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Abstract: In this third lecture we turn our attention to vortex strings in non-abelian

gauge theories. Once again we describe the various properties of the solutions and a

D-brane construction of the vortex moduli space is reviewed. In this lecture we will

see how instantons can be viewed from the worldsheet of a vortex string, an important

result that underlies the relationship between 2d sigma-models and 4d gauge theories.

We end with the usual vignettes, describing applications of vortices to cosmic strings

and mirror symmetry.
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3. Vortices

In this lecture, we’re going to discuss vortices. The motivation for studying vortices

should be obvious: they are one of the most ubiquitous objects in physics. On table-

tops, vortices appear as magnetic flux tubes in superconductors and fractionally charged

quasi-excitations in quantum Hall fluids. In the sky, vortices in the guise of cosmic

strings have been one one of the most enduring themes in cosmology research. With

new gravitational wave detectors coming on line, there is hope that we may be able

to see the distinctive signatures of these strings as the twist and whip. Finally, and

more formally, vortices play a crucial role in determining the phases of low-dimensional

quantum systems: from the phase-slip of superconducting wires, to the physics of

strings propagating on Calabi-Yau manifolds, the vortex is key.

As we shall see in detail below, in four dimensional theories vortices are string like

objects, carrying magnetic flux threaded through their core. They are the semi-classical

cousins of the more elusive QCD flux tubes. In what follows we will primarily be inter-

ested in the dynamics of infinitely long, parallel vortex strings and the long-wavelength

modes they support. There are a number of reviews on the dynamics of vortices in four

dimensions, mostly in the context of cosmic strings [1, 2, 3].

3.1 The Basics

In order for our theory to support vortices, we must add a further field to our La-

grangian. In fact we must make two deformations

• We increase the gauge group from SU(N) to U(N). We could have done this

before now, but as we have considered only fields in the adjoint representation

the central U(1) would have simply decoupled.

• We add matter in the fundamental representation of U(N). We’ll add Nf scalar

fields qi, i = 1 . . . , Nf .

The action that we’ll work with throughout this lecture is

S =

∫

d4x Tr

(

1

2e2
F µνFµν +

1

e2
(Dµφ)2

)

+

Nf
∑

i=1

|Dµqi|2

−
Nf
∑

i=1

q†iφ
2qi −

e2

4
Tr (

Nf
∑

i=1

qiq
†
i − v2 1N)2 (3.1)

The potential is of the type admitting a completion to N = 1 or N = 2 supersymmetry.

In this context, the final term is called the D-term. Note that everything in the bracket
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of the D-term is an N×N matrix. Note also that the couplings in front of the potential

are not arbitrary: they have been tuned to critical values.

We’ve included a new parameter, v2, in the potential. Obviously this will induce a

vev for q. In the context of supersymmetric gauge theories, this parameter is known as

a Fayet-Iliopoulos term.

We are interested in ground states of the theory with vanishing potential. For Nf <

N , one can’t set the D-term to zero since the first term is, at most, rank Nf , while the

v2 term is rank N . In the context of supersymmetric theories, this leads to spontaneous

supersymmetry breaking. In what follows we’ll only consider Nf ≥ N . In fact, for the

first half of this section we’ll restrict ourselves to the simplest case:

Nf = N (3.2)

With this choice, we can view q as an N ×N matrix qa
i, where a is the color index and

i the flavor index. Up to gauge transformations, there is a unique ground state of the

theory,

φ = 0 , qa
i = vδa

i (3.3)

Studying small fluctuations around this vacuum, we find that all gauge fields and scalars

are massive, and all have the same mass M2 = e2v2. The fact that all masses are equal

is a consequence of tuning the coefficients of the potential.

The theory has a U(N)G ×SU(N)F gauge and flavor symmetry. On the quark fields

q this acts as

q → UqV † U ∈ U(N)G, V ∈ SU(N)F (3.4)

The vacuum expectation value (3.3) is preserved only for transformations of the form

U = V , meaning that we have the pattern of spontaneous symmetry breaking

U(N)G × SU(N)F → SU(N)diag (3.5)

This is known as the color-flavor-locked phase in the high-density QCD literature [4].

When N = 1, our theory is the well-studied abelian Higgs model, which has been

known for many years to support vortex strings [5, 6]. These vortex strings also exist

in the non-abelian theory and enjoy rather rich properties, as we shall now see. Let’s

choose the strings to lie in the x3 direction. To support such objects, the scalar fields q

must wind around S1
∞ at spatial infinity in the (x1, x2) plane, transverse to the string.
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As we’re used to by now, such winding is characterized by the homotopy group, this

time

Π1 (U(N) × SU(N)/SU(N)diag) ∼= Z (3.6)

which means that we can expect vortex strings supported by a single winding number

k ∈ Z. To see that this winding of the scalar is associated with magnetic flux, we use

the same trick as for monopoles. Finiteness of the quark kinetic term requires that

Dq ∼ 1/r2 as r → ∞. But a winding around S1
∞ necessarily means that ∂q ∼ 1/r. To

cancel this, we must turn on A→ i∂q q−1 asymptotically. The winding of the scalar at

infinity is determined by an integer k, defined by

2πk = Tr

∮

S1
∞

i∂θq q
−1 = Tr

∮

S1
∞

Aθ = Tr

∫

dx1dx2 B3 (3.7)

This time however, in contrast to the case of magnetic monopoles, there is no long

range magnetic flux. Physically this is because the theory has a mass gap, ensuring

any excitations die exponentially. The result, as we shall see, is that the magnetic flux

is confined in the center of the vortex string.

The Lagrangian of equation (3.1) is very spe- x3

phase of q

Figure 1:

cial, and far from the only theory admitting vor-

tex solutions. Indeed, the vortex zoo is well pop-

ulated with different objects, many exhibiting cu-

rious properties. Particularly interesting examples

include Alice strings [8, 9], and vortices in Chern-

Simons theories [10]. In this lecture we shall stick

with the vortices arising from (3.1) since, as we

shall see, they are closely related to the instantons

and monopoles described in the previous lectures.

To my knowledge, the properties of non-abelian vortices in this model were studied

only quite recently in [11] (a related model, sharing similar properties, appeared at the

same time [12]).

3.2 The Vortex Equations

To derive the vortex equations we once again perform the Bogomoln’yi completing the

square trick (due, once again, to Bogomoln’yi [7]). We look for static strings in the x3

direction, so make the ansatz ∂0 = ∂3 = 0 and A0 = A3 = 0. We also set φ = 0. In fact

φ will not play a role for the remainder of this lecture, although it will be resurrected
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in the following lecture. The tension (energy per unit length) of the string is

Tvortex =

∫

dx1dx2 Tr

(

1

e2
B2

3 +
e2

4
(

N
∑

i=1

qiq
†
i − v2 1N)2

)

+

N
∑

i=1

|D1qi|2 + |D2qi|2

=

∫

dx1dx2 1

e2
Tr

(

B3 ∓
e2

2
(

N
∑

i=1

qiq
†
i − v2 1N)

)2

+

N
∑

i=1

|D1qi ∓ iD2qi|2

∓v2

∫

dx1dx2 TrB3 (3.8)

To get from the first line to the second, we need to use the fact that [D1, D2] = −iB3,

to cancel the cross terms from the two squares. Using (3.7), we find that the tension

of the charge |k| vortex is bounded by

Tvortex ≥ 2πv2 |k| (3.9)

In what follows we focus on vortex solutions with winding k < 0. (These are mapped

into k > 0 vortices by a parity transformation, so there is no loss of generality). The

inequality is then saturated for configurations obeying the vortex equations

B3 =
e2

2
(
∑

i

qiq
†
i − v2 1N) , Dzqi = 0 (3.10)

where we’ve introduced the complex coordinate z = x1 + ix2 on the plane transverse to

the vortex string, so ∂z = 1
2
(∂1 − i∂2). If we choose N = 1, then the Lagrangian (3.1)

reduces to the abelian-Higgs model and, until recently, attention mostly focussed on

this abelian variety of the equations (3.10). However, as we shall see below, when the

vortex equations are non-abelian, so each side of the first equation (3.10) is an N ×N

matrix, they have a much more interesting structure.

Unlike monopoles and instantons, no analytic solution to the vortex equations is

known. This is true even for a single k = 1 vortex in the U(1) theory. There’s nothing

sinister about this. It’s just that differential equations are hard and no one has decided

to call the vortex solution a special function and give it a name! However, it’s not

difficult to plot the solution numerically and the profile of the fields is sketched below.

The energy density is localized within a core of the vortex of size L = 1/ev, outside of

which all fields return exponentially to their vacuum.

The simplest k = 1 vortex in the abelian N = 1 theory has just two collective

coordinates, corresponding to its position on the z-plane. But what are the collective

coordinates of a vortex in U(N)? We can use the same idea we saw in the instanton
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Figure 2: A sketch of the vortex profile.

lecture, and embed the abelian vortex — let’s denote it q⋆ and A⋆
z — in the N × N

matrices of the non-abelian theory. We have

Az =















A⋆
z

0
. . .

0















, q =















q⋆

v
. . .

v















(3.11)

where the columns of the q matrix carry the color charge, while the rows carry the flavor

charge. We have chosen the embedding above to lie in the upper left-hand corner but

this isn’t unique. We can rotate into other embeddings by acting with the SU(N)diag

symmetry preserved in the vacuum. Dividing by the stabilizer, we find the internal

moduli space of the single non-abelian vortex to be

SU(N)diag/S[U(N − 1) × U(1)] ∼= CP
N−1 (3.12)

The appearance of CP
N−1 as the internal space of the vortex is interesting: it tells us

that the low-energy dynamics of a vortex string is the much studied quantum CP
N−1

sigma model. We’ll see the significance of this in the following lecture. For now, let’s

look more closely at the moduli of the vortices.

3.3 The Moduli Space

We’ve seen that a single vortex has 2N collective coordinates: 2 translations, and

2(N − 1) internal modes, dictating the orientation of the vortex in color and flavor

space. We denote the moduli space of charge k vortices in the U(N) gauge theory as

Vk,N . We’ve learnt above that

V1,N
∼= C × CP

N−1 (3.13)
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What about higher k? An index theorem [14, 11] tells us that the number of collective

coordinates is

dim(Vk,N) = 2kN (3.14)

Look familiar? Remember the result for k instantons in U(N) that we found in lecture

1: dim(Ik,N) = 4kN . We’ll see more of this similarity between instantons and vortices

in the following.

As for previous solitons, the counting (3.14) has a natural interpretation: k parallel

vortex strings may be placed at arbitrary positions, each carrying 2(N−1) independent

orientational modes. Thinking physically in terms of forces between vortices, this is a

consequence of tuning the coefficient e2/4 in front of the D-term in (3.1) so that the

mass of the gauge bosons equals the mass of the q scalars. If this coupling is turned

up, the scalar mass increases and so mediates a force with shorter range than the gauge

bosons, causing the vortices to repel. (Recall the general rule: spin 0 particles give rise

to attractive forces; spin 1 repulsive). This is a type II non-abelian superconductor. If

the coupling decreases, the mass of the scalar decreases and the vortices attract. This

is a non-abelian type I superconductor. In the following, we keep with the critically

coupled case (3.1) for which the first order equations (3.10) yield solutions with vortices

at arbitrary position.

3.3.1 The Moduli Space Metric

There is again a natural metric on Vk,N arising from taking the overlap of zero modes.

These zero modes must solve the linearized vortex equations together with a suitable

background gauge fixing condition. The linearized vortex equations read

DzδAz̄ −Dz̄δAz =
ie2

4
(δq q† + q δq†) and Dzδq = iδAzq (3.15)

where q is to be viewed as an N × N matrix in these equations. The gauge fixing

condition is

DzδAz̄ + Dz̄δAz = −ie
2

4
(δq q† − q δq†) (3.16)

which combines with the first equation in (3.15) to give

Dz̄δAz = −ie
2

4
δq q† (3.17)

Then, from the index theorem, we know that there are 2kN zero modes (δαAz, δαq),

α, β = 1, . . . , 2kN solving these equations, providing a metric on Vk,N defined by

gαβ = Tr

∫

dx1dx2 1

e2
δαAaδβAz̄ +

1

2
δαqδβq

† + h.c. (3.18)
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The metric has the following properties [15, 16]

• The metric is Kähler. This follows from similar arguments to those given for

hyperKählerity of the instanton moduli space, the complex structure now de-

scending from that on the plane R2, together with the obvious complex structure

on q.

• The metric is smooth. It has no singularities as the vortices approach each other.

Strictly speaking this statement has been proven only for abelian vortices. For

non-abelian vortices, we shall show this using branes in the following section.

• The metric inherits a U(1) × SU(N) holomorphic isometry from the rotational

and internal symmetry of the Lagrangian.

• The metric is unknown for k ≥ 2. The leading order, exponentially suppressed,

corrections to the flat metric were computed recently [17].

3.3.2 Examples of Vortex Moduli Spaces

A Single U(N) Vortex

We’ve already seen above that the moduli space for a single k = 1 vortex in U(N) is

V1,N
∼= C × CP

N−1 (3.19)

where the isometry group SU(N) ensures that CP
N−1 is endowed with the round,

Fubini-Study metric. The only question remaining is the size, or Kähler class, of

the CP
N−1. This can be computed either from a D-brane construction [11] or, more

conventionally, from the overlap of zero modes [18]. We’ll see the former in the following

section. Here let’s sketch the latter. The orientational zero modes of the vortex take

the form

δAz = DzΩ , δq = i(Ωq − qΩ0) (3.20)

where the gauge transformation asymptotes to Ω → Ω0, and Ω0 is the flavor transfor-

mation. The gauge fixing condition requires

D2Ω =
e2

2
{Ω, qq†} − 2qq†Ω0 (3.21)

By explicitly computing the overlap of these zero modes, it can be shown that the size

of the CP
N−1 is

r =
4π

e2
(3.22)

This important equation will play a crucial role in the correspondence between 2d sigma

models and 4d gauge theories that we’ll meet in the following lecture.
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Two U(1) Vortices

The moduli space of two vortices in a U(1) gauge theory is topologically

Vk=2,N=1
∼= C × C/Z2 (3.23)

where the Z2 reflects the fact that the two solitons are indistinguishable. Note that

the notation we used above actually describes more than the topology of the manifold

because, topologically, Ck/Zk
∼= Ck (as any polynomial will tell you). So when I write

C/Z2 in (3.23), I mean that asymptotically the space is endowed with the flat metric

on C/Z2. Of course, this can’t be true closer to the origin since we know the vortex

moduli space is complete. The cone must be smooth at the tip, as shown in figure 3.

The metric on the cone has been computed numerically [19], no analytic form is known.

The deviations from the flat, singular, metric on the cone are exponentially suppressed

and parameterized by the size of the vortex L ∼ 1/ev.

������

������

���������
���
���
���

Figure 3: Right-angle scattering from the moduli space of two vortices.

Even without the exact form of the metric, we learn something very important about

vortices. Consider two vortices colliding head on. This corresponds to the trajectory in

moduli space that goes up and over the tip of the cone, as shown in the figure. What

does this correspond to in real space? One might think that the vortices collide and

rebound. But that’s wrong: it would correspond to the trajectory going to the tip of

the cone, and returning down the same side. Instead, the trajectory corresponds to

vortices scattering at right angles [20]. The key point is that the Z2 action in (3.23),

arising because the vortices are identical, means that the single valued coordinate on

the moduli space is z2 rather than z, the separation between the vortices. The collision

sends z2 → −z2 or z → iz. This result doesn’t depend on the details of the metric

on the vortex moduli space, but follows simply from the fact that, near the origin, the

space is smooth. Right-angle scattering of this type is characteristic of soliton collisions,

occurring also for magnetic monopoles.

– 9 –



For k ≥ 3 U(1) vortices, the moduli space is topologically and asymptotically Ck/Zk.

The leading order exponential corrections to the flat metric on this space are known,

although the full metric is not [17].

3.4 Brane Construction

For both instantons and monopoles, it was fruitful to examine the solitons from the

perspective of D-branes. This allowed us to re-derive the ADHM and Nahm construc-

tions respectively. What about for vortices? Here we present a D-brane constuction

of vortices [11] that will reveal interesting information about the moduli space of solu-

tions although, ultimately, won’t be as powerful as the ADHM and Nahm constructions

described in previous sections.

We use the brane set-ups of Hanany and Witten [21], x4,5

x 6

N D4−branes  01236

NS5−branes
012345

x 6∆

Figure 4:

consisting of D-branes suspended between a pair of NS5-

branes. We work in type IIA string theory, and build the

d = 3+1, U(N) gauge theory1 with N = 2 supersymmetry.

The D-brane set-up is shown in figure 4, and consists of N

D4-branes with worldvolume 01236, stretched between two

NS5-branes, each with worldvolume 012345, and separated

in the x6 direction. The gauge coupling e2 is determined

by the separation between the NS5-branes,

1

e2
=

∆x6 ls
2gs

(3.24)

where ls is the string length, and gs the string coupling.

The D4-branes may slide up and down between the NS5-branes in the x4 and x5

direction. This corresponds to turning on a vev for the complex adjoint scalar in

the N = 2 vector multiplet. Since we consider only a real adjoint scalar φ in our

theory, we have

φa =
x4

l2s

∣

∣

∣

∣

D4a

(3.25)

and we’ll take all D4-branes to lie coincident in the x5 direction.

The hypermultiplets arise in the form of N D6-branes with worldvolume 0123789.

The positions of the D6-branes in the x4 + ix5 directions will correspond to complex

masses for the hypermultiplets. We shall consider these in the following section, but

for now we set all D6-branes to lie at the origin of the x4 and x5 plane.

1In fact, for four-dimensional theories the overall U(1) decouples in the brane set-up, and we have

only SU(N) gauge theory [22]. This doesn’t affect our study of the vortex moduli space; if you’re

bothered by this, simply T-dualize the problem to type IIB where you can study vortices in d = 2 + 1

dimensions.
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We also need to turn on the FI parameter v2. This

x 4,5

x9

x 6

N D6−branes
0123789

Figure 5:

is achieved by taking the right-hand NS5-brane and pulling

it out of the page in the x9 direction. In order to remain

in the ground state, the D4-branes are not allowed to tilt

into the x9 direction: this would break supersymmetry and

increase their length, reflecting a corresponding increase in

the ground state energy of the theory. Instead, they must split

on the D6-branes. Something known as the S-rule [21, 23]

tells us that only one D4-brane can end on a given D6-brane

while preserving supersymmetry, ensuring that we need at

least N D6-branes to find a zero-energy ground state. The

final configuration is drawn in the figure 6, with the field theory dictionary given by

v2 =
∆x9

(2π)3gsl3s
(3.26)

Now we’ve built our theory, we can look to find the vortices.

δ x9
k D2−branes

039

Figure 6:

We expect them to appear as other D-branes in the config-

uration. There is a unique BPS D-brane with the correct

mass: it is a D2-brane, lying coincident with the D6-branes,

with worldvolume 039, as shown in figure 6 [24]. The x3

direction here is the direction of the vortex string.

The problem is: what is the worldvolume theory on the

D2-branes. It’s hard to read off the theory directly because

of the boundary conditions where the D2-branes end on the

D4-branes. But, already by inspection, we might expect

that it’s related to the Dp-D(p − 4) system described in

Lecture 1 in the context of instantons. To make progress we

play some brane games. Move the D6-branes to the right. As they pass the NS5-brane,

the Hanany-Witten transition occurs and the right-hand D4-branes disappear [21]. We

get the configuration shown in figure 7.

Let’s keep the D6-branes moving. Off to infinity. Finally, we rotate our perspective

a little, viewing the D-branes from a different angle, shown in figure 8. This is our final

D-brane configuration and we can now read off the dynamics.

We want to determine the theory on the D2-branes in figure 8. Let’s start with the

easier problem in figure 9. Here the D4-branes extend to infinity in both x6 → ±∞
directions, and the D2-branes end on the other NS5. The theory on the D2-branes
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9x

x4

x 6

N D4−branes

N D6−branes

k D2−branes

NS5−brane

NS5−brane

x 6

x 9

x4

k D2−branes

N D4−branes

Figure 7: Moving the D6-branes Figure 8: Rotating our viewpoint

is simple to determine: it is a U(k) gauge theory with 4 real adjoint scalars, or two

complex scalars

σ = X4 + iX5 , Z = X1 + iX2 (3.27)

which combine to give the N = (4, 4) theory in d = 1 + 1. N D4−branes

NS5−branes
012345

01236

039
k D2−branes

Figure 9:

The D4-branes contribute hypermultiplets (ψa, ψ̃a) with a =

1, . . . , N . These hypermultiplets get a mass only when the

D2-branes and D4-branes are separated in the X4 and X5

directions. This means we have a coupling like

N
∑

a=1

ψ†
a {σ†, σ}ψa + ψ̃a {σ†, σ} ψ̃†

a (3.28)

But there is no such coupling between the hypermultiplets

and Z. The coupling (3.28) breaks supersymmetry to N =

(2, 2). So we now understand the D2-brane theory of figure

9. However, the D2-brane theory that we’re really interested in, shown in figure 8,

differs from this in two ways

• The right-hand NS5-brane is moved out of the page. But we already saw in the

manoeuvres around figure 6 that this induces a FI parameter on brane theory.

Except this this time the FI parameter is for the D2-brane theory. It’s given by

r =
∆x6

2πgsls
=

4π

e2
(3.29)

• We only have half of the D4-branes, not all of them. If a full D4-brane gives rise

to a hypermultiplet, one might guess that half a D4-brane should give rise to half

a hypermultiplet, otherwise known as a chiral multiplet. Although the argument

is a little glib, it turns out that this is the correct answer [25].
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We end up with the gauge theory in d = 1 + 1 dimensions with N = (2, 2) super-

symmetry

U(k) Gauge Theory + Adjoint Chiral Multiplet Z

+ N Fundamental Chiral Multiplets ψa

This theory has a FI parameter r = 4π/e2. Now this should be looking very familiar —

it’s very similar to the instanton theory we described in Lecture 1. We’ll return to this

shortly. For now let’s keep examining our vortex theory. The potential for the various

scalars is dictated by supersymmetry and is given by

V =
1

g2
Tr |[σ, σ†]|2 + Tr |[σ, Z]|2 + Tr |[σ, Z†]|2 +

N
∑

a=1

ψ†
aσ

†σψa

+
g2

2
Tr

(

∑

a

ψaψ
†
a + [Z,Z†] − r 1k

)2

(3.30)

Here g2 is an auxiliary gauge coupling which we take to infinity g2 → ∞ to restrict us

to the Higgs branch, the vacuum moduli space defined by

MHiggs
∼= {σ = 0, V = 0}/U(k) (3.31)

Counting the various degrees of freedom, the Higgs branch has real dimension 2kN .

From the analogy with the instanton case, it is natural to conjecture that this is the

vortex moduli space [11]

Vk,N
∼= MHiggs (3.32)

While the ADHM construction has a field theoretic underpinning, I know of no field

theory derivation of the above result for vortices. So what evidence do we have that

the Higgs branch indeed coincides with the vortex moduli space? Because of the FI

parameter, MHiggs is a smooth manifold, as is Vk,N and, obviously the dimensions work

out. Both spaces have a SU(N)×U(1) isometry which, in the above construction, act

upon ψ and Z respectively. Finally, in all cases we can check, the two spaces agree (as,

indeed, do their Kähler classes). Let’s look at some examples.

3.4.1 Examples of Vortex Moduli Spaces Revisited

One Vortex in U(N)

The gauge theory for a single k = 1 vortex in U(N) is a U(1) gauge theory. The adjoint

scalar Z decouples, parameterizing the complex plane C, leaving us with the N charged
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scalars satisfying

N
∑

a=1

|ψa|2 = r (3.33)

modulo the U(1) action ψa → eiαψa. This gives us the moduli space

V1,N
∼= C × CP

N−1 (3.34)

where the CP
N−1 has the correct Kähler class r = 4π/e2 in agreement with (3.22). The

metric on CP
N−1 is, again, the round Fubini-Study metric.

k Vortices in U(1)

The Higgs branch corresponding to the k vortex moduli space is

{ψψ† + [Z,Z†] = r 1k}/U(k) (3.35)

which is asymptotic to the cone Ck/Zk, with the singularities resolved. This is in agree-

ment with the vortex moduli space. However, the metric on MHiggs differs by power

law corrections from the flat metric on the orbifold Ck/Zk. But, as we’ve discussed,

Vk,N differs from the flat metric by exponential corrections.

More recently, the moduli space of two vortices in U(N) was studied in some detail

and shown to possess interesting and non-trivial topology [26], with certain expected

features of V2,N reproduced by the Higgs branch.

In summary, it is conjectured that the vortex moduli space Vk,N is isomorphic to the

Higgs branch (3.34). But, except for the case k = 1 where the metric is determined by

the isometry, the metrics do not agree. A direct field theory proof of this correspondence

remains to be found.

3.4.2 The Relationship to Instantons

As we’ve mentioned a few times, the vortex theory bears a striking resemblance to the

ADHM instanton theory we met in Lecture 1. In fact, the gauge theoretic construction

of vortex moduli space Vk,N involves exactly half the fields of the ADHM construction.

Or, put another way, the vortex moduli space is half of the instanton moduli space. We

can state this more precisely: Vk,N is a complex, middle dimensional submanifold of

Ik,N . It can be defined by looking at the action of the isometry rotating the instantons

in the x3 − x4 plane. Denote the corresponding Killing vector as h. Then

Vk,N
∼= Ik,N |h=0

(3.36)

where Ik,N is the resolved instanton moduli space with non-commutativity parameter

θµν = rη̄3
µν . We’ll see a physical reason for this relationship shortly.
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An open question: The ADHM construction is constructive. As we have seen, it

allows us to build solutions to F = ⋆F from the variables of the Higgs branch. Does a

similar construction exist for vortices?

Relationships between the instanton and vortex equations have been noted in the

past. In particular, a twisted reduction of instantons in SU(2) Yang-Mills on R2 ×
S2 gives rise to the U(1) vortex equations [27]. While this relationship appears to

share several characteristics to the correspondence described above, it differs in many

important details. It don’t understand the relationship between the two approaches.

3.5 Adding Flavors

Let’s now look at vortices in a U(Nc) gauge theory with Nf ≥ Nc flavors. Note that

we’ve added subscripts to denote color and flavor. In theories with Nc = 1 and Nf > 1,

these were called semi-local vortices [28, 29, 30, 31]. The name derives from the fact

the theory has both a gauge (local) group and a flavor (global) group. But for us, it’s

not a great name as all our theories have both types of symmetries, but it’s only when

Nf > Nc that the extra properties of ”semi-local” vortices become apparent.

The Lagrangian (3.1) remains but, unlike before, the theory no longer has a mass gap

in vacuum. Instead there are N2
c massive scalar fields and scalars, and 2Nc(Nf − Nc)

massless scalars. At low-energies, the theory reduces to a σ-model on the Higgs branch

of the gauge theory (3.1),

MHiggs
∼= {

Nf
∑

i=1

qiq
†
i = v2 1Nc

}/U(Nc) ∼= G(Nc, Nf) (3.37)

When we have an abelian Nc = 1 theory, this Higgs branch is the projective space

G(1, Nf) ∼= CP
Nf−1. For non-abelian theories, the Higgs branch is the Grassmannian

G(Nc, Nf), the space of CNc planes in CNf . In a given vacuum, the symmetry breaking

pattern is U(Nc) × SU(Nf ) → S[U(Nc) × U(Nf −Nc)].

The first order vortex equations (3.10) still give solutions to the full Lagrangian, now

with the flavor index running over values i = 1 . . . , Nf . Let’s denote the corresponding

vortex moduli space as V̂k,Nc,Nf
, so our previous notation becomes Vk,N

∼= V̂k,N,N . The

index theorem now tells us the dimension of the vortex moduli space

dim(V̂k,Nc,Nf
) = 2kNf (3.38)

The dimension depends only on the number of flavors, and the semi-local vortices

inherit new modes. These modes are related to scaling modes of the vortex — the size

of the vortex becomes a parameter, just as it was for instantons [32].
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These vortices arising in the theory with extra flavors are related to other solitons,

known as a sigma-model lumps. (These solitons have other names, depending on the

context, sometimes referred to as ”textures”, ”Skyrmions” or, in the context of string

theory, ”worldsheet instantons”). Let’s see how this works. At low-energies (or, equiva-

lently, in the strong coupling limit e2 → ∞) our gauge theory flows to the sigma-model

on the Higgs branch MHiggs
∼= G(Nc, Nf). In this limit our vortices descend to lumps,

objects which gain their topological support once we compactify the (x1 −x2)-plane at

infinity, and wrap this sphere around MHiggs
∼= G(Nc, Nf) [33, 34]

Π2(G(Nc, Nf)) ∼= Z (3.39)

When Nf = Nc there is no Higgs branch, the vortices have size L = 1/ev and become

singular as e2 → ∞. In contrast, when Nf > Nc, the vortices may have arbitrary

size and survive the strong coupling limit. However, while the vortex moduli space is

smooth, the lump moduli space has singularities, akin to the small instanton singular-

ities we saw in Lecture 1. We see that the gauge coupling 1/e2 plays the same role for

lumps as θ plays for Yang-Mills instantons.

The brane construction for these vortices is much like the previous section - we just

need more D6 branes. By performing the same series of manoeuvres, we can deduce

the worldvolume theory. It is again a d = 1 + 1 dimensional, N = (2, 2) theory with

U(k) Gauge Theory + Adjoint Chiral Multiplet Z

+ Nc Fundamental Chiral Multiplets ψa

+ (Nf −Nc) Anti-Fundamental Chiral Multiplets ψ̃a

Once more, the FI parameter is r = 4π/e2. The D-term constraint of this theory is

Nc
∑

a=1

ψaψ
†
a −

Nf−Nc
∑

b=1

ψ̃†
bψ̃b + [Z,Z†] = r 1k (3.40)

A few comments

• Unlike the moduli space Vk,N , the presence of the ψ̃ means that this space doesn’t

collapse as we send r → 0. Instead, in this limit it develops singularities at ψ =

ψ̃ = 0 where the U(k) gauge group doesn’t act freely. This is the manifestation

of the discussion above.

• The metric inherited from the D-term (3.40) again doesn’t coincide with the

metric on the vortex moduli space V̂k,Nc,Nf
. In fact, here the discrepancy is
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more pronounced, since the metric on V̂k,Nc,Nf
has non-normalizable modes: the

directions in moduli space corresponding to the scaling the solution are suffer an

infra-red logarithmic divergence [35, 32]. The vortex theory arising from branes

doesn’t capture this.

3.5.1 Non-Commutative Vortices

As for instantons, we can consider vortices on the non-commutative plane

[x1, x2] = iϑ (3.41)

These objects were first studied in [36]. How does this affect the moduli space? In the

ADHM construction for instantons, we saw that non-commutivity added a FI parameter

to the D-term constraints. But, for vortices, we already have a FI parameter: r = 4π/e2.

It’s not hard to show using D-branes [11], that the effect of non-commutivity is to

deform,

r =
4π

e2
+ 2πv2ϑ (3.42)

This has some interesting consequences. Note that for Nf = Nc, there is a critical FI

parameter ϑc = −v2/e2 for which r = 0. At this point the vortex moduli space becomes

singular. For ϑ < ϑc, no solutions to the D-term equations exist. Indeed, it can be

shown that in this region, no solutions to the vortex equations exist either [37]. We see

that the Higgs branch correctly captures the physics of the vortices.

For Nf > Nc, the Higgs branch makes an interesting prediction: the vortex moduli

space should undergo a topology changing transition as ϑ → ϑc. For example, in the

case of a single k = 1 vortex in U(2) with Nf = 4, this is the well-known flop transition

of the conifold. To my knowledge, no one has confirmed this behavior of the vortex

moduli space from field theory. Nor has anyone found a use for it!

3.6 What Became Of.......

Let’s now look at what became of the other solitons we studied in the past two lectures.

3.6.1 Monopoles

Well, we’ve set φ = 0 throughout this lecture and, as we saw, the monopoles live on

the vev of φ. So we shouldn’t be surprised if they don’t exist in our theory (3.1). We’ll

see them reappear in the following section.
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3.6.2 Instantons

These are more interesting. Firstly the vev q 6= 0 breaks conformal invariance, causing

the instantons to collapse. This is the same behavior that we saw in Section 2.6. But

recall that in the middle of the vortex string, q → 0. So maybe it’s possible for the

instanton to live inside the vortex string, where the non-abelian gauge symmetry is

restored. To see that this can indeed occur, we can look at the worldsheet of the vortex

string. As we’ve seen, the low-energy dynamics for a single string is

U(1) with N charged chiral multiplets and FI parameter r = 4π/e2

But this falls into the class of theories we discussed in section 3.5. So if the worldsheet

is Euclidean, the theory on the vortex string itself admits a vortex solution: a vortex

in a vortex. The action of this vortex is [38]

Svortex in vortex = 2πr =
8π2

e2
= Sinst (3.43)

which is precisely the action of the Yang-Mills instanton. Such a vortex has 2N zero

modes which include scaling modes but, as we mentioned previously, not all are nor-

malizable.

There is also a 4d story for these instantons buried in the vortex string. This arises by

completing the square in the Lagrangian in a different way to (3.8). We still set φ = 0,

but now allow for all fields to vary in all four dimensions [38]. We write z = x1 + ix2

and w = x3 − ix4,

S =

∫

d4x
1

2e2
Tr FµνF

µν +

Nf
∑

i=1

|Dµqi|2 +
e2

4
Tr(

Nf
∑

i=1

qiq
†
i − v2 1Nc

)2

=

∫

d4x
1

2e2
Tr



F12 − F34 −
e2

2
(

Nf
∑

i=1

qiq
†
i − v2 1Nc

)





2

+

Nf
∑

i=1

|Dzqi|2 + |Dωqi|2 +
1

e2
Tr
(

(F14 − F23)
2 + (F13 + F24)

2
)

+
1

e2
TrFµν

⋆F µν + F12v
2 + F34v

2

≥
∫

d4x
1

e2
TrFµν

⋆F µν + Tr (F12v
2 + F34v

2) (3.44)

The last line includes three topological charges, corresponding to instantons, vortex

strings in the (x1 − x2) plane, and further vortex strings in the (x3 − x4) plane. The
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Bogomoln’yi equations describing these composite solutions are

F14 = F23 , F13 = F24 , F12 − F34 =
e2

2
(

Nf
∑

i=1

qiq
†
i − v21Nc

) , Dzqi = Dwqi = 0

It is not known if solutions exist, but the previous argument strongly suggests that

there should be solutions describing an instanton trapped inside a vortex string. Some

properties of this configuration were studied in [39].

The observation that a vortex in the vortex string is a Yang-Mills instanton gives

some rationale to the fact that Vk,N ⊂ Ik,N .

3.7 Fermi Zero Modes

In this section, I’d like to describe an important feature of fermionic zero modes on

the vortex string: they are chiral. This means that a Weyl fermion in four dimensions

will give rise to a purely left-moving (or right-moving) mode on the (anti-) vortex

worldsheet. In fact, a similar behavior occurs for instantons and monopoles, but since

this is the first lecture where the solitons are string-like in four-dimensions, it makes

sense to discuss this phenomenon here.

The exact nature of the fermionic zero modes depends on the fermion content in four

dimensions. Let’s stick with the supersymmetric generalization of the Lagrangian (3.1).

Then we have the gaugino λ, an adjoint valued Weyl fermion which is the superpartner

of the gauge field. We also have fermions in the fundamental representation, χi with

i = 1, . . . , N , which are the superpartners of the scalars qi. These two fermions mix

through Yukawa couplings of the form q†iλχi, and the Dirac equations read

−i /̄Dλ+ i
√

2

N
∑

i=1

qiχ̄i = 0 and −i /Dχ̄i − i
√

2q†iλ = 0 (3.45)

where the Dirac operators take the form,

/D ≡ σµDµ =

(

D+ Dz

Dz̄ D−

)

and /̄D ≡ σ̄µDµ =

(

D− −Dz

−Dz̄ D+

)

(3.46)

which, as we can see, nicely split into D± = D0 ± D3 and Dz = D1 − iD2 and Dz̄ =

D1 + iD2. The bosonic fields in (3.45) are evaluated on the vortex solution which,

crucially, includes Dzqi = 0 for the vortex (or Dz̄qi = 0 for the anti-vortex). We see

the importance of this if we take the first equation in (3.45) and hit it with /D, while

hitting the second equation with /̄D. In each equation terms of the form Dzqi will
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appear, and subsequently vanish as we evaluate them on the vortex background. Let’s

do the calculation. We split up the spinors into their components λα and (χα)i with

α = 1, 2 and, for now, look for zero modes that don’t propagate along the string, so

∂+ = ∂− = 0. Then the Dirac equations in component form become

(−DzDz̄ + 2qiq
†
i )λ1 = 0 and (−Dz̄Dz + 2qiq

†
i )λ2 −

√
2(Dz̄qi)χ̄1i = 0

(−Dz̄Dzδ
j
i + 2q†i qj)χ̄2j = 0 and (−DzDz̄δ

j
i + 2qiq

†
j)χ̄1j −

√
2(Dzq

†
i )λ2 = 0

The key point is that the operators appearing in the first column are positive definite,

ensuring that λ1 and χ2i have no zero modes. In contrast, the equations for λ2 and χ̄1i

do have zero modes, guaranteed by the index. We therefore know that any zero modes

of the vortex are of the form,

λ =

(

0

λ

)

and χ̄i =

(

χ̄i

0

)

(3.47)

If we repeat the analysis for the anti-vortex, we find that the other components turn on.

To see the relationship to the chirality on the worldsheet, we now allow the zero modes

to propagate along the string, so that λ = λ(x0, x3) and χ̄i = χ̄i(x
0, x3). Plugging this

ansatz back into the Dirac equation, now taking into account the derivatives D± in

(3.46), we find the equations of motion

∂+λ = 0 and ∂+χ̄i = 0 (3.48)

Or, in other words, λ = λ(x−) and χ̄ = χ̄(x−): both are right movers.

In fact, the four-dimensional theory with only fundamental fermions χi is anomalous.

Happily, so is the CP
N−1 theory on the string with only right-moving fermions, suffering

from the sigma-model anomaly [40]. To rectify this, one may add four dimensional

Weyl fermions χ̃i in the anti-fundamental representation, which provide left movers

on the worldsheet. If the four-dimensional theory has N = 2 supersymmetry, the

worldsheet theory preserves N = (2, 2) [41]. Alternatively, one may work with a chiral,

non-anomalous N = 1 theory in four-dimensions, resulting in a chiral non-anomalous

N = (0, 2) theory on the worldsheet.

3.8 Applications

Let’s now turn to discussion of applications of vortices in various field theoretic contexts.

We review some of the roles vortices play as finite action, instanton-like, objects in two

dimensions, as particles in three dimensions, and as strings in four dimensions.
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3.8.1 Vortices and Mirror Symmetry

Perhaps the most important application of vortices in string theory is in the context of

the d = 1+1 dimensional theory on the string itself. You might protest that the string

worldsheet theory doesn’t involve a gauge field, so why would it contain vortices?! The

trick, as described by Witten [33], is to view sigma-models in terms of an auxiliary

gauge theory known as a gauged linear sigma model. We’ve already met this trick

several times in these lectures: the sigma-model target space is the Higgs branch of

the gauge theory. Witten showed how to construct gauge theories that have compact

Calabi-Yau manifolds as their Higgs branch.

In d = 1+1 dimensions, vortices are finite action solutions to the Euclidean equations

of motion. In other words, they play the role of instantons in the theory. As we

explained Section 1.5 above, the vortices are related to worldsheet instantons wrapping

the 2-cycles of the Calabi-Yau Higgs branch. It turns out that it is much easier to deal

with vortices than directly with worldsheet instantons (essentially because their moduli

space is free from singularities). Indeed, in a beautiful paper, Morrison and Plesser

succeeded in summing the contribution of all vortices in the topological A-model on

certain Calabi-Yau manifolds, showing that it agreed with the classical prepotential

derived from the B-model on the mirror Calabi-Yau [42].

More recently, Hori and Vafa used vortices to give a proof of N = (2, 2) mirror

symmetry for all Calabi-Yau which can be realized as complete intersections in toric

varieties [43]. Hori and Vafa work with dual variables, performing the so-called Rocek-

Verlinde transformation to twisted chiral superfields [44]. They show that vortices

contribute to a two fermi correlation function which, in terms of these dual variables, is

cooked up by a superpotential. This superpotential then captures the relevant quantum

information about the original theory. Similar methods can be used in N = (4, 4)

theories to derive the T-duality between NS5-branes and ALE spaces [45, 46, 47, 48],

with the instantons providing the necessary ingredient to break translational symmetry

after T-duality, leading to localized, rather than smeared, NS5-branes.

3.8.2 Swapping Vortices and Electrons

In lecture 2, we saw that it was possible to rephrase four-dimensional field theories,

treating the monopoles as elementary particles instead of solitons. This trick, called

electric-magnetic duality, gives key insight into the strong coupling behavior of four-

dimensional field theories. In three dimensions, vortices are particle like objects and

one can ask the same question: is it possible to rewrite a quantum field theory, treating

the vortices as fundamental degrees of freedom?
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The answer is yes. In fact, condensed matter theorists have been using this trick for

a number of years (see for example [49]). Things can be put on a much more precise

footing in the supersymmetric context, with the first examples given by Intriligator and

Seiberg [50]. They called this phenomenon ”mirror symmetry” in three dimensions as it

had some connection to the mirror symmetry of Calabi-Yau manifolds described above.

Let’s describe the basic idea. Following Intriligator and Seiberg, we’ll work with a

theory with eight supercharges (which is N = 4 supersymmetry in three dimensions).

Each gauge field comes with three real scalars and four Majorana fermions. The charged

matter, which we’ll refer to as ”electrons”, lives in a hypermultiplet, containing two

complex scalars together with two Dirac fermions. The theory we start with is:

Theory A: U(1) with N charged hypermultiplets

The vortices in this theory fall into the class described in Section 3.5. Each vortex has

2N zero modes but, as we discussed, not all of these zero modes are normalizable. The

overall center of mass is, of course, normalizable (the vortex has mass M = 2πv2) but

the remaining 2(N − 1) modes of a single vortex are logarithmically divergent.

We now wish to rewrite this theory, treating the vortices as fundamental objects.

What properties must the theory have in order to mimic the behavior of the vortex? It

will prove useful to think of each vortex as containing N individual ”fractional vortices”.

We postulate that these fractional vortices suffer a logarithmic confining potential, so

that any number n < N have a logarithmically divergent mass, but N together form

a state with finite mass. Such a system would exhibit the properties of the vortex

zero modes described above: the 2N zero modes correspond to the positions of the N

fractional vortices. They can move happily as a whole, but one pays a logarithmically

divergent cost to move these objects individually. (Note: a logarithmically divergent

cost isn’t really that much!)

In fact, it’s very easy to cook up a theory with these properties. In d = 2 + 1, an

electron experiences logarithmic confinement, since its electric field goes as E ∼ 1/r so

its energy
∫

d2xE2 suffers a logarithmic infra-red divergence. These electrons will be

our ”fractional vortices”. We will introduce N different types of electrons and, in order

to assure that only bound states of all N are gauge singlets, we introduce N − 1 gauge

fields with couplings dictated by the quiver diagram shown in the figure. Recall that

quiver diagrams are read in the following way: the nodes of the quiver are gauge groups,

each giving a U(1) factor in this case. Meanwhile, the links denote hypermultiplets with

charge (+1,−1) under the gauge groups to which it is attached. Although there are N
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nodes in the quiver, the overall U(1) decouples, leaving us with the theory

Theory B: U(1)N−1 with N hypermultiplets

This is the Seiberg-Intriligator mirror theory, capturing the same physics as Theory

A. The duality also works the other way, with the electrons of Theory A mapping to

the vortices of Theory B. It can be shown that the low-energy dynamics of these two

theories exactly agree. This statement can be made precise at the two-derivative level.

The Higgs branch of Theory A coincides with the Coulomb branch of Theory B: both

are T ⋆(CP
N−1). Similarly, the Coulomb branch of Theory A coincides with the Higgs

branch of Theory A: both are the AN−1 ALE space.

There are now many mirror pairs of theories known

Figure 10:

in three dimensions. In particular, it’s possible to tinker

with the mirror theories so that they actually coincide at all

length scales, rather than simply at low-energies [51]. Mir-

ror pairs for non-abelian gauge theories are known, but are

somewhat more complicated to due to presence of instanton

corrections (which, recall, are monopoles in three dimensions)

[52, 53, 54, 55, 56]. Finally, one can find mirror pairs with

less supersymmetry [57, 58], including mirrors for interest-

ing Chern-Simons theories [59, 60, 61]. These Chern-Simons

mirrors reduce to Hori-Vafa duality under compactification to two dimensions [62].

3.8.3 Vortex Strings

In d = 3+1 dimensions, vortices are string like objects. There is a very interesting story

to be told about how we quantize vortex worldsheet theory, which is a sigma-model on

Vk,N . But this will have to wait for the next lecture.

Here let me mention an application of vortices in the context of cosmic strings which

shows that reconnection of vortices in gauge theories is inevitable at low-energies. Re-

connection of strings means that they swap partners as they intersect as shown in the

figure. In general, it’s a difficult problem to determine whether reconnection occurs

and requires numerical study. However, at low-energies we may reliably employ the

techniques of the moduli space approximation that we learnt above [63, 64, 65].

The first step is to reduce the dynamics of cosmic strings to that of particles by

considering one of two spatial slices shown in the figure. The vertical slice cuts the

strings to reveal a vortex-anti-vortex pair. After reconnection, this slice no longer

intersects the strings, implying the annihilation of this pair. Alternatively, one can
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slice horizontally to reveal two vortices. Here the smoking gun for reconnection is the

right-angle scattering of the vortices at (or near) the interaction point. Such 90o degree

scattering is a requirement since, as is clear from the figure, the two ends of each string

are travelling in opposite directions after the collision. By varying the slicing along the

string, one can reconstruct the entire dynamics of the two strings in this manner and

show the inevitability of reconnection at low-energies.
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Figure 11: The reconnection cosmic strings. Slicing vertically, one sees a vortex-anti-vortex

pair annihilate. Slicing horizontally, one sees two vortices scattering at right angles.

Hence, reconnection of cosmic strings requires both the annihilation of vortex-anti-

vortex pairs and the right-angle scattering of two vortices. The former is expected (at

least for suitably slow collisions). And we saw in Section 3.3.2 that the latter occurs for

abelian vortices in the moduli space approximation. We conclude that abelian cosmic

strings do reconnect at low energies. Numerical simulations reveal that these results

are robust, holding for very high energy collisions [66].

For cosmic strings in non-abelian theories this result continues to hold, with strings

reconnecting except for very finely tuned initial conditions [26]. However, in this case

there exist mechanisms to push the strings to these finely tuned conditions, resulting

in a probability for reconnection less than 1.

Recently, there has been renewed interest in the reconnection of cosmic strings, with

the realization that cosmic strings may be fundamental strings, stretched across the sky

[67]. These objects differ from abelian cosmic strings as they have a reduced probability

of reconnection, proportional to the string coupling g2
s [68, 69]. If cosmic strings are ever

discovered, it may be possible to determine their probability of reconnection, giving a
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vital clue to their microscopic origin. The recent developments of this story have been

nicely summarized in the review [3].
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