4

super Yang-Mills in four dimensions. The idea is that we can re write the gauge theory

treating magnetic monopoles as elementary particles rather than solitons [67]. The

following is a lightening review of this large subject. Many more details can be found

in [7].

The conjecture of S-duality states that we may re-express the theory, treating monopoles

as the fundamental objects, at the price of inverting the coupling e→ 4π/e. Since this

is a strong-weak coupling duality, we need to have some control over the strong coupling

behavior of the theory to test the conjecture. The window on this regime is provided
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by the BPS states [13], whose mass is not renormalized in the maximally supersym-

metric N = 4 theory which, among other reasons, makes it a likely place to look for

S-duality [68]. In fact, this theory exhibits a more general SL(2,Z) group of duality

transformations which acts on the complexified coupling τ = θ/2π + 4πi/e2 by

τ −→ aτ + b

cτ + d
with a, b, c, d ∈ Z and ad− bc = 1 (2.64)

A transformation of this type mixes up what we mean by electric and magnetic charges.

Let’s work in the SU(2) gauge theory for simplicity so that electric and magnetic charges

in the unbroken U(1) are each specified by an integer (ne, nm). Then under the SL(2,Z)

transformation,

(

ne

nm

)

−→
(

a −b
c −d

)(

ne

nm

)

(2.65)

The conjecture of S-duality has an important prediction that can be tested semi-

classically: the spectrum must form multiplets under the SL(2, Z) transformation

above. In particular, if S-duality holds, the existence of the W-boson state (ne, nm) =

(1, 0) implies the existence of a slew of further states with quantum numbers (ne, nm) =

(a, c) where a and c are relatively prime. The states with magnetic charge nm = c = 1

are the dyons that we described in Section 2.3 and can be shown to exist in the quantum

spectrum. But we have to work much harder to find the states with magnetic charge

nm = c > 1. To do so we must examine the low-energy dynamics of nm monopoles, de-

scribed by supersymmetric quantum mechanics on the monopole moduli space. Bound

states saturating the Bogomoln’yi bound correspond to ground states of the quantum

mechanics. But, as we described in section 1.5.2, this questions translates into the more

geometrical search for normalizable harmonic forms on the monopole moduli space.

In the nm = 2 monopole sector, the bound states were explicitly demonstrated

to exist by Sen [69]. S-duality predicts the existence of a tower of dyon states with

charges (ne, 2) for all ne odd which translates into the requirement that there is a unique

harmonic form ω on the Atiyah-Hitchin manifold. The electric charge still comes from

motion in the S1 factor of the monopole moduli space (2.29), but the need for only

odd charges ne to exist requires that the form ω is odd under the Z2 action (2.32).

Uniqueness requires that ω is either self-dual or anti-self-dual. In fact, it is the latter.

The ansatz,

ω = F (r)(dσ1 −
fa

bc
dr ∧ σ1) (2.66)
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is harmonic provided that F (r) satisfies

dF

dr
= −fa

bc
F (2.67)

One can show that this form is normalizable, well behaved at the center of the moduli

space and, moreover, unique. Historically, the existence of this form was one the com-

pelling pieces of evidence in favor of S-duality, leading ultimately to an understanding

of strong coupling behavior of many supersymmetric field theories and string theories.

The discussion above is for N = 4 theories. In N = 2 theories, the bound state

described above does not exist (a study of the N = (0, 4) supersymmetric quantum

mechanics reveals that the Hilbert space is identified with holomorphic forms and ω is

not holomorphic). Nevertheless, there exists a somewhat more subtle duality between

electrically and magnetically charged states, captured by the Seiberg-Witten solution

[70]. Once again, there is a semi-classical test of these ideas along the lines described

above [71].

2.7.3 Monopole Strings and the (2, 0) Theory

We’ve seen that the moduli space of a single monopole is M ∼= R3 × S1 with metric,

ds2 = Mmono

(

dX idX i +
1

v2
dχ2

)

(2.68)

where χ ∈ [0, 2π). It looks as if, at low-energies, the monopole is moving in a higher

dimensional space. Is there any situation where we can actually interpret this motion

in the S1 as motion in an extra, hidden dimension of space?

One problem with interpreting internal degrees of freedom, such as χ, in terms of an

extra dimension is that there is no guarantee that motion in these directions will be

Lorentz covariant. For example, Einstein’s speed limit tells us that the motion of the

monopole in R3 is bounded by the speed of light: i.e. Ẋ ≤ 1. But is there a similar

bound on χ̇ ? This is an question which goes beyond the moduli space approximation,

which keeps only the lowest velocities, but is easily answered since we know the exact

spectrum of the dyons. The energy of a relativistically moving dyon is E2 = M2
dyon+pipi,

where pi is the momentum conjugate to the center of mass Xi. Using the mass formula

(2.41), we have the full Hamiltonian

Hdyon =
√

M2
mono + v2p2

χ + pipi (2.69)

where pχ = 2q is the momentum conjugate to χ. This gives rise to the Lagrangian,

Ldyon = −Mmono

√

1 − χ̇2/v2 − Ẋ iẊ i (2.70)
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which, at second order in velocities, agrees with the motion on the moduli space (2.68).

So, surprisingly, the internal direction χ does appear in a Lorentz covariant manner in

this Lagrangian and is therefore a candidate for an extra, hidden, dimension.

However, looking more closely, our hopes are dashed. From (2.70) (or, indeed, from

(2.68)), we see that the radius of the extra dimension is proportional to 1/v. But the

width of the monopole core is also 1/v. This makes it a little hard to convincingly argue

that the monopole can happily move in this putative extra dimension since there’s no

way the dimension can be parametrically larger than the monopole itself. It appears

that χ is stuck in the auxiliary role of endowing monopoles with electric charge, rather

than being promoted to a physical dimension of space.

Things change somewhat if we consider the monopole as a string-like object in a

d = 4 + 1 dimensional gauge theory. Now the low-energy effective action for a single

monopole is simply the action (2.70) lifted to the two dimensional worldsheet of the

string, yielding the familiar Nambu-Goto action

Sstring = −Tmono

∫

d2y
√

1 − (∂χ)2/v2 − (∂X i)2 (2.71)

where ∂ denotes derivatives with respect to both worldsheet coordinates, σ and τ .

We’ve rewritten Mmono = Tmono = 4πv/e2 to stress the fact that it is a tension, with

dimension 2 (recall that e2 has dimension −1 in d = 4 + 1). As it stands, we’re in no

better shape. The size of the circle is still 1/v, the same as the width of the monopole

string. However, now we have a two dimensional worldsheet we may apply T-duality.

This means exchanging momentum modes around S1 for winding modes so that

∂χ = ?∂χ̃ (2.72)

We need to be careful with the normalization. A careful study reveals that,

1

4π

∫

d2y R2 (∂χ)2 → 1

4π

∫

d2y
1

R2
(∂χ̃)2 (2.73)

where, up to that important factor of 4π, R is the radius of the circle measured in

string units. Comparing with our normalization, we have R2 = 8π2/ve2, and the dual

Lagrangian is

Sstring = −Tmono

∫

d2y
√

1 − (e2/8π2)2(∂χ̃)2 − (∂X i)2 (2.74)

We see that the physical radius of this dual circle is now e2/8π2. This can be arbitrarily

large and, in particular, much larger than the width of the monopole string. It’s a
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prime candidate to be interpreted as a real, honest, extra dimension. In fact, in the

maximally supersymmetric Yang-Mills theory in five dimensions, it is known that this

extra dimension is real. It is precisely the hidden circle that takes us up to the six-

dimensional (2, 0) theory that we discussed in section 1.5.2. The monopole even tells us

that the instantons must be the Kaluza-Klein modes since the inverse radius of the dual

circle is exactly Minst. Once again, we see that solitons allow us to probe important

features of the quantum physics where myopic perturbation theory fails. Note that the

derivation above does rely on supersymmetry since, for the Hamiltonian (2.69) to be

exact, we need the masses of the dyons to saturate the Bogomoln’yi bound (2.41).

2.7.4 D-Branes in Little String Theory

Little string theories are strongly interacting string theories without gravity in d = 5+1

dimensions. For a review see [73]. The maximally supersymmetric variety can be

thought of as the decoupled theory living on NS5-branes. They come in two flavors:

the type iia little string theory is a (2, 0) supersymmetric theory which reduces at low-

energies to the conformal field theory discussed in sections 1.5.2 and 2.7.3. In contrast,

the type iib little string has (1, 1) non-chiral supersymmetry and reduces at low-energies

to d = 5+1 Yang-Mills theory. When this theory sits on the Coulomb branch it admits

monopole solutions which, in six dimensions, are membranes. Let’s discuss some of the

properties of these monopoles in the SU(2) theory.

The low-energy dynamics of a single monopole is the d = 2 + 1 dimensional sigma

model with target space R3 × S1 and metric (2.68). But, as we already discussed, in

d = 2 + 1 we can exchange the periodic scalar χ for a U(1) gauge field living on the

monopole. Taking care of the normalization, we find

Fmn =
8π2

e2
εmnp ∂

pχ (2.75)

with m,n = 0, 1, 2 denoting the worldvolume dimensions of the monopole 2-brane. The

low-energy dynamics of this brane can therefore be written as

Sbrane =

∫

d3x
1

2
Tmono

(

(∂mX
i)2 +

1

v2
(∂mχ)2

)

(2.76)

=

∫

d3x
1

2g2

(

(∂mϕ
i)2 +

1

2
FmnF

mn

)

(2.77)

where g2 = 4π2Tmono/v
2 is fixed by the duality (2.75) and insisting that the scalar has

canonical kinetic term dictates ϕi = (8π2/e2)X i = TinstX
i. This normalization will

prove important. Including the fermions, we therefore find the low-energy dynamics of

a monopole membrane to be free U(1) gauge theory with 8 supercharges (called N = 4

in three dimensions), containing a photon and three real scalars.
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Six dimensional gauge theories also contain instanton strings. These are the ”little

strings” of little string theory. We will now show that strings can end on the monopole

2-brane. This is simplest to see from the worldvolume perspective in terms of the

original variable χ. Defining the complex coordinate on the membrane worldvolume

z = x4 + ix5, we have the BPS ”BIon” spike [74, 75] solution of the theory (2.76)

X1 +
i

v
χ =

1

v
log(vz) (2.78)

Plotting the value of the transverse position X1 as a function of |z|, we see that this

solution indeed has the profile of a string ending on the monopole 2-brane. Since χ

winds once as we circumvent the origin z = 0, after the duality transformation we see

that this string sources a radial electric field. In other words, the end of the string is

charged under the U(1) gauge field on the brane (2.75). We have found a D-brane in

the six-dimensional little string theory.

Having found the string solution from the perspective of the monopole worldvolume

theory, we can ask whether we can find a solution in the full d = 5 + 1 dimensional

theory. In fact, as far as I know, no one has done this. But it is possible to write down

the first order equations that this solution must solve [76]. They are the dimensional

reduction of equations found in [77] and read

F23 + F45 = D1φ , F35 = −F42 , F34 = −F25

F31 = D2φ , F12 = D3φ , F51 = D4φ , F14 = D5φ (2.79)

Notice that among the solutions to these equations are instanton strings stretched in

the x1 directions, and monopole 2-branes with spatial worldvolume (x4, x5). It would

be interesting to find an explicit solution describing the instanton string ending on the

monopole brane.

We find ourselves in a rather familiar situation. We

Figure 8:

have string-like objects which can terminate on D-brane ob-

jects, where their end is electrically charged. Yet all this is

within the context of a gauge theory, with no reference to

string theory or gravity. Let’s remind ourselves about some

further properties of D-branes in string theory to see if the

analogy can be pushed further. For example, there are two

methods to understand the dynamics of D-branes in string

theory, using either closed or open strings. The first method

— the closed string description — uses the supergravity solution for D-branes to com-

pute their scattering. In contrast, in the second method — the open string description
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— the back-reaction on the bulk is ignored. Instead the strings stretched between two

branes are integrated in, giving rise to new, light fields of the worldvolume theory as

the branes approach. In flat space, this enhances U(1)n worldvolume gauge symmetry

to U(n) [78]. The quantum effects from these non-abelian fields capture the scattering

of the D-branes. The equivalence of these two methods is assured by open-closed string

duality, where the diagram drawn in figure 8 can be interpreted as tree-level closed

string or one-loop open string exchange. Generically the two methods have different

regimes of validity.

Is there an analogous treatment for our monopole D-branes? The analogy of the

supergravity description is simply the Manton moduli space approximation described

in section 2.2. What about the open string description? Can we integrate in the

light states arising from instanton strings stretched between two D-branes? They have

charge (+1,−1) under the two branes and, by the normalization described above, mass

Tinst|X i
1 − X i

2| = |ϕi
1 − ϕi

2|. Let’s make the simplest assumption that quantization of

these strings gives rise to W-bosons, enhancing the worldvolume symmetry of n branes

to U(n). Do the quantum effects of these open strings mimic the classical scattering

of monopoles? Of course they do! This is precisely the calculation we described in

section 2.7.1: the Coulomb branch of the U(n) N = 4 super Yang-Mills in d = 2 + 1

dimensions is the n monopole moduli space.

The above discussion is not really new. It is nothing more than the ”Hanany-Witten”

story [28], with attention focussed on the NS5-brane worldvolume rather than the usual

10-dimensional perspective. Nevertheless, it’s interesting that one can formulate the

story without reference to 10-dimensional string theory. In particular, if we interpret

our results in terms of open-closed string duality summarized in figure 8, it strongly

suggests that the bulk six-dimensional Yang-Mills fields can be thought of as quantized

loops of instanton strings.

To finish, let me confess that, as one might expect, the closed and open string

descriptions have different regimes of validity. The bulk calculation is valid in the

full quantum theory only if we can ignore higher derivative corrections to the six-

dimensional action. These scale as e2n∂2n. Since the size of the monopole is ∂ ∼ v−1,

we have the requirement v2e2 � 1 for the ”closed string” description to be valid.

What about the open string description? We integrate in an object of energy E =

Tinst∆X, where ∆X is the separation between branes. We do not want to include

higher excitations of the string which scale as v. So we have E � v. At the same

time, we want ∆X > 1/v, the width of the branes, in order to make sense of the

discussion. These two requirements tell us that v2e2 � 1. The reason that the two
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calculations yield the same result, despite their different regimes of validity, is due to a

non-renormalization theorem, which essentially boils down the restrictions imposed by

the hyperKähler nature of the metric.
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