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Recommended Books and Resources

There are many good books on vector calculus that will get you up to speed on

the basic ideas, illustrated with an abundance of examples.

• H.M Schey, “Div, Grad, Curl, and all That”

• Jerrold Marsden and Anthony Tromba, “Vector Calculus”

Schey develops vector calculus hand in hand with electromagnetism, using Maxwell’s

equations as a vehicle to build intuition for differential operators and integrals. Marsden

and Tromba is a meatier book but the extra weight is because it goes slower, not further.

Neither of these books cover much (if any) material that goes beyond what we do in

lectures. In large part this is because the point of vector calculus is to give us tools

that we can apply elsewhere and the next steps involve turning to other courses.

• Baxandall and Liebeck, “Vector Calculus”

This book does things differently from us, taking a more rigorous and careful path

through the subject. For the most part, this involves being more careful from the off

about what spaces different objects live in. All of this will be treated in later courses,

but if you’re someone who likes all their i’s dotted, ϵ’s small, and ℏ’s uncrossed, then
this is an excellent place to look.
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0 Introduction

The development of calculus was a watershed moment in the history of mathematics.

In its simplest form, we start with a function

f : R→ R

Provided that the function is continuous and smooth, we can do some interesting things.

We can differentiate. And integrate. It’s hard to overstate the importance of these

operations. It’s no coincidence that the discovery of calculus went hand in hand with

the beginnings of modern science. It is, among other things, how we describe change.

The purpose of this course is to generalise the concepts of differentiation and inte-

gration to functions, or maps, of the form

f : Rm → Rn (0.1)

with m and n positive integers. Our goal is simply to understand the different ways

in which we can differentiate and integrate such functions. Because points in Rm and

Rn can be viewed as vectors, this subject is called vector calculus. It also goes by the

name of multivariable calculus.

The motivation for extending calculus to maps of the kind (0.1) is manifold. First,

given the remarkable depth and utility of ordinary calculus, it seems silly not to explore

such an obvious generalisation. As we will see, the effort is not wasted. There are

several beautiful mathematical theorems awaiting us, not least a number of important

generalisations of the fundamental theorem of calculus to these vector spaces. These

ideas provide the foundation for many subsequent developments in mathematics, most

notably in geometry. They also underlie every law of physics.

Examples of Maps

To highlight some of the possible applications, here are a few examples of maps (0.1)

that we will explore in greater detail as the course progresses. Of particular interest

are maps

f : R→ Rn (0.2)

These define curves in Rn. A geometer might want to understand how these curves

twist and turn in the higher dimensional space or, for n = 3, how the curve ties itself

in knots. For a physicist, maps of this type are particularly important because they

describe the trajectory of a particle. Here the codomain Rn is identified as physical

space, an interpretation that is easiest to sell when n = 3 or, for a particle restricted

to move on a plane, n = 2.
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Figure 1. On the left, the temperature on the surface of the Earth is an example of a map

from R2 → R, also known as a scalar field. On the right, the wind on the surface of the Earth

blows more or less horizontally and so can be viewed as a map from R2 → R2, also known as

a vector field. (To avoid being co-opted by the flat Earth movement, I should mention that,

strictly speaking, each of these is a map from S2 rather than R2.)

Before we go on, it will be useful to introduce some notation. We’ll parameterise R

by the variable t. Meanwhile, we denote points in Rn as x. A curve (0.2) in Rn is then

written as

f : t→ x(t)

Here x(t) is the image of the map. But, in many situations below, we’ll drop the f

and just refer to x(t) as the map. For a physicist, the parameter t is usually viewed as

time. In this case, repeated differentiation of the map with respect to t gives us first

velocity, and then acceleration.

Going one step further, we could consider maps f : R2 → Rn as defining a surface

in Rn. Again, a geometer might be interested in the curvature of this surface and

this, it turns out requires an understanding of how to differentiate the maps. There are

then obvious generalisations to higher dimensional surfaces living in higher dimensional

spaces.

From the physics perspective, in the map (0.2) that defines a curve the codomain

Rn is viewed as physical space. A conceptually different set of functions arise when we

think of the domain Rm as physical space. For example, we could consider maps of the

kind

f : R3 → R
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where R3 is viewed as physical space. Physicists refer to this as a scalar field. (Math-

ematicians refer to it as a map from R3 to R.) A familiar example of such a map is

temperature: there exists a temperature at every point in this room and that gives

a map T (x). This is shown in Figure 1. A more fundamental, and ultimately more

interesting, example of a scalar field is the Higgs field in the Standard Model of particle

physics.

As one final example, consider maps of the form

f : R3 → R3

where, again, the domain R3 is identified with physical space. Physicists call these

vector fields. (By now, you can guess what mathematicians call them.) In fundamental

physics, two important examples are provided by the electric field E(x) and magnetic

field B(x), first postulated by Michael Faraday: each describes a three-dimensional

vector associated to each point in space.

– 5 –



1 Curves

In this section, we consider maps of the form

f : R→ Rn

A map of this kind is called a parameterised curve, with R the parameter and the curve

the image of the map in Rn. In what follows, we will denote the curve as C.

Whenever we do explicit calculations, we need to introduce some coordinates. The

obvious ones are Cartesian coordinates, in which the vector x ∈ Rn is written as

x = (x1, . . . , xn) = xiei

where, in the second expression, we’re using summation convention and explicitly sum-

ming over i = 1, . . . , n. Here {ei} is a choice of orthonormal basis vectors, satisfying

ei · ej = δij. For Rn = R3, we’ll also write these as {ei} = {x̂, ŷ, ẑ}. (The notation

{ei} = {i, j,k} is also standard, although we won’t adopt it in these lectures.)

The image of the function can then be written as x(t). In physics, we might think

of this as the trajectory of a particle evolving in time t. Here, we’ll mostly just view

the curve as an abstract mathematical map, with t nothing more than a parameter

labelling positions along the curve. In fact, one of themes of this section is that, for

many calculations, the choice of parameter t is irrelevant.

Examples

Here are two simple examples. Consider first

the map R→ R3 that takes the form

x(t) = (at, bt2, 0)

The image of the map is the parabola a2y =

bx2, lying in the plane z = 0, and is shown on

the right.

This looks very similar to what you would

draw if asked to plot the graph y = bx2/a2,

with the additional requirement of z = 0 prompting the artistic flourish that results in

a curve suspended in 3d. Obviously, the curve x(t) and the functions y = bx2/a2 (with

z = 0) are related, but they’re not quite the same thing. The function y = bx2/a2

is usually thought of as a map R → R and in plotting a graph you include both the

domain and codomain. In contrast, on the right we’ve plotted only the image of the

curve x(t) in R3; the picture loses all information about the domain coordinate t.
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Here is a second example that illustrates the

same point. Consider

x(t) = (cos t, sin t, t) (1.1)

The resulting curve is a helix, shown to the

right. Like any other curve, the choice of pa-

rameterisation is not unique. We could, for

example, consider the different map

x(t) = (cosλt, sinλt, λt)

This gives the same helix as (1.1) for any choice of λ ∈ R as long as λ ̸= 0. In

some contexts this matters. If, for example, t is time, and x(t) is the trajectory of a

rollercoaster then the fate of the contents of your stomach depends delicately on the

value of λ. However, there will be some properties of the curve that are independent

of the choice of parameterisation and, in this example, independent of λ. It is these

properties that will be our primary interest in this section.

Before we go on, a pedantic mathematical caveat. It may be that the domain of

the curve is not all of R. For example, we could have the map R → R2 given by

x(t) = (t,
√
1− t2). This makes sense only for the interval t ∈ [−1,+1] and you should

proceed accordingly.

1.1 Differentiating the Curve

The vector function x(t) is differentiable at t if, as δt→ 0, we can write

x(t+ δt)− x(t) = ẋ(t) δt+O(δt2) (1.2)

You should think of this expression as defining the derivative ẋ(t). If the derivative ẋ

exists everywhere then the curve is said to be smooth. This means that it is continuous

and, as the name suggests, not egregiously jagged.

There are some notational issues to unpick in this expression. First, O(δt2) includes

all terms that scale as δt2 or smaller as δt → 0. This “big-O” notation is commonly

used in physics and applied mathematics. In pure maths you will also see the “little

o” notation o(δt) which means “strictly smaller than δt” as δt→ 0. Roughly speaking

o(δt) is the same thing as O(δt2). (In other courses you may encounter situations where

this speaking is too rough to be accurate, but it will suffice for our needs.) We’ll stick

with big-O notation throughout these lectures.
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We’ve denoted the derivative in (1.2) with a dot, ẋ(t). This was Newton’s original

notation for the derivative and, 350 years later, comes with some sociological baggage.

In physics, a dot is nearly always used to denote differentiation with respect to time, so

the velocity of a particle is ẋ and the acceleration is ẍ. Meanwhile a prime, like f ′(x),

is usually used to denote differentiation with respect to space. This is deeply ingrained

in the psyche of physicists, so much so that I get a little shudder if I see something

like x′(t), even though it’s perfectly obvious that it means dx/dt. Mathematicians,

meanwhile, seem to have no such cultural hang-ups on this issue. (They reserve their

cultural hang-ups for a 1000 other issues.)

We write the left-hand side of (1.2) as

δx(t) = x(t+ δt)− x(t)

The derivative is then the vector

dx

dt
= ẋ(t) = lim

δt→0

δx

δt

Here the familiar notation dx/dt for the derivative is due to Leibniz and works if we’re

differentiating with respect to time, space, or anything else. We’ll also sometimes use

the slightly sloppy notation and write

dx = ẋ dt

which, at least for now, really just means the same thing as (1.2) except we’ve dropped

the O(δt2) terms.

It’s not difficult to differentiate vectors and, at least in Cartesian coordinates with

the basis vectors ei, we can just do it component by component

x(t) = xi(t)ei ⇒ ẋ(t) = ẋi(t)ei

The same is true if we work in any other choice of basis vectors {ei} provided that these

vectors themselves are independent of t. (In the lectures on Dynamics and Relativity

we encounter an example where the basis vectors do depend on time and you have to

be more careful. This arises in Section 6 on “Non-Inertial Frames”.)

More generally, given a function f(t) and two vector functions g(t) and h(t), it’s

simple to check that the following Leibniz identities hold

d

dt
(fg) =

df

dt
g + f

dg

dt
d

dt
(g · h) = dg

dt
· h+ g · dh

dt
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Figure 2. The derivative is the tangent vector to the curve.

Moreover, if g(t) and h(t) are vectors in R3, we also have the cross-product identity

d

dt
(g × h) =

dg

dt
× h+ g × dh

dt

As usual, we have to be careful with the ordering of terms in the cross product because

for example, dg/dt× h = −h× dg/dt.

1.1.1 Tangent Vectors

There is a nice geometric meaning to the derivative ẋ(t) of a parameterised curve C: it

gives the tangent to the curve and is called, quite reasonably, the tangent vector. This

is shown in Figure 2.

The direction of the tangent vector ẋ(t) is geometrical (at least up to a sign): it

depends only on the curve C itself, and not on the choice of parameterisation. In con-

trast, the magnitude of the tangent vector |ẋ(t)| does depend on the parameterisation.

This is obvious mathematically, since we’re differentiating with respect to t, and also

physically where ẋ is identified with the velocity of a particle.

Sometimes, you may find yourself with an unwise choice of parameterisation in which

the derivative vector ẋ vanishes at some point. For example, consider the curve in R2

given by

x(t) = (t3, t3)

The curve C is just the straight line x = y. The tangent vector ẋ = 3t2(1, 1) which

clearly points along the line x = y but with magnitude 3
√
2t2 and so vanishes at t = 0.

Clearly this is not a property of C itself, but of our choice of parameterisation. We get

the same curve C from the map x(t) = (t, t) but now the tangent vector is everywhere

non-vanishing.
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A parameterisation is called regular if ẋ(t) ̸= 0 for any t. In what follows, we will

assume that we are dealing with regular parameterisations except, perhaps, at isolated

points. This means that we can divide the curve into segments, each of which is regular.

As a slightly technical aside, we will sometimes

have cause to consider curves that are piecewise

smooth curves of the form C = C1+C2+ . . ., where

the end of one curve lines up with the beginning of

the next, as shown on the right. In this case, a tan-

gent vector exists everywhere except at the cusps

where two curves meet.

1.1.2 The Arc Length

We can use the tangent vectors to compute the length of the curve. From Figure 2, we

see that the distance between two nearby points is

δs = |δx|+O(|δx|2) = |ẋ δt|+O(δt2)

We then have

ds

dt
= ±

∣∣∣∣dxdt
∣∣∣∣ = ±|ẋ| (1.3)

where we get the plus sign for distances measured in the direction of increasing t, and

the minus sign in the direction of decreasing t.

If we pick some starting point t0 on the curve, then

the distance along the curve to any point t > t0 is given

by

s =

∫ t

t0

dt′ |ẋ(t′)|

This distance is called the arc length, s. Because |ẋ| > 0, this is a positive and strictly

increasing function as we move away in the direction t > t0. It is a negative, and

strictly decreasing function in the direction t < t0.

Although the tangent vector ẋ depends on the choice of parameterisation, the arc

length s does not. We can pick a different parameterisation of the curve τ(t), which we

will take to be an invertible and smooth function. We will also assume that dτ/dt > 0
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so that they both measure “increasing time” in the same direction. The chain rule tells

us that

dx

dt
=
dx

dτ

dτ

dt
(1.4)

We can then compute the arc length using the τ parameterisation: it is

s =

∫ t

t0

dt′ |ẋ(t′)| =
∫ τ

τ0

dτ ′
dt′

dτ ′

∣∣∣∣ dxdτ ′ dτ ′dt′

∣∣∣∣ = ∫ τ

τ0

dτ ′
∣∣∣∣ dxdτ ′

∣∣∣∣ (1.5)

In the second equality, we find the contribution from the chain rule (1.4) together with

a factor from the measure that comes from integrating over dτ instead of dt. These then

cancel in the third equality. The upshot is that we can compute the arc length using

any parameterisation that we wish. Or, said differently, the arc length is independent

of the choice of parameterisation of the curve.

We can now turn this on its head. All parameterisations of the curve give the same

arc length. But this means that the arc length itself is, in many ways, the only natural

parameterisation of the curve. We can then think of x(s) with the corresponding

tangent vector dx/ds. From (1.3), we see that this choice of the tangent vector always

has unit length: |dx/ds| = 1.

As an aside: these kind of issues raise their head in the physics of special relativity

where time means different things for people moving at different speeds. This means

that there is no universally agreed “absolute time” and so different people will parame-

terise the trajectory of a particle x(t) in different ways. There’s no right or wrong way,

but it’s annoying if someone does it differently to you. (Admittedly, this is only likely

to happen if they are travelling at an appreciable fraction of the speed of light relative

to you.) Happily there is something that everyone can agree on, which is the special

relativistic version of arc length. It’s known as proper time. You can read more about

this in the lectures on Dynamics and Relativity.

An Example

To illustrate these ideas, let’s return to our helix example of (1.1). We had x(t) =

(cos t, sin t, t) and so ẋ(t) = (− sin t, cos t, 1). Our defining equation (1.3) then becomes

(taking the positive sign)

ds

dt
= |ẋ| =

√
2
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If we take t0 = 0, then the arc length measured

from the point x = (1, 0, 0) is s =
√
2t. In particular,

after time t = 2π we’ve made a full rotation and sit at

x = (1, 0, 2π). These two points are shown as red dots

in the figure. Obviously the direct route between the

two has distance 2π. Our analysis above shows that the

distance along the helix is s =
√
8π.

1.1.3 Curvature and Torsion

There is a little bit of simple geometry associated to

these ideas. Given a curve C, parameterised by its arc length s, we have already seen

that the tangent vector

t =
dx

ds

has unit length, |t| = 1. (Note: don’t confuse the bold faced tangent vector t with

our earlier parameterisation t: they’re different objects!) We can also consider the

“acceleration” of the curve with respect to the arc length, d2x/ds2. The magnitude of

this “acceleration” is called the curvature

κ(s) =

∣∣∣∣d2xds2
∣∣∣∣ (1.6)

To build some intuition, we can calculate the curvature of a circle of radius R. If

we start with a simple parameterisation x(t) = (R cos t, R sin t) then you can check

using (1.3) that the arc length is s = Rt. We then pick the new parameterisation

x(s) = (R cos(s/R), R sin(s/R)). We then find that a circle of radius R has constant

curvature

κ =
1

R

Note, in particular, that as R → ∞, the circle becomes a straight line which has

vanishing curvature.

There is also a unit vector associated to this “acceleration”, defined as

n =
1

κ

d2x

ds2
=

1

κ

dt

ds

This is known as the principal normal. Note that the factor of 1/κ ensures that |n| = 1.
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Importantly, if κ ̸= 0 then n is perpendicular to the tangent vector t. This follows

from the fact that t · t = 1 and so d/ds(t · t) = 2κn · t = 0. This means that t and n

define a plane, associated to every point in the curve. This is known as the osculating

plane.

For any point s on the curve, there is an associ-

ated osculating plane. Now draw a circle in that plane

that touches the curve at the point s, whose curvature

matches κ(s). This is called the osculating circle and is

shown in green in the figure. This is the circle that just

kisses the curve at s

Next we can ask: how does the osculating plane vary

as we move along the curve? This is simplest to discuss

if we restrict to curves in R3. In this case, we have the cross product at our disposal

and we can define the unit normal to the osculating plane as

b = t× n

This is known as the binormal, to distinguish it from the normal n. The three vectors

t, n and b define an orthonormal basis for R3 at each point s along the curve (at least

as long as κ(s) ̸= 0.) This basis twists and turns along the curve.

Note that |b| = 1 which, using the same argument as for t above, tells us that

b · db/ds = 0. In addition, we have t · b = 0 which, after differentiating, tells us that

0 =
dt

ds
· b+ t · db

ds
= κn · b+ t · db

ds

But, by definition, n · b = 0. So we learn that t · db/ds = 0. In other words, db/ds is

orthogonal to both b and to t. Which means that it must be parallel to n. We define

the torsion τ(s) as a measure of how the binormal changes

db

ds
= −τ(s)n (1.7)

From the definition, you can see that the torsion is a measure of
...
x . The minus sign

means that if the top of the green circle in the figure tilts towards us, then τ > 0; if

it tilts away from us then τ < 0. Heuristically, the curvature captures how much the

curve fails to be a straight line, while the torsion captures how much the curve fails to

be planar.
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The Frenet-Serret Equations

There is a closed set of formulae describing curvature and torsion. These are the

Frenet-Serret equations,

dt

ds
= κn (1.8)

db

ds
= −τn (1.9)

dn

ds
= τb− κt (1.10)

The first of these (1.8) is simply the definition of the normal n.

That leaves us with (1.10). We’ll again start with the definition b = t× n, and this

time take the cross product with t. The triple product formula then gives us

b× t = (t× n)× t = (t · t)n− (n · t) t = n

Now taking the derivative with respect to s, using (1.8) and (1.9) and noting that

b = t× n and t = n× b then gives us (1.10).

It’s useful to rewrite the first two equations (1.8) and (1.9) using n = b× t so that

we have

dt

ds
= κ(b× t) and

db

ds
= −τ(b× t)

This is six first order equations for six unknowns, b(s) and t(s). If we are given κ(s)

and τ(s), together with initial conditions b(0) and t(0), then we can solve for b(s) and

t(s) and can subsequently solve for the curve x(s). The way to think about this is

that the curvature and torsion κ(s) and τ(s) specify the curve, up to translation and

orientation.

1.2 Line Integrals

Given a curve C in Rn and some function defined over Rn, we may well wish to integrate

the function along the curve. There are different stories to tell for scalar and vector

fields and we deal with each in turn.

1.2.1 Scalar Fields

A scalar field is a map

ϕ : Rn → R

With coordinates x on Rn, we’ll denote this scalar field as ϕ(x).
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Given a parameterised curve C in Rn, which we denote as x(t), it might be tempting

to put these together to get the function ϕ(x(t)) which is a composite map R → R.

We could then just integrate over t in the usual way.

However, there’s a catch. The result that you get will depend both on the function

ϕ, the curve C, and the choice of parameterisation of the curve. There’s nothing wrong

this per se, but it’s not what we want here. For many purposes, it turns out to be more

useful to have a definition of the integral that depends only on the function ϕ and the

curve C, but gives the same answer for any choice of parameterisation of the curve.

One way to achieve this is to work with the arc length s which, as we’ve seen, is the

natural parameterisation along the curve. We can integrate from point a to point b,

with x(sa) = a and x(sb) = b and sa < sb, by defining the line integral∫
C

ϕ ds =

∫ sb

sa

ϕ(x(s)) ds

where the right-hand side is now viewed as a usual one-dimensional integral.

This line integral is, by convention, defined so that
∫
C
ds gives the length of the

curve C and, in particular, is always positive. In other words, there’s no directional

information in this integral: it doesn’t matter what way you move along the curve.

Suppose that we’re given a parameterised curve C in terms of some other parameter

x(t), with x(ta) = a and x(tb) = b. The usual change of variables tells us that∫
C

ϕ ds =

∫ tb

ta

ϕ(x(t))
ds

dt
dt

We can then use (1.3). If tb > ta then we have ds/dt = +|ẋ| and

∫
C

ϕ ds =

∫ tb

ta

ϕ(x(t)) |ẋ(t)| dt (1.11)

Meanwhile, if tb < ta then we have ds/dt = −|ẋ| and∫
C

ϕ ds =

∫ ta

tb

ϕ(x(t)) |ẋ(t)| dt

We see that the line integral comes with the length of the tangent vector |ẋ| in the

integrand. This is what ensures that the line integral is actually independent of the

choice of parameterisation: the argument is the same as the one we used in (1.5) to
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show that the arc length is invariant under reparameterisations: upon a change of

variables, the single derivative d/dt in ẋ cancels the Jacobian from the integral
∫
dt.

Furthermore, the minus signs work out so that you’re always integrating from a smaller

value of t to a larger one, again ensuring that
∫
C
ds is positive and so can be interpreted

as the length of the curve.

1.2.2 Vector Fields

Vector fields are maps of the form

F : Rn → Rn

So that at each point x ∈ Rn we have a vector-valued object F(x). We would like to

understand how to integrate a vector field along a curve C.

There are two ways to do this. We could work component-wise, treating each compo-

nent like the scalar field example above. After doing the integration, this would leave

us with a vector.

However it turns out that, in many circumstances, it’s more useful to integrate the

vector field so that the integral gives us just a number. We do this integrating the

component of the vector field that lies tangent to the curve. Usually, this is what is

meant by the line integral of a vector field.

In more detail, suppose that our curve C has a parameterisation x(t) and we wish

to integrate from ta to tb, with x(ta) = a and x(tb) = b. The line integral of a vector

field F along C is defined to be∫
C

F(x) · dx =

∫ tb

ta

F(x(t)) · ẋ(t) dt (1.12)

Once again, this doesn’t depend on the choice of parameterisation t. This is manifest in

the expression on the left where the parameterisation isn’t mentioned. The right-hand

side is invariant for the same reason as (1.11).

This time, however, there’s a slightly different story to tell about minus signs. We

should think of each curve C as coming with an orientation, which is the direction along

the curve. Equivalently, it can be thought of as the direction of the tangent vector ẋ.

In the example above, the orientation of the curve is from a to b. This then determines

the limits of the integral, from ta to tb, since x(ta) = a and x(tb) = b. Note that the

limits are always this way round, regardless of whether our parameterisation has ta < tb
or whether tb > ta: the orientation determines the limits, not the parameterisation.
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In summary, the line integral for a scalar field
∫
C
ϕ ds is independent of the orientation

and, if ϕ is positive, the integral will also be positive. In contrast, the integral of the

vector field
∫
C
F · ẋ dt depends on the orientation. Flip the orientation of the curve,

and the integral will change sign.

An Example

As a slightly baroque example, consider the vector field in R3,

F(x) = (xey, z2, xy)

To evaluate the line integral, we also need to

specify the curve C along which we perform

the integral. We’ll consider two options, both

of which evolve from x(t = 0) = (0, 0, 0) to

x(t = 1) = (1, 1, 1). Our first curve is

C1 : x(t) = (t, t2, t3)

This is shown in the figure. Evaluated on C1,

we have F(x(t)) = (tet
2
, t6, t3). Meanwhile ẋ = (1, 2t, 3t2) so we have∫

C1

F · dx =

∫ 1

0

dt F · ẋ

=

∫ 1

0

dt
(
tet

2

+ 2t7 + 3t5
)
=

1

4
(1 + 2e)

Our second curve is simply the straight line

C2 : x(t) = (t, t, t)

Evaluated on this curve, we have F(x(t)) = (tet, t2, t2). Now the tangent vector is

ẋ = (1, 1, 1) and the integral is∫
C2

F · dx =

∫ 1

0

dt F · ẋ =

∫ 1

0

dt
(
tet + 2t2

)
=

5

3
(1.13)

(The first of these integrals is done by an integration by parts.)

The main lesson to take from this is the obvious one: the answers are different. The

result of a line integral generally depends on both the thing you’re integrating F and

the choice of curve C.
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Figure 3. Decomposing a curve by introducing new segments with opposite orientations.

More Curves, More Integrals

We’ll see plenty more examples of line integrals, both in this course and in later ones.

Here are some comments to set the scene.

First, there will be occasions when we want to perform a line integral around a

closed curve C, meaning that the starting and end points are the same, a = b. For

such curves, we introduce new notation and write the line integral as∮
C

F · dx

with the little circle on the integral sign there to remind us that we’re integrating

around a loop. This quantity is called the circulation of F around C. The name comes

from Fluid Mechanics where we might view F as the velocity field of a fluid, and the

circulation quantifies the swirling motion of the fluid.

In other occasions, we may find ourselves in a situation in which the curve C decom-

poses into a number of piecewise smooth curves Ci, joined up at their end points. We

write C = C1 + C2 + . . ., and the line integral is∫
C

F · dx =

∫
C1

F · dx+

∫
C2

F · dx+ . . .

It is also useful to think of the curve −C as the same as the curve C but with the

opposite orientation. This means that we have the expression∫
−C

F(x) · dx = −
∫
C

F(x) · dx

For example, we could return to our previous baroque example and consider the closed

curve C = C1 − C2. This curve starts at x = (0, 0, 0), travels along C1 to x = (1, 1, 1)

– 18 –

http://www.damtp.cam.ac.uk/user/tong/fluids.html


and then returns back along C2 in the opposite direction to the arrow. From our

previous answers, we have∮
C

F · dx =

∫
C1

F · dx−
∫
C2

F · dx =
1

4
(1 + 2e)− 5

3

There are lots of games that we can play like this. For example, it’s sometimes useful to

take a smooth closed curve C and decompose it into two piecewise smooth segments,.

An example is shown in Figure 3, where we’ve introduced two new segments, which

should be viewed as infinitesimally close to each other. These two new segments have

opposite orientation and so cancel out in any integral. In this way, we can think of the

original curve as C = C1+C2. We’ll see other examples of these kinds of manipulations

as we progress.

1.3 Conservative Fields

Here’s an interesting question. In general the line integral of a vector field depends on

the path taken. But is this ever not the case? In other words, are there some vector

fields F for which the line integral depends only on the end points and not on the route

you choose to go between them?

Such a vector field F would obey∫
C1

F · dx =

∫
C2

F · dx

for any C1 and C2 that share the same end points a and b and the same orientation.

Equivalently, we could consider the closed curve C = C1 − C2 and write this as∮
C

F · dx = 0

for all closed curves C. To answer this question about vector fields, we first need to

introduce a new concept for scalar fields.

1.3.1 The Gradient

Let’s return to the scalar field

ϕ : Rn → R

We want to ask: how can we differentiate such a function?
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With Cartesian coordinates x = (x1, . . . , xn) on Rn, the scalar field is a function

ϕ(x1, . . . , xn). Given such a function of several variables, we can always take partial

derivatives, which means that we differentiate with respect to one variable while keeping

all others fixed. For example,

∂ϕ

∂x1
= lim

ϵ→0

ϕ(x1 + ϵ, x2, . . . , xn)− ϕ(x1, x2, . . . , xn)

ϵ
(1.14)

If all n partial derivatives exist then the function is said to be differentiable.

The partial derivatives offer n different ways to differentiate our scalar field. We will

sometimes write this as

∂iϕ =
∂ϕ

∂xi
(1.15)

where the ∂i can be useful shorthand when doing long calculations. While the notation

of the partial derivative tells us what’s changing it’s just as important to remember

what’s kept fixed. If, at times, there’s any ambiguity this is sometimes highlighted by

writing (
∂ϕ

∂x1

)
x2,...,xn

where the subscripts tell us what remains unchanged as we vary x1. We won’t use this

notation in these lectures since it should be obvious what variables are being held fixed.

The n different partial derivatives can be packaged together into a vector field. To do

this, we introduce the orthonormal basis of vectors {ei} associated to the coordinates

xi. The gradient of a scalar field is then a vector field, defined as

∇ϕ =
∂ϕ

∂xi
ei (1.16)

where we’re using the summation convention in which we implicitly sum over the re-

peated i = 1, . . . , n index.

Because ∇ϕ is a vector field, it may be more notationally consistent to write it in

bold font as ∇ϕ. However, I’ll stick with ∇ϕ. There’s no ambiguity here because the

symbol ∇ only ever means the gradient, never anything else, and so is always a vector.

It’s one of the few symbols in mathematics and physics whose notational meaning is

fixed.
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For scalar fields ϕ(x, y, z) in R3, the gradient is

∇ϕ =
∂ϕ

∂x
x̂+

∂ϕ

∂y
ŷ +

∂ϕ

∂z
ẑ

where we’ve written the orthonormal basis as {ei} = {x̂, ŷ, ẑ}.

There’s a useful way to view the vector field ∇ϕ. To see this, note that if we want

to know how the function ϕ changes in a given direction n̂, with |n̂| = 1, then we just

need to take the inner product n̂ · ∇ϕ. This is known as the directional derivative and

sometimes denoted Dnϕ = n̂ · ∇ϕ. Obviously the directional derivative is maximal at

any point x when n̂ lies parallel to ∇ϕ(x). But this is telling us something important:

at each point in space, the vector ∇ϕ(x) is pointing in the direction in which ϕ(x)

changes most quickly.

1.3.2 Back to Conservative Fields

First a definition. A vector field F is called conservative if it can be written as

F = ∇ϕ

for some scalar field ϕ which, in this context, is referred to as a potential. (The odd

name “conservative” derives from the conservation of energy in Newtonian mechanics

we will see the connection to this below.) Finally, we can answer the question that we

introduced at the beginning of this section: when is a line integral independent of the

path?

Claim: The line integral around any closed curve vanishes if and only if F is con-

servative.

Proof: Consider a conservative vector field of the form F = ∇ϕ. We’ll integrate

this along a curve C that interpolates from point a to point b, with parameterisation

x(t). We have∫
C

F · dx =

∫
C

∇ϕ · dx =

∫ tb

ta

∂ϕ

∂xi
dxi

dt
dt =

∫ tb

ta

d

dt
ϕ(x(t)) dt

where the last equality follows from the chain rule. But now we have the integral of a

total derivative, so ∫
C

F · dx =
[
ϕ(x(t))

]tb
ta
= ϕ(b)− ϕ(a)

which depends only on the end points as promised.
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Conversely, given the vector field F whose inte-

gral vanishes when taken around any closed curve,

it is always possible to construct a potential ϕ. We

first choose a value of ϕ at the origin. There’s no

unique choice here, reflecting the fact that the po-

tential ϕ is only defined up to an overall constant.

We can take ϕ(0) = 0. Then, at any other point

y, we define x = y

ϕ(y) =

∫
C(y)

F · dx

where C(y) is a curve that starts at the origin and ends at the point y as shown in

the figure above. Importantly, by assumption
∮
F · dx = 0, so it doesn’t matter which

curve C we take: they all give the same answer.

It remains only to show that ∇ϕ = F. This is straightforward. Reverting to our

original definition of the partial derivative (1.14), we have

∂ϕ

∂xi
(y) = lim

ϵ→0

1

ϵ

[∫
C(y+ϵei)

F · dx−
∫
C(y)

F · dx
]

The first integral goes along C(y), and then

continues along the red line shown in the fig-

ure to the right. Meanwhile, the second inte-

gral goes back along C(y). The upshot is that

the difference between them involves only the

integral along the red line

∂ϕ

∂xi
(y) = lim

ϵ→0

1

ϵ

∫
red line

F · dx

The red line is taken to be the straight line in the xi direction. This means that the

line integral projects onto the Fi component of the vector F. Since we’re integrating

this over a small segment of length ϵ, the integral gives
∫
red line

F · dx ≈ Fiϵ and, after

taking the limit ϵ→ 0, we have

∂ϕ

∂xi
(y) = Fi(y)

This is our desired result ∇ϕ = F. □
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It’s clear that the result above is closely related to the fundamental theorem of

calculus: the line integral of a conservative vector field is the analog of the integral of

a total derivative and so is given by the end points. We’ll meet more analogies along

the same lines as we proceed.

Given a vector field F, how can we tell if there’s a corresponding potential so that

we can write F = ∇ϕ? There’s one straightforward way to check: for a conservative

vector field, the components F = Fiei are given by

Fi =
∂ϕ

∂xi

Differentiating again, we have

∂Fi

∂xj
=

∂2ϕ

∂xixj
=
∂Fj

∂xi
(1.17)

where the second equality follows from the fact that the order of partial derivatives

doesn’t matter (at least for suitably well behaved functions). This means that a neces-

sary condition for F to be conservative if that ∂iFj = ∂jFi. Later in these lectures we

will see that (at least locally) this is actually a sufficient condition.

An Example

Consider the (totally made up) vector field

F = (3x2y sin z, x3 sin z, x3y cos z)

Is this conservative? We have ∂1F2 = 3x2 sin z = ∂2F1 and ∂1F3 = 3x2y cos z = ∂3F1

and, finally, ∂2F3 = x3 cos z = ∂3F2. So it passes the derivative test. Indeed, it’s not

then hard to check that

F = ∇ϕ with ϕ = x3y sin z

Knowing this makes it trivial to evaluate the line integral
∫
C
F · dx along any curve C

since it is given by ϕ(b)− ϕ(a) where a and b are the end points of C.

Exact Differentials

There is a slightly different and more abstract way of phrasing the idea of a conservative

vector field. First, given a function ϕ(x) on Rn, the differential is defined to be

dϕ =
∂ϕ

∂xi
dxi = ∇ϕ · dx

It’s a slightly formal object, obviously closely related to the derivative. The differential

is itself a function of x and captures how much the function ϕ changes as we move in

any direction.
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Next, consider a vector field F(x) on Rn. We can take the inner product with an

infinitesimal vector to get the object F · dx. In fancy maths language, this is called a

differential form. (Strictly it’s an object known as a differential one-form) It’s best to

think of F · dx as something that we should integrate along a curve.

A differential form is said to be exact if it can be written as

F · dx = dϕ

for some function ϕ. This is just a rewriting of our earlier idea: a differential is exact

if and only if the vector field is conservative. In this case, it takes the form F = ∇ϕ
and so the associated differential is

F · dx =
∂ϕ

∂xi
dxi = dϕ

where the last equality follows from the chain rule.

1.3.3 An Application: Work and Potential Energy

There’s a useful application of these ideas in Newtonian mechanics. The trajectory

x(t) of a particle is governed by Newton’s second law which reads

mẍ = F(x)

where, in this context, F(x) can be thought of as a force field. An important concept

in Newtonian mechanics is the kinetic energy of a particle, K = 1
2
mẋ2. (This is more

often denoted as T in theoretical physics.) As the particle’s position changes in time,

the kinetic energy changes as

K(t2)−K(t1) =

∫ t2

t1

dK

dt
dt =

∫ t2

t1

mẋ · ẍ dt =
∫ t2

t1

ẋ · F dt =
∫
C

F · dx

The line integral of the force F along the trajectory C of the particle is called the work

done.

Something special happens for conservative forces. These can be written as

F = −∇V (1.18)

for some choice of V . (Note: the minus sign is just convention.) From the result above,

for a conservative force the work done depends only on the end points, not on the path

taken. We then have

K(t2)−K(t1) =

∫
C

F · dx = −V (t2) + V (t1) ⇒ K(t) + V (t) = constant
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We learn that a conservative force, one that can be written as (1.18), has a conserved

energy E = K + V . Indeed, it’s this conservation of energy that lends it’s name to the

more general idea of a “conservative” vector field. We’ll have use of these ideas in the

lectures on Dynamics and Relativity.

1.3.4 A Subtlety

Here’s a curious example. Consider the vector field on R2 given by

F =

(
− y

x2 + y2
,

x

x2 + y2

)
Is this conservative? If we run our check (1.17), we find

∂Fx

∂y
=
∂Fy

∂x
=

y2 − x2

(x2 + y2)2

which suggests that this is, indeed, a conservative field. Indeed, you can quickly check

that

F = ∇ϕ with ϕ(x, y) = tan−1
(y
x

)
(To see this, write tanϕ = y/x and recall that ∂(tanϕ)/∂x = (cosϕ)−2∂ϕ/∂x = (1 +

tan2 ϕ)∂ϕ/∂x with a similar expression when you differentiate with respect to y. A

little algebra will then convince you that the above is true.)

Let’s now integrate F along a closed curve C that is a circle of radius R surrounding

the origin. We take x(t) = (R cos t, R sin t) with 0 ≤ t < 2π and the line integral is∮
C

F · dx =

∫ 2π

0

F · dx
dt
dt =

∫ 2π

0

(
−sin t

R
· (−R sin t) +

cos t

R
·R cos t

)
dt = 2π

Well, that’s annoying! We’ve just proven that the integral of any conservative vector

field around a close curve C necessarily vanishes, and yet one of our first examples

seems to show otherwise! What’s going on?

The deal is that ϕ(x, y) is not a well behaved function on R2. In particular, it’s not

continuous along the y-axis: as x→ 0 the function ϕ approaches either +π/2 or −π/2
depending on whether y/x is positive or negative. Implicit in our previous proof was

the requirement that we have a continuous function ϕ, well defined everywhere on R2.

Strictly speaking, a conservative field should have F = ∇ϕ with ϕ continuous.

Relatedly, F itself isn’t defined everywhere on R2 because it is singular at the origin.

Strictly speaking, F is only defined on the planeR2 with the point at the origin removed.

We write this as R2 − {0, 0},
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We learn that we should be careful. The line integral of a conservative vector field

around a closed curve C is only vanishing if the vector field is well defined everywhere

inside C.

Usually pathological examples like this are of interest only to the most self-loathing

of pure mathematicians. But not in this case. The subtlety that we’ve seen above

later blossoms into some of the most interesting ideas in both mathematics and physics

where it underlies key aspects in the study of topology. In the above example, the

space R2 − {0, 0} has a different topology from R2 because in the latter case all loops

are contractible, while in the former case there are non-contractible loops that circle

the origin. It turns out that one can characterise the topology of a space by studying

the kinds of functions that live on it. In particular, the functions that satisfy the

check (1.17) but cannot be written as F = ∇ϕ with a continuous ϕ play a particularly

important role, as they encode a lot of information about the topology of the underlying

space.
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2 Surfaces (and Volumes)

The main purpose of this chapter is to understand how to generalise the idea of an

integral. Rather than integrating over a line, we will instead look at how to integrate

over a 2d surface. We’ll then see how to generalise to the integration over a 3d volume

or, more generally, an n-dimensional space.

2.1 Multiple Integrals

We’ll start by explaining what it means to integrate over a region in R2 or over a region

in R3. The former are called area, or surface, integrals; the latter volume integrals. By

the time we’ve understood volume integrals, the extension to Rn will be obvious.

2.1.1 Area Integrals

Consider a region D ⊂ R2. Given a scalar function ϕ : R2 → R, we want to find a way

to integrate ϕ over D. We write this as∫
D

ϕ(x) dA (2.1)

You should think of the area element dA as representing an infinitesimally small area,

with the
∫

sign telling us that we’re summing over many such small areas, in much

the same was as
∫
dx should be thought of as summing over infinitesimally small line

elements dx. The area element is also written as dA = dx dy.

The rough idea underlying the integral is

straightforward. First, we find a way to tes-

selate D with some simple shape, say a rectan-

gle or other polygon. Each shape has common

area δA. Admittedly, there might be some dif-

ficulty in making this work around the edge,

but we’ll ignore this for now. Then we might

approximate the integral as∫
D

ϕ(x) dA ≈
∑
n

ϕ(xn) δA

where xn is a point in the middle of each shape. We can then consider making δA

smaller and smaller, so that we tesselate the region D with finer and finer shapes.

Intuitively, we might expect that as δA → 0, the sum converges on an answer and,

moreover, this answer is independent on any choices that we made along the way, such
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as what shape we use and how we deal with the edges. When the limit exists – as it will

for any sensible choice of function ϕ and region D – then it converges to the integral.

If the function in the integrand is simply ϕ = 1 then the integral (2.1) calculates the

area of the region D.

Just as an ordinary, one-dimensional integral

can be viewed as the area under a curve, so too

can an area integral be viewed as the volume

under a function. This interpretation follows

simply by plotting z = ϕ(x, y) in 3d as shown

to the right.

Evaluating Area Integrals

In practice, we evaluate area integrals (or, in-

deed, higher dimensional integrals) by reducing

them to multiple ordinary integrals.

There are a number of different ways to do this, and some may be more convenient

than others, although all will give the same answer. For example, we could parcel our

region D into narrow horizontal strips of width δy like so:

For each value of y, we then do the x integral between the two limits x1(y) and x2(y).

We then subsequently sum over all such strips by doing the y integral between the two

outer limits of the shape which we call a and b. The net result is∫
D

ϕ(x, y) dA =

∫ b

a

dy

∫ x2(y)

x1(y)

dx ϕ(x, y) (2.2)

In this approach, the information about the shapeD appears in the limits of the integral

x1(y) and x2(y) which trace the outline of D as y changes.
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If your shape is suitably annoying, then one

or more of the integrals may have to be decom-

posed into disjoint sets. An example is shown

on the right. In this case, for some values of y

we need two further functions x̃1(y) and x̃2(y)

to trace the outline of D and the integral in

(2.2) is defined to be∫ x2(y)

x1(y)

dx =

∫ x̃1(y)

x1(y)

dx+

∫ x2(y)

x̃2(y)

dx

with the obvious generalisation if more disjoint intervals are needed.

We should pause at this point to make a comment on notation. You may be used

to writing integrals as
∫
(integrand) dx, with the thing you’re integrating sandwiched

between the
∫

sign and the dx. Indeed, that’s the convention that we’ve been using

up until now. But, as you progress through mathematics, there is a time to dump this

notation and we have now reached that time. When performing multiple integrals, it

becomes annoying to remember where you should place all those dx’s and dy’s, not least

because they’re not conveying any further information. So we instead write integrals

as
∫
dx (integrand), with the dx placed next to the integral sign. There’s nothing deep

in this. It’s just a different convention, albeit one that holds your hand a little less.

Think of it like that time you took the training wheels off your bike.

Our new notation does, however, retain the idea of ordering. You should work from

right to left, first performing the
∫
dx integration in (2.2) to get a function of y, and

subsequently performing the
∫
dy integration.

Note also that the number of
∫

signs is not conserved in (2.2). On the left,
∫
dA is

an area integral and so requires us to do two normal integrals which are then written

explicitly on the right. Shortly we will meet volume integrals and denote them as∫
dV . Some texts prefer a convention in which there is a conservation of integral signs

and so write area integrals as
∫ ∫

dA and volume integrals as
∫ ∫ ∫

dV . The authors

of these texts aren’t string theorists and have never had to perform an integral in ten

dimensions. Here we refuse to adopt this notation on the grounds that it looks silly.

There is a different way to do the integral (2.2). We could just as well divide our

formula D into vertical strips of width δx, so that it looks like this:
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For each value of x, we do the y integral between the two limits y1(x) and y2(x).

As before, these functions trace the shape of the region D. We then subsequently sum

over all strips by doing the x integral between the two outer limits of the shape which

we now call c and d. Now the result is∫
D

ϕ(x, y) dA =

∫ d

c

dx

∫ y2(x)

y1(x)

dy ϕ(x, y) (2.3)

There are other ways to divide up the region D, some of which we will meet below

when we discuss different coordinate choices. Fubini’s theorem, proven in 1907, states

that, for suitably well behaved functions ϕ(x, y) and regions D, all different ways of

decomposing the integral agree. We won’t prove this theorem here but it guarantees

that the result that you get from doing the integrals in (2.2) coincides with the result

from (2.3).

An Example

As a simple example, consider the function

ϕ(x, y) = x2y

integrated over the triangle D shown in the figure.

We’ll do the area integral in two different ways. If we

first do the
∫
dx integration, as in (2.2), then we have∫

D

ϕ dA =

∫ 1

0

dy

∫ 2−2y

0

dx x2y =

∫ 1

0

dy y

[
x3

3

]2−2y

0

=
8

3

∫ 1

0

dy y(1− y)3 =
2

15

Meanwhile, doing the
∫
dy integration first, as in (2.3), we have∫

D

ϕ dA =

∫ 2

0

dx

∫ 1−x/2

0

dy x2y =

∫ 2

0

dx x2
[
y2

2

]1−x/2

0

=
1

2

∫ 2

0

dx x2
(
1− x

2

)2
=

2

15

The two calculations give the same answer as advertised.
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Figure 4. A change of coordinates from (x, y) to (u, v).

2.1.2 Changing Coordinates

Our discussion above was very much rooted in Cartesian coordinates. What if we

choose to work with a different set of coordinates on R2?

Consider a change of variables (x, y) → (u, v). To be a good change of coordinates,

the map should be smooth and invertible and we will assume that this is the case. The

region D can then equally well be parameterised by coordinates (u, v). An example is

shown in Figure 4, with lines of constant u and constant v plotted in green. We want

to know how to do the area integral in the (u, v) coordinates.

Claim: The area integral can be written as∫
D

dx dy ϕ(x, y) =

∫
D′
du dv |J(u, v)|ϕ(u, v) (2.4)

The region D in the (x, y) plane is mapped into a different region D′ in the (u, v) plane.

Here ϕ(u, v) is slightly sloppy shorthand: it means the function ϕ(x(u, v), y(u, v)). The

additional term J(u, v) is called the Jacobian and is given by the determinant

J(u, v) =

∣∣∣∣∣ ∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣∣
The Jacobian is an important enough object that it also gets its own notation and is

sometimes written as

J =
∂(x, y)

∂(u, v)
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Proof(ish): Here is a sketch of the proof to give you some intuition for why this is the

right thing to do. We evaluate the integral by summing over small areas δA, formed

by lines of constant u and v as shown by the red shaded region in Figure 4. The sides

of this small region have length δu and δv respectively, but what is its area? It’s not

simply δu δv because the sides aren’t at necessarily right angles. Instead, the small

shaded region is approximately a parallelogram.

We think of the original coordinates as functions of the new, so x = x(u, v) and

y = y(u, v). If we make vary u and v slightly, then the change in the original x and y

coordinates is

δx =
∂x

∂u
δu+

∂x

∂v
δv + . . . and δy =

∂y

∂u
δu+

∂y

∂v
δv + . . .

where the + . . . hide second order terms O(δu2), O(δv2) and O(δu δv). This means

that we have (
δx

δy

)
=

(
∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

)(
δu

δv

)

The small parallelogram is then spanned by the two vectors a = (∂x
∂u
, ∂y
∂u
)δu and b =

(∂x
∂v
, ∂y
∂v
)δv. Recall that the area of a parallelogram is |a× b|, so we have

δA =

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ δu δv = |J | δu δv

which is the promised result □

An Example: 2d Polar Coordinates

There is one particular choice of coordinates that vies with Cartesian coordinates in

their usefulness. This is plane polar coordinates, defined by

x = ρ cosϕ and y = ρ sinϕ

where the radial coordinate ρ ≥ 0 and the angular coordinate takes values in ϕ ∈ [0, 2π).

(Note: we used ϕ(x, y) to describe a general scalar field earlier in this section. This

shouldn’t be confused with the coordinate ϕ that we’ve introduced here.) We can easily

compute the Jacobian to find

J =
∂(x, y)

∂(ρ, θ)
=

∣∣∣∣∣ cosϕ −ρ sinϕ
sinϕ ρ cosϕ

∣∣∣∣∣ = ρ
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So we learn that the area element is given by

dA = ρ dρdϕ

There is also a simple graphical explanation of

this result: it follows by looking at the area of

the rounded square shape in the figure to the

right (again, ignoring terms second order in δϕ

and δρ).

Let’s now use this to do an integral. Let D be a

the wedge in the (x, y) plane defined by x ≥ 0, y ≥ 0

and x2 + y2 ≤ R2. This is shown to the left. In polar

coordinates, this region is given by

0 ≤ ρ ≤ R and 0 ≤ ϕ ≤ π

2

We’ll integrate the function f = e−(x2+y2)/2 = e−ρ2/2 over the region D. In polar

coordinates, we have ∫
D

f dA =

∫ π/2

0

dϕ

∫ R

0

dρ ρe−ρ2/2

where the extra power of ρ in the integrand comes from the Jacobian. The
∫
dϕ integral

just gives us π/2, while the
∫
dρ integral is easily done. We have∫

D

f dA =
π

2

[
− e−ρ2/2

]R
0
=
π

2

(
1− e−R2/2

)
As a final application, consider taking the limit R → ∞, so that we’re integrating

over the quadrant x, y ≥ 0. Clearly the answer is
∫
D
f dA = π/2. Back in Cartesian

coordinates, this calculation becomes∫
D

f dA =

∫ ∞

0

dx

∫ ∞

0

dy e−(x2+y2)/2 =

(∫ ∞

0

dx e−x2/2

)(∫ ∞

0

dy e−y2/2

)
Comparing to our previous result, we find the well-known expression for a Gaussian

integral ∫ ∞

0

dx e−x2/2 =

√
π

2
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Figure 5. Two different ways to do a volume integral. On the left: perform the
∫
dz integral

first; on the right, perform the
∫
D(z) dA area integral first.

2.1.3 Volume Integrals

Most of this chapter will be devoted to discussing surfaces, but this is as good a place

as any to introduce volume integrals because they are a straightforward generalisation

of area integrals.

The basic idea should by now be familiar. The integration of a scalar function

ϕ : R3 → R over a three-dimensional region V can be approximated by dividing the

region into many small 3d pieces, each with volume δV and located at some position

xn. You then find a way to take the limit∫
V

ϕ(x) dV = lim
δV→0

∑
n

ϕ(xn) δV

In practice, we evaluate volume integrals in the same way as we evaluate area integrals:

by performing successive integrations. If we use Cartesian coordinates (x, y, z) we have

a number of ways to proceed. For example, we could choose to first do the
∫
dz integral,

subsequently leaving us with an area integral over the (x, y) plane.∫
V

ϕ(x, y, z) dV =

∫
dA

∫ z2(x,y)

z1(x,y)

dz ϕ(x, y, z)

This approach is shown on the left-hand side of Figure 5. Alternatively, we could first

do an area integral over some sliver of the region V and subsequently integrate over all

slivers. This is illustrated on the right-hand side of Figure 5 and results in an integral

of the form ∫
V

ϕ(x, y, z) dV =

∫
dz

∫
D(z)

dxdy ϕ(x, y, z)
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Figure 6. Spherical polar coordinates on the left, and cylindrical polar coordinates on the

right.

As before, for suitably nice functions ϕ and regions V , the order of integration is

unimportant.

There are many reasons to do a volume integral. You might, for example, want to

know the volume of some object, in which case you just integrate the function ϕ = 1.

Alternatively, it’s common to integrate a density of something, which means stuff per

unit volume. Integrating the density over the region V tells you the amount of stuff in

V . Examples of stuff that we will meet in other courses include mass, electric charge

and probability.

2.1.4 Spherical Polar and Cylindrical Polar Coordinates

If your region V is some blocky shape, then Cartesian coordinates are probably the

right way forward. However, for many applications it is more convenient to use a

different choice of coordinates.

Given an invertible, smooth transformation (x, y, z) → (u, v, w) then the volume

elements are mapped to

dV = dx dy dz = |J | du dv dw

with the Jacobian given by

J =
∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣

– 35 –



The sketch of the proof is identical to the 2d case: the volume of the appropriate

parallelepiped is δV = |J |δuδvδw.

Two sets of coordinates are particularly useful. The first is spherical polar coordi-

nates, related to Cartesian coordinates by the map

x = r sin θ cosϕ

y = r sin θ sinϕ (2.5)

z = r cos θ

The range of the coordinates is r ∈ [0,∞), θ ∈ [0, π] and ϕ ∈ [0, 2π). The Jacobian is

∂(x, y, z)

∂(u, v, w)
= r2 sin θ ⇒ dV = r2 sin θ dr dθ dϕ (2.6)

The second is cylindrical polar coordinates, which coincides with plane polar coordinates

in the (x, y) plane, leaving z untouched

x = ρ cosϕ

y = ρ sinϕ (2.7)

z = z

with ρ ∈ [0,∞) and ϕ ∈ [0, 2π) and, of course, z ∈ (−∞,+∞). (Later in the course,

we will sometimes denote the radial coordinate in cylindrical polar coordinates as r

instead of ρ.) This time the Jacobian is

∂(x, y, z)

∂(u, v, w)
= ρ ⇒ dV = ρ dρ dϕ dz

We can do some dimensional analysis to check that these results make sense. In spher-

ical polars we have one coordinate, r, with dimensions of length and two dimensionless

angular coordinates. Correspondingly, the Jacobian has dimension length2 to ensure

that dV has the dimension of volume. In cylindrical polars, we have two coordinates

with dimension of length, ρ and z, and just a single angular coordinate. This is the

reason that the Jacobian now has dimension of length rather than length2.
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Example 1: The Volume of a Sphere

Consider a spherically symmetric function f(r). We can integrate it over a ball of

radius R using spherical polar coordinates, with dV = r2 sin θ drdθdϕ to get∫
V

f dV =

∫ R

0

dr

∫ π

0

dθ

∫ 2π

0

dϕ r2f(r) sin θ

= 2π
[
− cos θ

]π
0

∫ R

0

dr r2f(r)

= 4π

∫ R

0

dr r2f(r)

In particular, if we take f(r) = 1 then we get the volume of a sphere Vol = 4πR3/3.

Example 2: A Cylinder Cut Out of a Sphere

Next consider a more convoluted example: we want the volume of a sphere of radius

R, with a cylinder of radius s < R removed from the middle. The region V is then

x2 + y2 + z2 ≤ R2, together with x2 + y2 ≥ s2. Note that we don’t just subtract the

volume of a cylinder from the that of a sphere because the top of the cylinder isn’t flat:

it stops where it intersects the sphere.

In cylindrical coordinates, the region V spans s ≤ ρ ≤ R and −
√
R2 − ρ2 ≤ z ≤√

R2 − ρ2. And, of course, 0 ≤ ϕ < 2π. We have dV = ρ dρdzdϕ and

Vol =

∫
V

dV =

∫ 2π

0

dϕ

∫ R

s

dρ ρ

∫ √
R2−ρ2

−
√

R2−ρ2
dz = 4π

∫ R

s

dρ ρ
√
R2 − ρ2

It is now straightforward to do the integral to find the volume

Vol =
4π

3
(R2 − s2)3/2

Example 3: Electric Charge On a Hemisphere

Consider a density of electric charge that increases linearly

in the z-direction, with f(z) = f0z/R, in a hemisphere H

of radius R, with z ≥ 0 and f0 a constant. What is the

total charge in H?

In spherical polar coordinates, the coordinates for the

hemisphere H are 0 ≤ r ≤ R and 0 ≤ ϕ < 2π and, finally,

0 ≤ θ ≤ π/2, which restricts us to the hemisphere with
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z ≥ 0. We integrate the function f = f0r cos θ/R over H with dV = r2 sin θ drdθdϕ to

find∫
H

f dV =
f0
R

∫ 2π

0

dϕ

∫ π/2

0

dθ

∫ R

0

dr r2 sin θ r cos θ =
2πf0
R

[
r4

4

]R
0

[
1

2
sin2 θ

]π/2
0

=
1

4
πR3f0

As a quick check on our answer, note that f0 is the charge density so the dimensions

of the final answer are correct: the total charge is equal to the charge density times a

volume.

Vector Valued Integrals

We can also integrate vector valued fields F : R3 → R3 over a volume V . There’s

nothing subtle here: we just do the integral component by component and the final

answer is also a vector.

A common example arises when we compute the centre of mass. Let ρ(x) be the

density of an object. (Note that this isn’t a great choice of notation if we’re working

in cylindrical polar coordinates.) The total mass is

M =

∫
V

ρ(x) dV

and the centre of mass is

X =
1

M

∫
V

xρ(x) dV

For example, consider again the solid hemisphereH from the previous example, covering

0 ≤ r ≤ R and z ≥ 0. We’ll take this object to have constant density ρ. The total

mass is

M =

∫
H

ρ dV =
2π

3
ρR3

WritingX = (X, Y, Z) for the centre of mass, we need to compute the three components

individually. We have

X =
ρ

M

∫
H

x dV =
ρ

M

∫ 2π

0

dϕ

∫ R

0

dr

∫ π/2

0

dθ xr2 sin θ

=
ρ

M

∫ 2π

0

dϕ

∫ R

0

dr

∫ π/2

0

dθ r3 sin2 θ cosϕ = 0
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where the integral
∫
dϕ cosϕ = 0. A similar calculation shows that Y = 0. Indeed, the

fact that the centre of mass lies at (X, Y ) = (0, 0) follows on symmetry grounds. We’re

left only computing the centre of mass in the z-direction. This is

Z =
ρ

M

∫
H

z dV =
ρ

M

∫ 2π

0

dϕ

∫ R

0

dr

∫ π/2

0

dθ r3 cos θ sin θ =
3R

8

We learn that the centre of mass sits at X = (0, 0, 3R/8).

Generalisation to Rn

Finally, it is straightforward to generalise multiple integrals toRn. If we make a smooth,

invertible change of coordinates from Cartesian x1, . . . , xn to some other coordinates

u1, . . . , un then the integral over some n-dimensional region M is∫
M

f(xi) dx1 . . . dxn =

∫
M ′
f(x(ui)) |J | du1 . . . dun

where the Jacobian

J =
∂(x1, . . . , xn)

∂(u1, . . . , un)
= det

(
∂xi

∂ua

)
is the obvious generalisation of our previous results.

2.2 Surface Integrals

Our next task is to understand how to integrate over a surface that doesn’t lie flat in

R2, but is instead curved in some way in R3. We will start by looking at how we define

such surfaces in the first place.

2.2.1 Surfaces

There are (at least) two different ways to describe a surface in R3.

• A surface can be viewed as the level set of a function,

F (x, y, z) = 0

This is one condition on three variables, so results in a two-dimensional surface

in R3. (In general, a single constraint like this results in an (n− 1)-dimensional

space in Rn. Alternatively we say that the space has codimension one.)

• We can consider a parameterised surface, defined by the map

x : R2 → R3

This is the extension of the parameterised curve that we discussed in Section 1.

This now defines a dimension two surface in any space R3.
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At each point on the surface, we can define a normal vector, n which points per-

pendicularly away from the surface. When the surface is defined as the level set of

function F (x) = 0, the normal vector lies in the direction

n ∼ ∇F

To see this, note that m · ∇F describes the rate of change of F in the direction m.

If m lies tangent to the surface then we have, by definition, m · ∇F = 0. Conversely,

the normal to the surface n lies in the direction in which the function F changes most

quickly, and this is ∇F .

It’s traditional to normalise the normal vector, so we usually define

n = ± 1

|∇F |
∇F

where we’ll say more about the choice of minus sign below.

Meanwhile, for the parameterised surface x(u, v) ∈ R3, we can construct two tangent

vectors to the surface, namely

∂x

∂u
and

∂x

∂v

where each partial derivative is taken holding the other coordinate fixed. Each of these

lies within the surface, so the normal direction is

n ∼ ∂x

∂u
× ∂x

∂v

If n ̸= 0 anywhere on the surface then the parameterisation is said to be regular. Note

that, although a parameterised surface can be defined in any Rn, the normal direction

is only unique in R3 where we have the cross product at our disposal.

Examples

Here are a number of examples using the definition in-

volving a level set. A sphere of radius R is defined by

F (x, y, z) = x2 + y2 + z2 −R2 = 0

the normal direction is given by ∇F = 2(x, y, z) and

points radially outwards.
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Figure 7. When the hyperboloid degenerates to a cone, there is no well defined normal at

the origin.

A hyperboloid is defined by

F (x, y, z) = x2 + y2 − z2 −R2 = 0

with normal direction given by ∇F = 2(x, y,−z). Note that for both the sphere and

hyperboloid, the normal vector is nowhere vanishing because the origin x = 0 doesn’t lie

on the surface. However, if we take the limit R → 0 then the hyperboloid degenerates

to two cones, meeting at the origin. In this case, ∇F = 0 at the origin, reflecting the

fact there is no unique direction away from the surface at this point. This is shown in

Figure 7

2.2.2 Surfaces with Boundaries

A surface S can have a boundary. This is a piecewise smooth closed curve. If there are

several boundaries, then this curve should be thought of as having several disconnected

pieces.

For example, we could define the surfaces above now restricted to the region z ≥ 0.

In this case both the sphere and hyperboloid are truncated and their boundary is the

circle x2 + y2 = R2 in the z = 0 plane.

The boundary of a surface S is denoted ∂S with ∂ the standard notation to denote

the boundary of any object. For example, later in the lectures we will denote the

boundary of a 3d volume V as ∂V . You might reasonably wonder why we use the

partial derivative symbol ∂ to denote the boundary of something. There are some deep

and beautiful reasons behind this that will only become apparent in later courses. But

there is also a simple, intuitive reason. Consider a collection of 3d objects, all the same

shape but each bigger than the last. We’ll denote these volumes as Vr. Then, roughly
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Figure 8. Two orientations of a sphere, with the unit normal pointing outwards or inwards.

speaking, you can view the boundary surface as

∂Vr = lim
ϵ→0

1

ϵ

(
Vr+ϵ \ Vr

)
where \ means that you remove the 3d object Vr from inside the slightly larger object

Vr+ϵ. This, of course, looks very much like the formula for a derivative.

This “derivative equals boundary” idea also shows up when we calculate volumes,

areas and lengths. For example, a disc of radius r has area πr2. The length of the

boundary is d
dr
(πr2) = 2πr. This relation continues to higher dimensional balls and

spheres.

There is something important lurking in the idea of a boundary. The boundary is

necessarily a closed curve C, meaning that it has no end points. Another way of saying

this is that a closed curve C itself has no boundary, or ∂C = 0. We see that if a curve

arises as the boundary of a surface, then the curve itself has no boundary. This is

captured in the slogan “the boundary of a boundary vanishes” or, in equation form,

∂2S = 0. It is a general and powerful principle that extends to higher dimensional

objects where ∂2(anything) = 0. The idea that the boundary of a boundary vanishes

is usually expressed simply as ∂2 = 0.

A couple of quick definitions. A surface is said to be bounded if it doesn’t stretch

off to infinity. More precisely, a bounded surface can be contained within some solid

sphere of fixed radius. A surface that does stretch off to infinity is said to be unbounded.

Obviously, the sphere is a bounded surface, while the hyperboloid is unbounded.

Finally, a bounded surface with no boundary is said to be closed.
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Figure 9. Two unorientable surfaces: the Möbius strip on the left, and the Klein bottle on

the right.

2.2.3 Orientability

As long as the normal vector n ̸= 0, we can always normalise it so that it has unit

length. But in general, there is no canonical way to fix the sign. This is a matter of

convention and determines what we mean by “outside the surface” and what we mean

by “inside”.

A surface is said to be orientable if there is a consistent choice of unit normal n which

varies smoothly over the surface. The sphere and hyperboloid above are both orientable,

with the two choices of an orientation for the sphere shown in Figure 8. Throughout

these lectures we will work only with orientable surfaces. For such surfaces, a choice of

sign fixes the unit normal everywhere and is said to determine the orientation of the

surface.

We note in passing that unorientable surfaces exist. You can easily make one of these

in the comfort of your own home. Take a strip of paper and glue the two ends together.

You’ve got two different ways to glue them as shown by the arrows below:

If you glue by aligning the arrows shown on the left, then you’re just left with a boring

strip of paper. But if you glue with the arrows aligned on the right, then you end up

with something new and exciting: an unorientable surface, known as a Möbius strip.

You can see one that I made earlier on the left of Figure 9. If you pick a normal vector

and evolve it smoothly around the strip then you’ll find that it comes back pointing

in the other direction. Relatedly, the Möbius strip has a single boundary, rather than

two.
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We can also make closed, unorientable surfaces using a similar construction. This

time we glue together two edges, like so

Again, you have various choices. If you glue with the arrows aligned as shown on the

left, then you’ll end up with a torus which is very much orientable. If you glue with

the arrows aligned as shown on the right then you get an unorientable surface called a

Klein bottle. It’s a little tricky to draw embedded in 3d space (and, indeed, tricky to

make with paper and glue) as it appears to intersect itself, but an attempt is shown on

the right of Figure 9.

2.2.4 Scalar Fields

We’re now in a position to start integrating objects over surfaces. For this, we work

with parameterised surfaces x(u, v).

Sit at some point (u, v) on the surface, and move in both directions by some small

amount δu and δv. This defines an approximate parallelogram on the surface, as shown

in the figure. The area of this parallelogram is

δS =

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣ δu δv
where, as usual, we’ve dropped higher order

terms. This is called the scalar area. (We’ll

see the need for the adjective “scalar” below

when we introduce a variant known as the vec-

tor area.)

Now we’re in a position to define the surface

integral of a scalar field ϕ(x). Given a parameterised surface S, the surface integral is

given by ∫
S

ϕ(x) dS =

∫
D

dudv

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣ϕ(x(u, v)) (2.8)
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where D is the appropriate region in the (u, v) plane. This is now the same kind of

area integral that we learned to do in Section 2.1.

The area integral of a scalar field does not depend on the orientation of the surface.

It doesn’t matter what you choose as the inside of the surface S and what you choose

as the outside, the integral of a scalar field over S always gives the same answer. In

particular, if we integrate ϕ = 1 over a surface S then we get the area of that surface,

and this is always positive. This is entirely analogous to the line integral of a scalar

field that we met in Section 1.2 that was independent of the orientation of the curve.

Reparameterisation Invariance

Importantly, the surface integral (2.8) is independent of the choice of parameterisation

of the surface. To see this, suppose that we replace our original parameterisation x(u, v)

with an alternative parameterisation x(ũ, ṽ), both of which are assumed to be regular.

We then have

∂x

∂u
=
∂x

∂ũ

∂ũ

∂u
+
∂x

∂ṽ

∂ṽ

∂u
and

∂x

∂v
=
∂x

∂ũ

∂ũ

∂v
+
∂x

∂ṽ

∂ṽ

∂v

Taking the cross-product, we have

∂x

∂u
× ∂x

∂v
=
∂(ũ, ṽ)

∂(u, v)

∂x

∂ũ
× ∂x

∂ṽ

This means that the scalar area element can equally well be written as

dS =

∣∣∣∣∂x∂ũ × ∂x

∂ṽ

∣∣∣∣ dũ dṽ
where we’ve used the result (2.4) which, in the current context, is dũ dṽ = ∂(ũ,ṽ)

∂(u,v)
du dv.

The essence of this calculation is the same as we saw for line integrals: the two

derivatives ∂/∂u and ∂/∂v in the integrand cancel the Jacobian factor under a change

of variables. The upshot is that we can write the surface integral (2.8) using any

parameterisation that we wish: the answer will be the same.

An Example

Consider a sphere of radius R. Let S be the subregion that sits at an angle θ ≤ α from

the vertical. This is the grey region shown in the figure. We want to compute the area

of this cap.

We start by constructing a parameterisation of the sphere. This is straightforward if

we use the spherical polar angles θ and ϕ defined in (2.5) as parameters. We have

x(θ, ϕ) = R(sin θ cosϕ, sin θ sinϕ, cos θ) := R er
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Here er is the unit vector that points radially outwards.

(We will also use the notation er = r̂ later in these

lectures.) We can then easily calculate

∂x

∂θ
= R(cos θ cosϕ, cos θ sinϕ,− sin θ) := R eθ

∂x

∂ϕ
= R(− sin θ sinϕ, sin θ cosϕ, 0) := R sin θ eϕ

Here, by construction, eθ and eϕ are unit vectors pointing in the direction of increasing

θ and ϕ respectively. We’ll have more to say about the triplet of vectors er, eθ and eϕ
in Section 3.3. For now, we can compute

∂x

∂θ
× ∂x

∂ϕ
= R2 sin θ er

From this, we have the scalar area element

dS = R2 sin θ dθ dϕ (2.9)

We’ve seen a result very similar to this before. The volume element in spherical polar

coordinates (2.6) is dV = r2 sin θ dr dθ dϕ. Our area element over a sphere simply comes

from setting r = R and ignoring the dr piece of the volume element.

It is now straightforward to compute the area. We have

A =

∫ 2π

0

dϕ

∫ α

0

dθ R2 sin θ = 2πR2(1− cosα)

Note that if we set α = π then we get the area of a full sphere: A = 4πR2.

2.2.5 Vector Fields and Flux

Now we turn to vector fields. There is a particularly interesting and useful way to

integrate a vector field F(x) over a surface S so that we end up with a number. We do

this by taking the inner product of the vector field with the normal to the surface, n,

so that ∫
S

F(x) · n dS =

∫
D

dudv

(
∂x

∂u
× ∂x

∂v

)
· F(x(u, v)) (2.10)

This is called the flux of F through S.

The definition of the flux is independent of our choice of parameterisation: the

argument is identical to the one we saw above for a scalar field.
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It’s convenient to introduce some new notation. The vector area element is defined

as

dS = n dS =

(
∂x

∂u
× ∂x

∂v

)
du dv

This has magnitude dS and points in the normal direction n.

The flux of a vector field depends on the orientation of the surface S. This can be

seen in the presence of the normal vector in (2.10). In the parameterised surface x(u, v),

the choice of orientation can be traced to the parameterisation (u, v) and, in particular,

the order in which they appear in the cross product. Changing the orientation of the

surface flips the sign of the flux.

The physical importance of the flux can be seen by thinking about a fluid. Let F(x)

be the velocity field of a fluid. (Usually we would denote this as u(x) or v(x), but we’ve

already used u and v as the parameters of the surface so we’ll adopt the non-standard

name F for the velocity to avoid confusion.) In a small time δt, the amount of fluid

flowing through a small surface element δS is given by

Fluid Flow = F δt · n δS

where the dot product ensures that we don’t include the component of fluid that flows

parallel to the surface. Integrating over the whole surface, we see that the flux of fluid

Flux =

∫
S

F · dS

is the amount of fluid crossing S per unit time. In other words, the flux is the rate of

fluid flow.

We also talk of “flux” in other contexts, where there’s no underlying flow. For

example, in our course on Electromagnetism, we will spend some time computing the

flux of the electric field through various surfaces,
∫
S
E · dS.

An Example

Consider the vector field

F = (−x, 0, z)

This is plotted in the y = constant plane in the figure.
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We want to integrate this vector field over

the hemispherical cap, subtended by the an-

gle α that we used as an example in Section

2.2.4. This is the region of a sphere of radius

R, spanned by the polar coordinates

0 ≤ θ ≤ α and 0 ≤ ϕ < 2π

We know from our previous work that

dS = R2 sin θ er dθ dϕ with er = (sin θ cosϕ, sin θ sinϕ, cos θ)

In particular, we have

F · er = −x sin θ cosϕ+ z cos θ = R(− sin2 θ cos2 ϕ+ cos2 θ)

The flux through the hemispherical cap is then∫
F · dS =

∫ α

0

dθ

∫ 2π

0

dϕ R3 sin θ
[
− sin2 θ cos2 ϕ+ cos2 θ

]
We use

∫ 2π

0
dϕ cos2 ϕ = π to get∫

F · dS = πR3

∫ α

0

dθ sin θ
[
− sin2 θ + 2 cos2 θ

]
= πR3

[
cos θ sin2 θ

]α
0
= πR3 cosα sin2 α (2.11)

2.2.6 A Sniff of the Gauss-Bonnet Theorem

The methods described in this section have many interesting applications to geometry.

Here we sketch two important ideas. We prove neither.

Consider a surface S and pick a point with normal n. We can construct a plane

containing n, as shown in the figure. The intersection of the original surface and the

plane describes a curve C that lies in S. Associated to this curve is a curvature κ,

defined in (1.6).

Now, we rotate the plane about n. As we do so, the curve C changes and so too

does the curvature. Of particular interest are the maximum and minimum curvatures

κmin ≤ κ ≤ κmax
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These are referred to as principal curvatures.

The Gaussian curvature of the surface S at our

chosen point is then defined to be

K = κminκmax

As defined, the curvature K would appear to

have as much to do with the embedding of the

surface in R3 as the surface itself. The theo-

rem egregium (or “remarkable” theorem) due

to Gauss, is the statement that this is mislead-

ing: the curvature K is a property of the sur-

face alone, irrespective of any choice of embedding. We say that K is intrinsic to the

surface.

The idea that curved surfaces have a life of their own, independent of their em-

bedding, is an important one. It generalises to higher dimensional spaces, known as

manifolds, which are the subject of differential geometry. In physics, curved space

(or, more precisely, curved spacetime) provides the framework for our understanding

of gravity. Both Riemannian geometry and its application to gravity will be covered in

lectures on General Relativity.

The Gaussian curvature K has a number of interesting properties. Here’s one. Con-

sider a geodesic triangle drawn on the surface as shown in Figure 10. This means that

we connect three points with geodesics, which are lines of the shortest distance as mea-

sured using the arc length (1.5). Let θ1, θ2 and θ3 be the interior angles of the triangle,

defined by the inner product of tangent vectors of the geodesic curves. Then it turns

out that

θ1 + θ2 + θ3 = π +

∫
D

K dS (2.12)

where D is the interior region of the triangle. If the triangle is drawn on flat R2, then

K = 0 and this theorem reduces to the well known statement that the angles of a

triangle add up to π.

We can check this formula for the simple case of a triangle drawn on a sphere. If

the sphere has radius R then the geodesics are great circles and, as we saw in Section

1.1, they all have curvature κ = 1/R. Correspondingly, the Gaussian curvature for a

sphere is K = 1/R2. A geodesic triangle is shown in the figure to the below: it has two

right-angles π/2 sitting at the equator, and an angle α at the top.
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Figure 10. A geodesic triangle inscribed on a surface.

The area of the region inside the triangle is A = αR2

(so that A = 2πR2 when α = 2π which is the area of

the upper hemisphere.). We then have∫
D

K dS =
A

R2
= α

which agrees with the result (2.12).

Here’s another beautiful application of the Gaussian

curvature. Consider a closed surface S. Any such sur-

face can be characterised by the number of holes that it has. This number of holes is

known as the genus. Three examples are given in Figure 11: a sphere with g = 0, a

torus with g = 1 and some kind of baked-good with genus g = 3. It turns out that if

you integrate the Gaussian curvature over the entire surface then you get∫
S

K dS = 4π(1− g) (2.13)

This result is all kinds of wonderful. The genus g tells us about the topology of the

surface. It’s a number that only makes sense when you stand back and look at the

object as a whole. In contrast, the Gaussian curvature is a locally defined object: at

any given point it depends only on the neighbourhood of that point. But this result

tells us that integrating something local can result in something global.

The round sphere provides a particularly simple example of this result. As we’ve

seen above, the Gaussian curvature is K = 1/R2 which, when integrated over the
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Figure 11. Three closed surfaces with different topologies. The sphere has genus g = 0, the

torus has genus g = 1 and the surface on the right has g = 3.

whole sphere, does indeed give 4π as befits a surface of genus g = 0. However, this

simple calculation hides the magic of the formula (2.13). Suppose that we start to

deform the sphere. We might choose to pull it out in some places, push it inwards in

others. We could try to mould some likeness of our face in some part of it. Everything

that we do changes the local Gaussian curvature. It will increase in some parts and

decrease in others. But the formula (2.13) tells us that this must, at the end of the

day, cancel out. As long as we don’t tear the surface, so its topology remains that of a

sphere, the integral of K will always give 4π.

The results (2.12) and (2.13) are two sides of the wondrous Gauss-Bonnet theorem.

A proof of this theorem will have to wait for later courses. (You can find a somewhat

unconventional proof using methods from physics in the lectures on Supersymmetric

Quantum Mechanics. This proof also works for a more powerful generalisation to higher

dimensional spaces, known as the Chern-Gauss-Bonnet theorem.)

– 51 –

http://www.damtp.cam.ac.uk/user/tong/susyqm.html
http://www.damtp.cam.ac.uk/user/tong/susyqm.html


3 Grad, Div and Curl

In this section we’re going to further develop the ways in which we can differentiate.

We’ll be particularly interested in how we can differentiate scalar and vector fields. Our

definitions will be straightforward but, at least for the time being, we won’t be able to

offer the full intuition behind these ideas. Perhaps ironically, the full meaning of how to

differentiate will become clear only in Section 4 where we also learn the corresponding

different ways to integrate.

3.1 The Gradient

We’ve already seen how to differentiate a scalar field ϕ : Rn → R. Given Cartesian

coordinates xi with i = 1, . . . , n on Rn, the gradient of ϕ is defined as

∇ϕ =
∂ϕ

∂xi
ei (3.1)

Note that differentiating a scalar field leaves us with a vector field.

The definition above relies on a choice of Cartesian coordinates. Later in this section,

we’ll find expressions for the gradient in different coordinate systems. But there is also

a definition of the gradient that does not rely on any coordinate choice at all. This

starts by considering a point x ∈ Rn. We don’t, yet, think of x as defined by a string of

n numbers: that comes only with a choice of coordinates. Instead, it should be viewed

as an abstract point in Rn.

The first principles, coordinate-free definition of the gradient ∇ϕ simply compares

the value of ϕ at some point x to the value at some neighbouring point x + h with

h = |h| ≪ 1. For a differentiable function ϕ, we can write

ϕ(x+ h) = ϕ(x) + h · ∇ϕ+O(h2) (3.2)

where this should be thought of as the definition of the gradient ∇ϕ. Note that it’s

similar in spirit to our definition of the tangent to a curve ẋ given in (1.2). If we pick

a choice of coordinates, with x = (x1, . . . , xn), then we can take h = ϵ ei with ϵ ≪ 1.

The definition (3.2) then coincides with (3.1),

An Example

Consider the function on R3,

ϕ(x, y, z) = − 1√
x2 + y2 + z2

= −1

r
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where r2 = x2 + y2 + z2 is the distance from

the origin. We have

∂ϕ

∂x
=

x

(x2 + y2 + z2)3/2
=

x

r3

and similar for the others. The gradient is then

given by

∇ϕ =
xx̂+ yŷ + zẑ

r3
=

r̂

r2

where, in the final expression, we’ve introduced

the unit vector r̂ which points out radially outwards in each direction, like the spikes

on a hedgehog as shown in the figure. The vector field ∇ϕ points radially, decreasing as

1/r2. Vector fields of this kind are important in electromagnetism where they describe

the electric field E(x) arising from a charged particle.

An Application: Following a Curve

Suppose that we’re given a curve in Rn, defined by the map x : R → Rn, together

with a scalar field ϕ : Rn → R. Then we can combine these into the composite map

ϕ(x(t)) : R→ R. This is simply the value of the scalar field evaluated on the curve. We

can then differentiate this map along the curve using the higher dimensional version of

the chain rule.

dϕ(x(t))

dt
=
∂ϕ

∂xi
dxi

dt

This has a nice, compact expression in terms of the gradient,

dϕ(x(t))

dt
= ∇ϕ · dx

dt

This tells us how the function ϕ(x) changes as we move along the curve.

3.2 Div and Curl

At this stage we take an interesting and bold mathematical step. We view ∇ as an

object in its own right. It is called the gradient operator.

∇ = ei
∂

∂xi
(3.3)

This is both a vector and an operator. The fact that ∇ is an operator means that it’s

just waiting for a function to come along (from the right) and be differentiated.
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The gradient operator ∇ sometimes goes by the names nabla or del, although usually

only when explaining to students in a first course on vector calculus that ∇ sometimes

goes by the names nabla or del. (Admittedly, the latex command for ∇ is \nabla which

helps keep the name alive.)

With ∇ divorced from the scalar field on which it originally acted, we can now think

creatively about how it may act on other fields. As we’ve seen, a vector field is defined

to be a map

F : Rn → Rn

Given two vectors, we all have a natural urge to dot them together. This gives a

derivative acting on vector fields known as the divergence

∇ · F =

(
ei

∂

∂xi

)
· (ejFj) =

∂Fi

∂xi

where we’ve used the orthonormality ei · ej = δij. Note that the gradient of a scalar

field gave a vector field. Now the divergence of a vector field gives a scalar field.

The divergence isn’t the only way to differentiate a vector field. If we’re in Rn,

a vector field has N components and we could differentiate each of these in one of N

different directions. This means that there are N2 different meanings to the “derivative

of a vector field”. But the divergence turns out to be the combination that is most

useful.

Both the gradient and divergence operations can be applied to fields in Rn. In

contrast, our final operation holds only for vector fields that map

F : R3 → R3

In this case, we can take the cross product. This gives a derivative of a vector field

known as the curl,

∇× F =

(
ei

∂

∂xi

)
× (ejFj) = ϵijk

∂Fj

∂xi
ek

Or, written out in its full glory,

∇× F =

(
∂F3

∂x2
− ∂F2

∂x3
,
∂F1

∂x3
− ∂F3

∂x1
,
∂F2

∂x1
− ∂F1

∂x2

)
(3.4)
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The curl of a vector field is, again, a vector field. It can also be written as the deter-

minant

∇× F =

∣∣∣∣∣∣∣∣
e1 e2 e3
∂

∂x1
∂

∂x2
∂

∂x3

F1 F2 F3

∣∣∣∣∣∣∣∣
As we proceed through these lectures, we’ll build intuition for the meaning of these

two derivatives. We will see, in particular, that the divergence ∇ · F measures the net

flow of the vector field F into, or out of, any given point. Meanwhile, the curl ∇× F

measures the rotation of the vector field. A full understanding of this will come only

in Section 4 when we learn to undo the differentiation through integration. For now

we will content ourselves with some simple examples.

Simple Examples

Consider the vector field

F(x) = (x2, 0, 0)

Clearly this flows in a straight line, with increasing strength. It has∇·F = 2x, reflecting

the fact that the vector field gets stronger as x increases. It also has ∇× F = 0.

Next, consider the vector field

F(x) = (y,−x, 0)

This swirls, as shown in the figure on the right. We

have ∇ · F = 0 and ∇ × F = (0, 0,−2). The curl

points in the ẑ direction, perpendicular to the plane

of the swirling.

Finally, we can consider the hedgehog-like radial

vector field that we met previously,

F =
r̂

r2
=

1

(x2 + y2 + z2)3/2
(x, y, z) (3.5)

You can check that this obeys ∇·F = 0 and ∇×F = 0. Or, to be more precise, it obeys

these equations almost everywhere. Clearly something fishy is going on at the origin

r = 0. In fact, we will later see that we can make this less fishy: a correct statement is

∇ · F = 4πδ3(x)

where δ3(x) is the higher-dimensional version of the Dirac delta function. We’ll under-

stand this result better in Section 5 where we will wield the Gauss divergence theorem.
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When evaluating the derivatives of radial fields, like the hedgehog (3.5), it’s best to

work with the radial distance r, given by r2 = xixi. Taking the derivative then gives

2r∂r/∂xi = 2xi and we have ∂r/∂xi = xi/r. You can then check that, for any integer

p,

∇rp = ei
∂(rp)

∂xi
= prp−1r̂

Meanwhile, the vector x = xiei can equally well be written as x = r = rr̂ which

highlights that it points outwards in the radial direction. We have

∇ · r = ∂xi

∂xi
= δii = n

where the n arises because we’re summing over all i = 1, . . . , n. (Obviously, if we’re

working in R3 then n = 3.) We can also take the curl

∇× r = ϵijk
∂xj

∂xi
ek = 0

which, of course, as always holds only in R3.

3.2.1 Some Basic Properties

There are a number of straightforward properties obeyed by grad, div and curl. First,

each of these is a linear differential operator, meaning that

∇(αϕ+ ψ) = α∇ϕ+∇ψ
∇ · (αF+G) = α∇ · F+∇ ·G

∇× (αF+G) = α∇× F+∇×G

for any scalar fields ϕ and ψ, vector fields F and G, and any constant α.

Next, each of them has a Leibniz property, which means that they obey a generali-

sation of the product rule. These are

∇(ϕψ) = ϕ∇ψ + ψ∇ϕ
∇ · (ϕF) = (∇ϕ) · F+ ϕ(∇ · F)

∇× (ϕF) = (∇ϕ)× F+ ϕ(∇× F)

In the last of these, you need to be careful about the placing and ordering of ∇, just

like you need to be careful about the ordering of any other vector when dealing with

the cross product. The proof of any of these is simply an exercise in plugging in the
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component definition of the operator and using the product rule. For example, we can

prove the second equality thus:

∇ · (ϕF) = ∂(ϕFi)

∂xi
=
∂ϕ

∂xi
Fi + ϕ

∂Fi

∂xi
= (∇ϕ) · F+ ϕ(∇ · F)

There are also a handful of further Leibnizian properties involving two vector fields.

The first of these is straightforward to state:

∇ · (F×G) = (∇× F) ·G− F · (∇×G)

This is simplest to prove using index notation. Alternatively, it follows from the usual

scalar triple product formula for three vectors. To state the other properties, we need

one further small abstraction. Given a vector field F and the gradient operator ∇, we

can construct further differential operators. These are

F · ∇ = Fi
∂

∂xi
and F×∇ = ekϵijkFi

∂

∂xj

Note that the vector field F sits on the left, so isn’t acted upon by the partial derivative.

Instead, each of these objects is itself a differential operator, just waiting for something

to come along so that it can differentiate it. In particular, these constructions appear

in two further identities

∇(F ·G) = F× (∇×G) +G× (∇× F) + (F · ∇)G+ (G · ∇)F

∇× (F×G) = (∇ ·G)F− (∇ · F)G+ (G · ∇)F− (F · ∇)G

Again, these are not difficult to prove: they follow from expanding out the left-hand

side in components.

3.2.2 Conservative is Irrotational

Recall that a conservative vector field F is one that can be written as

F = ∇ϕ

for some scalar field ϕ. We also say that F is irrotational if ∇ × F = 0. There is a

beautiful theorem that says these two concepts are actually equivalent:

Theorem: For fields defined everywhere on R3, conservative is the same as irrota-

tional.

∇× F = 0 ⇐⇒ F = ∇ϕ
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Half Proof: It is trivial to prove this in one direction, Suppose that F = ∇ϕ, so that

Fi = ∂iϕ. Then

∇× F = ϵijk∂iFjek = ϵijk∂i∂jϕ ek = 0

which vanishes because the ϵijk symbol means that we’re anti-symmetrising over ij,

but the partial derivatives ∂i∂j are symmetric, so the terms like ∂1∂2 − ∂2∂1 cancel.

It is less obvious that the converse statement holds, i.e. that irrotational implies

conservative. We’ll show this only in Section 4.4 where it appears as a corollary of

Stokes’ theorem. □

Recall that in Section 1.3 we showed that the line integral of a conservative field was

independent of the path taken. Putting this together with the result above, we have

the following, equivalent statements:

∇× F = 0 ⇐⇒ F = ∇ϕ ⇐⇒
∮
C

F · dx = 0

where we’ve yet to see the proof of the first =⇒. In fact, we will complete this step

through Stokes’ theorem which shows that the statement on the far-left is equivalent

to the statement on the far-right.

3.2.3 Solenoidal Fields

Here is another definition. A vector field F is called divergence free or solenoidal if

∇ · F = 0. (The latter name comes from electromagnetism, where a magnetic field B

is most easily generated by a tube with a bunch of wires wrapped around it known as

a “solenoid” and has the property ∇ ·B = 0.)

There is a nice theorem about divergence free fields that is a counterpart to the one

above:

Theorem: Any divergence free field can be written as the curl of something else,

∇ · F = 0 ⇐⇒ F = ∇×A

again, provided that F is defined everywhere on R3. Note that A is not unique. In

particular, if you find one A that does the job then any other A+∇ϕ will work equally

as well. In later courses, we will see that this theorem and the previous one both get

subsumed into a single theorem known as the Poincaré lemma.
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Proof: It’s again straightforward to show this one way. If F = ∇ × A, then Fi =

ϵijk∂jAk and so

∇ · F = ∂i(ϵijk∂jAk) = 0

which again vanishes for the symmetry reasons.

This time, we will prove the converse statement by explicitly exhibiting a vector

potential A such that F = ∇×A. We pick some arbitrary point x0 = (x0, y0, z0) and

then construct the following vector field

A(x) =

(∫ z

z0

Fy(x, y, z
′) dz′ ,

∫ x

x0

Fz(x
′, y, z0) dx

′ −
∫ z

z0

Fx(x, y, z
′) dz′ , 0

)
(3.6)

Since Az = 0, the definition of the curl (3.4) becomes

∇×A =

(
−∂Ay

∂z
,
∂Ax

∂z
,
∂Ay

∂x
− ∂Ax

∂y

)
Using the ansatz (3.6), we find that the first two components of ∇ × A immediately

give what we want

(∇×A)x = Fx(x, y, z) and (∇×A)y = Fy(x, y, z)

both of which follow from the fundamental theorem of calculus. Meanwhile, we still

have a little work ahead of us for the final component

(∇×A)z = Fz(x, y, z0)−
∫ z

z0

∂Fx

∂x
(x, y, z′) dz′ −

∫ z

z0

∂Fy

∂y
(x, y, z′) dz′

At this point we use the fact that F is solenoidal, so ∇ · F = 0 and so ∂Fz/∂z
′ =

−(∂Fx/∂x+ ∂Fy/∂y). We then have

(∇×A)z = Fz(x, y, z0) +

∫ z

z0

∂Fz

∂z′
(x, y, z′) dz′ = Fz(x, y, z)

This is the result we want. □

Note that both theorems above come with a caveat: the fields must be defined

everywhere on R3. This is important as counterexamples exist that do not satisfy this

requirement, similar to the one that we met in a previous context in Section 1.3.4.

These counterexamples will take on a life of their own in future courses where they

provide the foundations to think about topology, both in mathematics and physics.
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We’ve seen two related results above. A vector field F = ∇ϕ obeys ∇×F = 0 and a

vector field F = ∇×A obeys ∇·F = 0. In fact, it can be shown that the most general

vector field on R3 can be decomposed a

F = ∇ϕ+∇×A

for some ϕ and A. This is known as the Helmholtz decomposition. We won’t prove this

statement here, although it follows from the result above if you can show that, for any

F, there always exists a potential ϕ such that F − ∇ϕ is solenoidal. (This ultimately

follows from properties of the Laplace equation that we describe in section 5.2.)

3.2.4 The Laplacian

The Laplacian is a second order differential operator defined by

∇2 = ∇ · ∇ =
∂2

∂xi∂xi

For example, in 3d the Laplacian takes the form

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

This is a scalar differential operator meaning that, when acting on a scalar field ϕ, it

gives back another scalar field ∇2ϕ. Similarly, it acts component by component on a

vector field F, giving back another vector field ∇2F. If we use the vector triple product

formula, we find

∇× (∇× F) = ∇(∇ · F)−∇2F

which we can rearrange to give an alternative expression for the Laplacian acting on

the components of a vector field

∇2F = ∇(∇ · F)−∇× (∇× F)

We’ll devote Section 5 to solving various equations involving the Laplacian.

3.2.5 Some Vector Calculus Equations in Physics

I mentioned in the introduction that all laws of physics are written in the language

of vector calculus (or, in the case of general relativity, a version of vector calculus

extended to curved spaces, known as differential geometry). Here, for example, are the

four equations of electromagnetism, known collectively as the Maxwell equations

∇ · E =
ρ

ϵ0
, ∇× E = −∂B

∂t
(3.7)

∇ ·B = 0 , ∇×B = µ0

(
J+ ϵ0

∂E

∂t

)
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Here E and B are the electric and magnetic fields, while ρ(x) is a scalar field that

describes the distribution of electric charge in space and J(x) is a vector field that

describes the distribution of electric currents. The equations also include two constants

of nature, ϵ0 and µ0 which describe the strengths of the electric and magnetic forces

respectively.

This simple set of equations describes everything we know about electricity, mag-

netism and light. Extracting this information requires the tools that we will develop

in the rest of these lectures. Along the way, we will sometimes turn to the Maxwell

equations to illustrate new ideas.

You’ll find the Laplacian sitting in many other equations of physics. For example,

the Schrödinger equation describing a quantum particle is written using the Laplacian.

A particularly important equation, that crops up in many places, is the heat equation,

∂T

∂t
= D∇2T

This tells us, for example, how temperature T (x, t) evolves over time. Here D is called

the diffusion constant. This same equation also governs the spread of many other

substances when there is some random element in the process, such as the constant

bombardment from other atoms. For example, the smell of that guy who didn’t shower

before coming to lectures spreads through the room in manner described by the heat

equation.

3.3 Orthogonal Curvilinear Coordinates

The definition of all our differential operators relied heavily on using Cartesian co-

ordinates. The purpose of this section is simply to ask what these objects look like

in different coordinate systems. As usual, the spherical polar and cylindrical polar

coordinates in R3 will be of particular interest to us.

In general, we can describe a point x in R3 using some coordinates u, v, w, so x =

x(u, v, w). Changing either of these coordinates, leaving the others fixed, results in a

change in x. We have

dx =
∂x

∂u
du+

∂x

∂v
dv +

∂x

∂w
dw (3.8)

Here ∂x/∂u is the tangent vector to the lines defined by v, w = constant, with similar

statements for the others. A given set of coordinates provides a good parameterisation

of some region provided that

∂x

∂u
·
(
∂x

∂v
× ∂x

∂w

)
̸= 0
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The coordinate (u, v, w) are said to be orthogonal curvilinear if the three tangent vectors

are mutually orthogonal. Here the slightly odd name “curvilinear” reflects the fact that

these tangent vectors are typically not constant, but instead depend on position. We’ll

see examples shortly.

For orthogonal curvilinear coordinates, we can always define orthonormal tangent

vectors simply by normalising them. We write

∂x

∂u
= hueu ,

∂x

∂v
= hvev ,

∂x

∂w
= hwew

where we’ve introduced scale factors hu, hv, hw > 0 and eu, ev and ew form a right-

handed orthonormal basis so that eu×ev = ew. This can always be achieved simply by

ordering the coordinates appropriately. Our original equation (3.8) can now be written

as

dx = hueudu+ hvevdv + hwewdw (3.9)

Squaring this, we have

dx2 = h2u du
2 + h2v dv

2 + h2w dw
2

from which it’s clear that hu, hv and hw are scale factors that tell us the change in

length as we change each of the coordinates.

Throughout this section, we’ll illustrate everything with three coordinate systems.

Cartesian Coordinates

First, Cartesian coordinates are easy:

x = (x, y, z) =⇒ hx = hy = hz = 1 and ex = x̂, ey = ŷ, ez = ẑ

Cylindrical Polar Coordinates

Next, cylindrical polar coordinates are defined by (see also (2.7))

x = (ρ cosϕ, ρ sinϕ, z)

with ρ ≥ 0 and ϕ ∈ [0, 2π) and z ∈ R. Inverting,

ρ =
√
x2 + y2 and tanϕ =

y

x
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Figure 12. Cylindrical polar coordinates, on the left, and spherical polar coordinates, on

the right.

It’s straightforward to calculate

eρ = ρ̂ = (cosϕ, sinϕ, 0)

eϕ = ϕ̂ = (− sinϕ, cosϕ, 0)

ez = ẑ

with

hρ = hz = 1 and hϕ = ρ

The three orthonormal vectors are shown on the left-hand side of Figure 12 in red.

Note, in particular, that the vectors depend on ϕ and rotate as you change the point

at which they’re evaluated.

Spherical Polar Coordinates

Spherical polar coordinates are defined by (see also (2.5).)

x = (r sin θ cosϕ, r sin θ sinϕ, r cos θ)

with r ≥ 0 and θ ∈ [0, π] and ϕ ∈ [0, 2π). Inverting,

r =
√
x2 + y2 + z2 , tan θ =

√
x2 + y2

z
, tanϕ =

y

x

Again, we can easily calculate the basis vectors

er = r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)

eθ = θ̂ = (cos θ cosϕ, cos θ sinϕ,− sin θ)

eϕ = ϕ̂ = (− sinϕ, cosϕ, 0)
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These are shown in the right-hand side of Figure 12 in red. This time, the scaling

factors are

hr = 1 , hθ = r , hϕ = r sin θ

We’ll now see how various vector operators appear when written in polar coordinates.

3.3.1 Grad

The gradient operator is straightforward. If we shift the position from x to x + δx,

then a scalar field f(x) changes by

df = ∇f · dx (3.10)

This definition can now be used in any coordinate system. In a general coordinate

system we have

df =
∂f

∂u
du+

∂f

∂v
dv +

∂f

∂w
dw = ∇f · (hueudu+ hvevdv + hwewdw)

Using the orthonormality of the basis elements vectors, and comparing the terms on

the left and right, this then gives us the gradient operator

∇f =
1

hu

∂f

∂u
eu +

1

hv

∂f

∂v
ev +

1

hw

∂f

∂w
ew (3.11)

In cylindrical polar coordinates, the gradient of a function f(ρ, ϕ, z) is

∇f =
∂f

∂ρ
ρ̂+

1

ρ

∂f

∂ϕ
ϕ̂+

∂f

∂z
ẑ

In spherical polar coordinates, the gradient of a function f(r, θ, ϕ) is

∇f =
∂f

∂r
r̂+

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂ϕ
ϕ̂

Note, in particular, that when we differentiate with respect to an angle there is always

a compensating 1/length prefactor to make sure that the dimensions are right.

3.3.2 Div and Curl

To construct the div and curl in a general coordinate system, we first extract the vector

differential operator

∇ =
1

hu
eu

∂

∂u
+

1

hv
ev

∂

∂v
+

1

hw
ew

∂

∂w
(3.12)
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where, importantly, we’ve placed the vectors to the left of the differentials because, as

we’ve seen, the basic vectors now typically depend on the coordinates. If we act on a

function f with this operator, we recover the gradient (3.11). But now we have this

abstract operator, we can also take it to act on a vector field F(u, v, w). We can expand

the vector field as

F(u, v, w) = Fueu + Fvev + Fwew

Each of the components depends on the coordinates u, v and w. But so too, in general,

do the basis vectors {eu, ev, ew}. This means that when the derivatives in the differential

operator (3.12) hit F, they also act on both the components and the basis vectors.

Given an explicit expression for the basis vectors, it’s not hard to see what happens

when they are differentiated. For example, in cylindrical polar coordinates we find

∇ · F =
1

ρ

∂(ρFρ)

∂ρ
+

1

ρ

∂Fϕ

∂ϕ
+
∂Fz

∂z

and

∇× F =

(
1

ρ

∂Fz

∂ϕ
− ∂Fϕ

∂z

)
ρ̂+

(
∂Fρ

∂z
− ∂Fz

∂ρ

)
ϕ̂+

1

ρ

(
∂(ρFϕ)

∂ρ
− ∂Fρ

∂ϕ

)
ẑ

There is a question on Examples Sheet 2 that asks you to explicitly verify this. Mean-

while, in spherical polar coordinates, we have

∇ · F =
1

r2
∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fϕ

∂ϕ

and

∇× F =
1

r sin θ

(
∂(sin θFϕ)

∂θ
− ∂Fθ

∂ϕ

)
r̂

+
1

r

(
1

sin θ

∂Fr

∂ϕ
− ∂(rFϕ)

∂r

)
θ̂

+
1

r

(
∂(rFθ)

∂r
− ∂Fr

∂θ

)
ϕ̂

For completeness, we also give the general results

Claim: Given a vector field F(u, v, w) in a general orthogonal, curvilinear coordinate

system, the divergence is given by

∇ · F =
1

huhvhw

(
∂

∂u
(hvhwFu) +

∂

∂v
(huhwFv) +

∂

∂w
(huhvFw)

)
(3.13)
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and the curl is given by the determinant

∇× F =
1

huhvhw

∣∣∣∣∣∣∣∣
hueu hvev hwew

∂
∂u

∂
∂v

∂
∂w

huFu hvFv hwFw

∣∣∣∣∣∣∣∣
where the derivatives on the second line should now be thought of as acting on the

third line only, but not the first. This means that, in components, we have

∇× F =
1

hvhw

(
∂

∂v
(hwFw)−

∂

∂w
(hvFv)

)
eu + two similar terms

Proof: Not now. Later. It turns out to be a little easier when we have some integral

technology in hand. For this reason, we’ll revisit this in Section 4.4.4.

3.3.3 The Laplacian

Finally, we have the Laplacian. From (3.11) and (3.13), this takes the general form

∇2f = ∇ · ∇f =
1

huhvhw

[
∂

∂u

(
hvhw
hu

∂f

∂u

)
+

∂

∂v

(
huhw
hv

∂f

∂v

)
+

∂

∂w

(
huhv
hw

∂f

∂w

)]
Obviously in Cartesian coordinates, the Laplacian is

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

In cylindrical polar coordinates it takes the form

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2
∂2f

∂ϕ2
+
∂2f

∂z2
(3.14)

and in spherical polar coordinates

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
(3.15)

The most canonical of canonical physics textbooks is J.D. Jackson’s “Classical Elec-

trodynamics”. I don’t know of any theoretical physicist who doesn’t have a copy on

their shelf. It’s an impressive book but I’m pretty sure that, for many, the main selling

point is that it has these expressions for div, grad and curl in cylindrical and polar

coordinates printed on the inside cover. You can also find these results collated on the

last pages of these lecture notes. We’ll return to the Laplacian in different coordinate

systems in Section 5.2 where we’ll explore the solutions to equations like ∇2f = 0.
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4 The Integral Theorems

The fundamental theorem of calculus states that integration is the inverse of the dif-

ferentiation, in the sense that ∫ b

a

dx
df

dx
= f(b)− f(a)

In this section, we describe a number of generalisations of this result to higher dimen-

sional integrals. Along the way, we will also gain some intuition for the meaning of the

various vector derivative operators.

4.1 The Divergence Theorem

The divergence theorem, also known as Gauss’ theorem, states that, for a smooth vector

field F(x) over R3, ∫
V

∇ · F dV =

∫
S

F · dS (4.1)

where V is a bounded region whose boundary ∂V = S is a piecewise smooth closed

surface. The integral on the right-hand side is taken with the normal n pointing

outward.

The Meaning of the Divergence

We’ll prove the divergence theorem shortly. But first, let’s make good on our promise

to build some intuition for the divergence. To this end, integrate ∇·F over some region

of volume V centred at the point x. If the region is small enough, then ∇ · F will be

roughly constant, and so ∫
V

∇ · F dV ≈ V ∇ · F(x)

and this becomes exact as the region shrinks to zero size. The divergence theorem then

provides a coordinate independent definition of the divergence

∇ · F = lim
V→0

1

V

∫
S

F · dS (4.2)

This is the result that we advertised in Section 3: the right way to think about the

divergence of a vector field is as the net flow into, or out of, a region. If ∇ · F > 0 at

some point x, then there is a net flow out of that point; if ∇ · F < 0 at some point x

then there is a net flow inwards.
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We can illustrate this by looking at a couple of

the Maxwell equations (3.7). The magnetic field B is

solenoidal, obeying

∇ ·B = 0

This means that the magnetic vector field can’t pile up

anywhere: at any given point in space, there is as much magnetic field coming in as

there is going out. This leads us to draw the magnetic field as continuous, never ending

streamlines. For example, the magnetic field lines for solenoid, a long coil of wire

carrying a current, is shown in the figure (taken from the website hyperphysics).

Meanwhile, electric field E obeys

∇ · E =
ρ

ϵ0

where ρ(x) is the electric charge density. In any region of

space where there’s no electric charge, so ρ(x) = 0, the

electric field lines act just like the magnetic field and can’t

pile up anywhere. However, the presence of electric charge

changes this, and causes the field lines to pile up or disap-

pear. In other words, the electric charge acts as a source or

a sink for electric field lines. The electric field lines arising from two pointlike, positive

charges which act as sources, are shown in the figure.

Example

Before proving the theorem, we first give an example. Take

the volume V to be the solid hemispherical ball, defined as

x2 + y2 + z2 ≤ R2 and z ≥ 0. Then boundary of V then

has two pieces

∂V = S1 + S2

where S1 is the hemisphere and S2 the disc in the z = 0

plane. We’ll integrate the vector field

F = (0, 0, z +R)

The +R doesn’t contribute in the volume integral since we have ∇ · F = 1. Then∫
V

∇ · F dV =

∫
V

dV =
2

3
πR3 (4.3)
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which is the volume of the hemispherical ball. For the surface integral, we work with

S1 and S2 separately. On the hemisphere S1, the unit normal vector is n = 1
R
(x, y, z)

and so

F · n =
z(z +R)

R
= R cos θ(cos θ + 1)

where we’ve used polar coordinates z = R cos θ. The integral is then∫
S1

F · dS =

∫ 2π

0

dϕ

∫ π/2

0

dθ (R2 sin θ)R cos θ(cos θ + 1)

= 2πR3

[
−1

3
cos3 θ − 1

2
cos2 θ

]π/2
0

= = 2πR3

(
1

3
+

1

2

)
=

5πR3

3
(4.4)

where the R2 sin θ factor in the first line is the Jacobian that we previously saw in (2.9).

Meanwhile, for the integral over the disc S2, we have the normal vector n = (0, 0,−1),

and so (remembering that the disc sits at z = 0),

F · n = −R ⇒
∫
S2

F · dS = (−R)× πR2

with πR2 the area of the disc. Adding these together, we have∫
S1+S2

F · dS =
2

3
πR3

which reproduces the volume integral as promised.

It’s worth tracking what became of the +R term in the vector field F. Obviously

it didn’t contribute to the volume integral. For the surface integral over S1, it gave

the +1/2 term in the penultimate expression in (4.4). This was then cancelled by the

surface integral over S2, which only received a contribution from the +R term. We see

that this constant vector field when in the top surface, and out the bottom surface,

giving no contribution to the overall surface integral. This is how we get agreement

with the volume integral which, due to the derivative, is oblivious to any constant (or,

indeed, divergent free) components of F.

4.1.1 A Proof of the Divergence Theorem

We start by giving an informal sketch of the basic idea underlying the divergence

theorem. We’ll then proceed with a more rigorous proof.
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To get some intuition for the divergence theorem,

take the volume V and divide it up into a bunch of

small cubes. A given cube Vx has one corner of the

cube sitting at x = (x, y, z) and sides of lengths δx,

δy and δz.

For a small enough cube, we can think of F · n as

being approximately constant on any given side. To

start, we look at the flux of F through the two sides that lie in the (y, z) plane is given

by

[Fx(x+ δx, y, z)− Fx(x, y, z)] δy δz ≈
∂Fx

∂x
δx δy δz (4.5)

where the minus sign comes because the flux is calculated using the outward pointing

normal and the right-hand side comes from Taylor expanding Fx(x+ δx, y, z). We get

similar expressions for the integrals over the sides that lie in the (x, y) plane and in

the (x, z) plane. Summing over six sides, the total flux through the surface of this tiny

cube is then∫
tiny�

F · dS =

(
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z

)
δx δy δz = ∇ · F δx δy δz

But now we’ve tiled our volume V with a whole

bunch of these cubes, we can apply the formulae above

to each of them. On the right-hand side, we add up

the value of ∇ · F in each cube. This, of course, is

the volume integral that we’re after. On the left-hand

side, something more interesting happens. Now we get

a term like the left-hand side of (4.5) for each box, and

we sum over all boxes. But this means that all contributions from interior faces cancel

out because the outward normal of one box is in the opposite direction to the outward

normal from the other box. The upshot is that any interior contribution to the flux

vanishes, and we are left only with the contribution from the boundary S = ∂V . This

then gives us the claimed result∫
S

F · dS =

∫
V

∇ · F dV
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The derivation above is simple and intuitive, but it might

leave you a little nervous. The essence of the divergence the-

orem is to relate a bulk integral to a boundary integral. But

it’s not obvious that the boundary can be well approximated

by stacking cubes together. To give an analogy, if you try to

approximate a 45◦ line by a series of horizontal and vertical

lines, as shown on the right, then the total length of the steps is always going to be
√
2

larger than the length of the horizontal line, no matter how fine you make them. You

might worry that these kind of issues afflict the proof above. For that reason, we now

give a more careful derivation of the divergence theorem.

Before we proceed, first note that, suitably interpreted, the divergence theorem holds

in arbitrary dimension Rn, where a “surface” now means a codimension one subspace.

In particular, the divergence theorem holds in R2, where a surface is a curve. This

result, which is interesting in its own right, will serve as a warm-up exercise to proving

the general divergence theorem.

The 2d Divergence Theorem: Let F be a vector field in R2. Then∫
D

∇ · F dA =

∫
C

F · n ds (4.6)

where D is a region in R2, bounded by the closed curve C and n is the outward normal

to C.

Proof of the 2d Divergence Theorem: For simplicity, we’ll assume that F =

F (x, y) ŷ. The proof that we’re about to give also works if F points solely in the x̂

direction, but a general F is just a linear sum of the two.

We then have∫
D

∇ · F dA =

∫
X

dx

∫ y+(x)

y−(x)

dy
∂F

∂y

where, as the notation shows, we’ve chosen to do

the area integral by first integrating over y, and

then over x. We’ll assume, for now, that the region

D is convex, as shown in the figure, so that each∫
dy is over just a single interval with limits y±(x).

These limits trace out an upper curve C+, shown
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in red in the figure, and a lower curve C− shown in blue. We then have∫
D

∇ · F dA =

∫
X

dx
(
F (x, y+(x))− F (x, y−(x))

)
We’ve succeeded in converting the area integral into an

ordinary integral, but it’s not quite of the line integral form

that we need. The next part of the proof is to massage the

integral over
∫
dx into a line integral over

∫
ds. This is

easily achieved if we look at the zoomed-in figure to the

right. Along the upper curve C+, the normal n points

upwards and makes an angle cos θ = ŷ · n with the vertical. Moving a small distance

δs along the curve is equivalent to moving

δx = cos θ δs = ŷ · n δs along C+

Along the lower curve, C−, the normal n points downwards and so ŷ · n is negative.

We then have

δx = −ŷ · n δs along C−

The upshot is that we can write the area integral as∫
D

∇ · F dA =

∫
X

ds
(
n · F(x, y+(x)) + n · F(x, y−(x))

)
=

∫
C+

F · n ds+
∫
C−

F · n ds

=

∫
C

F · n ds

with C = C+ + C− = ∂D the boundary of the region.

We’re left with one small loophole to close: if the

region D is not convex, then the range of the inte-

gral
∫
dy may be over two or more disconnected in-

tervals, as shown in the figure. In this case, the bound-

ary curve decomposes into more pieces, but the basic

strategy still holds. □
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Figure 13. Performing the
∫
dz integral for the proof of the 3d divergence theorem.

Proof of the 3d Divergence Theorem

The proof of the 3d (or, indeed, higher dimensional) divergence theorem follows using

the same strategy. If we focus on F = F (x, y, z) ẑ we have∫
V

∇ · F dV =

∫
D

dA

∫ z+(x,y)

z−(x,y)

dz
∂F

∂z

=

∫
D

dA
(
F (x, y, z+(x, y))− F (x, y, z−(x, y))

)
where the limits of the integral z±(x, y) are the upper and lower surfaces of the volume

V . The area integral over D is an integral in the (x, y) plane, while to prove Gauss’

theorem we need to convert this into a surface integral over S = ∂V . This step of the

argument is the same as before: at any given point, the different between dA = dxdy

and dS is the angle cos θ = n · ẑ (up to a sign). This then gives the promised result

(4.1). □

The Divergence Theorem for Scalar Fields

There is a straightforward extension of the divergence theorem for scalar fields ϕ:

Claim: For S = ∂V , we have ∫
V

∇ϕ dV =

∫
S

ϕ dS

Proof: Consider the divergence theorem (4.1) with F = ϕa where a is a constant

vector. We have∫
V

∇ · (ϕa)dV =

∫
S

(ϕa) · dS ⇒ a ·
(∫

V

∇ϕ dV −
∫
S

ϕ dS

)
= 0
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This is true for any constant vector a, and so the expression in the brackets must itself

vanish. □

4.1.2 Carl Friedrich Gauss (1777-1855)

Gauss is regarded by many as the greatest mathematician of all time. He made seminal

contributions to number theory, algebra, geometry, and physics.

Gauss was born to working class parents in what is now Lower Saxony, Germany. In

1795 he went to study at the university of Göttingen and remained there for the next

60 years.

There are remarkably few stories about Gauss that do not, at the end of the day,

boil down to the observation that he was just really good at maths. There is even a

website that has collected well over 100 retellings of how Gauss performed the sum∑100
1 n when still a foetus. (You can find an interesting dissection of this story here.)

4.2 An Application: Conservation Laws

Of the many important applications of the divergence theorem, one stands out. In

many situations, we have the concept of a conservation law: some quantity that doesn’t

change over time. There are conservation laws in fundamental physics, including energy,

momentum, angular momentum and electric charge and several more that emerge when

we look to more sophisticated theories. There are also approximate conservation laws

at play when we model more complicated systems. For example, if you’re interested in

how the population distribution of some species evolves over time then it might well

serve you to ignore birth rates and traffic accidents and consider the total number of

animals to be fixed.

In all these cases, the quantity is conserved. But we can say something stronger

than that: it is conserved locally. For example, an electric charge sitting in the palm

of your hand can’t disappear and turn up on Jupiter. That would satisfy a “global”

conservation of charge, but that’s not the way the universe works. If the electric charge

disappears from your hand, then most likely it has fallen off and is now sitting on the

floor. Or, said more precisely, it must have moved to a nearby region of space.

The divergence theorem provides the technology to describe local conservation laws

of this type. First, we introduce the density ρ(x, t) of the conserved object. For

the purposes of this discussion, we will take this to be the density of electric charge,

although it could equally well be the density of any of the other conserved quantities
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described above. The total electric charge in some region V is then given by the integral

Q =

∫
V

ρ dV

The conservation of charge is captured by the following statement: there exists a vector

field J(x, t) such that

∂ρ

∂t
+∇ · J = 0

This is known as the continuity equation and J is called the current density.

The continuity equation doesn’t tell us that the density ρ can’t change in time; that

would be overly prohibitive. But it does tell us that ρ must change only in a certain

way. This ensures that the change in the charge Q in a fixed region V is given by

dQ

dt
=

∫
V

∂ρ

∂t
dV = −

∫
V

∇ · J dV = −
∫
S

J · dS

where the second equality follows from the continuity

equation and the third from the divergence theorem

at some fixed time t. We learn that the charge inside

a region can only change if there is a current flowing

through the surface of that region. This is how the

conservation of charge is enforced locally.

The intuition behind this idea is straightforward. If you want to keep tabs on the

number of people in a nightclub, you don’t continuously count them. Instead you

measure the number of people entering and leaving through the door.

If the current is known to vanish outside some region, so J(x) = 0 for |x| > R,

then the total charge contained inside that region must be unchanging. Often, in such

situations, we ask only that J(x, t) → 0 suitably quickly as |x| → ∞, in which case the

total charge is unchanging

Qtotal =

∫
R3

ρ dV and
dQtotal

dt
= 0

In later courses, we’ll see many examples of the continuity equation. The example of

electric charge discussed above will be covered in the lectures on Electromagnetism,

where the flux of J through a surface S is

I =

∫
S

J · dS

and is what we usually call the electric current.
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We will also see the same equation in the lectures on Quantum Mechanics where ρ(x)

has the interpretation of the probability density for a particle to be at some point x

and Q =
∫
V
ρ dV is the probability that the particle sits in some region V . Obviously,

in this example we must have Qtotal = 1 which is the statement that particle definitely

sits somewhere.

Finally, the continuity equation also plays an important role in Fluid Mechanics

where the mass of the fluid is conserved. In that case, ρ(x, t) is the density of the fluid

and the current is J = ρu where u(x, t) is the velocity field. The continuity equation

then reads

∂ρ

∂t
+∇ · (ρu) = 0

In this case the flux is the mass of fluid that passes through a surface S in time t.

In many circumstances, liquids can be modelled as incompressible, meaning that

ρ(x, t) is a constant in both space and time. In these circumstances, we have ρ̇ = ∇ρ = 0

and the continuity equation tells us that the velocity field is necessarily solenoidal:

∇ · u = 0 (4.7)

This makes sense: for a solenoidal vector field, the flow into any region must be accom-

panied by an equal outgoing flow, telling us that the fluid can’t pile up anywhere, as

expected for an incompressible fluid. The statement that fluids are incompressible is a

fairly good approximation until we come to think about sound, which arises because of

changes in the density which propagate as waves.

4.2.1 Conservation and Diffusion

There is a close connection between conserved quantities and the idea of diffusion. We’ll

illustrate this with the idea of energy conservation. The story takes a slightly different

form depending on the context, but here we’ll think of the energy contained in a hot

gas. First, since energy is conserved there is necessarily a corresponding continuity

equation

∂E
∂t

+∇ · J = 0 (4.8)

where E(x, t) is the energy density of the gas, and J is the heat current which tells us

how energy is transported from one region of space to another.
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At this point we need to invoke a couple of physical principles. First, the energy

density in a gas is proportional to the temperature of the gas,

E(x, t) = c T (x, t) (4.9)

where cV is the specific heat capacity. Next comes a key step: in hot systems, where

everything is jiggling around randomly, the heat flow is due to temperature differences

between different parts of the system. The relation between the two is captured by the

equation

J = −κ∇T (4.10)

where κ is called the thermal conductivity and the minus sign ensures that heat flows

from hot to cold. This relation is known as Fick’s law. Neither (4.9) nor (4.10) are

fundamental equations of physics and both can be derived from first principles by

thinking about the motion of the underlying atoms. (This will be described in the

lectures on Statistical Physics and, for Fick’s law, the lectures on Kinetic Theory.)

Combining the continuity equation (4.8) with the definition of temperature (4.9) and

Fick’s law (4.10), we find the heat equation

∂T

∂t
= D∇2T

where the diffusion constant is given by D = κ/c. This tells us how the temperature

of a system evolves. As we mentioned previously, the same heat equation describes the

diffusive motion of any conserved quantity.

4.2.2 Another Application: Predator-Prey Systems

We’ll see more applications of the divergence theorem in Section 5, mainly in the con-

text of the gravitational and electrostatic forces. However, the uses of the theorem are

many and varied and stretch far beyond applications to the laws of physics. Here we

give an example in the world of ecology which is modelled mathematically by differ-

ential equations. As we’ll see, the use of ∇ here is somewhat novel because we’re not

differentiating with respect to space but with respect to some more abstract variables.

First some background. Predator-prey systems describe the interaction between two

species. We will take our predators to be wolves. (Because they’re cool.) We will denote

the population of wolves at a given time t as w(t). The wolves prey upon something

cute and furry. We will denote the population of this cute, furry thing as c(t).
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We want to write down a system of differential equations to describe the interaction

between wolves and cute furry things. The simplest equations were first written down

by Lotka and Volterra and (after some rescaling) take the form

dw

dt
= w(−α + c)

dc

dt
= c(β − w)

with α, β > 0 are some constants. There is a clear meaning to the different terms in

these equations. Without food, the wolves die out. That is what the −αw term in

the first equation is telling us which, if c = 0, will cause the wolf population to decay

exponentially quickly. In contrast, without wolves the cute furry things eat grass and

prosper. That’s what the +βc term in the second equation is telling us which, if w = 0,

ensures that the population of cute furry things grows exponentially. The second term

in each equation, ±wc, tells us what happens when the wolves and cute furry things

meet. The ± sign means that it’s good news for one, less good for the other.

The Lotka-Volterra equations are straightforward to

solve. There is a fixed point at c = α and w = β at which

the two populations are in equilibrium. Away from this, we

find periodic orbits as the two populations wax and wane.

To see this, we think of w = w(c) and write the pair of

equations as

dw

dc
=
w(c− α)

c(β − w)

This equation is separable and we have∫
β − w

w
dw =

∫
c− α

c
dc ⇒ β logω − ω + α log c− c = constant

These orbits are plotted in the (c, w) plane, also known as the phase plane, for different

constants in the figure.

So much for the Lotka-Volterra equations. Let’s now look at something more com-

plicated. Suppose that there is some intra-species competition: a little wolfy bickering

that sometimes gets out of hand, and some cute, furry in-fighting. We can model this

by adding extra terms to the original equations:

dw

dt
= w(−α + c− µw)

dc

dt
= c(β − w − νc) (4.11)
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where the two new constants are also positive, µ, ν > 0. Both new terms come with

minus signs, which is appropriate because fighting is bad.

What do we do now? There is still a fixed point, now given by (1 + µν)w = β − να

and (1+µν)c = α+µβ. But what happens away from this fixed point? Do the periodic

orbits that we saw earlier persist? Or does something different happen?

Sadly, we can’t just solve the differential equation like we did before because it’s no

longer separable. Instead, we’re going to need a more creative method to understand

what’s going on. This is where the divergence theorem comes in. We will use it to

show that, provided µ ̸= 0 or ν ̸= 0, the periodic orbits of the Lotka-Volterra equation

no longer exist.

We first change notation a little. We write the pair of predator-prey equations (4.11)

in vector form

da

dt
= p with a =

(
w

c

)
and p =

(
w(−α + c− µw)

c(β − w − νc)

)
Any solution to these equations traces out a path a(t) in the animal phase plane. The

re-writing above makes it clear that p is the tangent to this path. The question that

we wish to answer is: does this path close? In other words, is there a periodic orbit?

It turns out that there are no periodic orbits. To show

this, we will suppose that periodic orbits exist and then

argue by contradiction. The normal n to the path a(t)

obeys n · p = 0, as shown in the figure. This means that if

we integrate any function b(w, c) around the periodic orbit

we have ∮
b(w, c)p · n dt = 0

By the 2d divergence theorem, this in turn means that the following integral over the

area enclosed by the periodic orbit must also vanish:∫
D

∇ · [b(w, c)p] dA = 0

where, in this context, the gradient operator is ∇ = (∂/∂w, ∂/∂c). At this juncture,

the trick is to find a cunning choice of function b(w, c). The one that works for us is

b = 1/wc. This is because we have

∇ · p

wc
= −µ

c
− ν

w
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Both of these terms are strictly negative. (For this it is important to remember that

populations w and c are strictly positive!) But if ∇ · (p/wc) is always negative then

there’s no way to integrate it over a region and get zero. Something has gone wrong.

And what’s gone wrong was our original assumption of closed orbits. We learn that the

nice periodic solutions of the Lotka-Volterra equations are spoiled by any intra-species

competition. We’re left just with the fixed point which is now stable. All of which is

telling us that a little in-fighting may not be so bad after all. It keeps things stable.

The general version of the story above goes by the name of the Bendixson-Dulac

theorem and is a powerful tool in the study of dynamical systems.

4.3 Green’s Theorem in the Plane

Let P (x, y) and Q(x, y) be smooth functions on R2. Then∫
A

(
∂Q

∂x
− ∂P

∂y

)
dA =

∮
C

Pdx+Qdy (4.12)

where A is a bounded region in the plane and C = ∂A is a piecewise smooth, non-

intersecting closed curve which is traversed anti-clockwise.

Proof: Green’s theorem is equivalent to the 2d divergence theorem (4.6). Let F =

(Q,−P ) be a vector field in R2. We then have∫
A

∇ · F dA =

∫
A

(
∂Q

∂x
− ∂P

∂y

)
dA (4.13)

If x(s) = (x(s), y(s)) is the parameterised curve C, then the tangent vector is t(s) =

(x′(s), y′(s)) and the normal vector n = (y′(s),−x′(s)) obeys n · t = 0.

You’ll need to do a little sketch to convince yourself

that, as shown on the right, n is the outward pointing nor-

mal provided that the arc length s increases in the anti-

clockwise direction. We then have

F · n = Q
dy

ds
+ P

dx

ds

and so the integral around C is∫
C

F · n ds =
∫
C

Pdx+Qdy (4.14)

The 2d divergence theorem is the statement that the left-hand sides of (4.13) and (4.14)

are equal; Green’s theorem in the plane is the statement that the right-hand sides are

equal. □
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Applied to a rectangular region, Green’s theorem in the

plane reduces to the fundamental theorem of calculus. We

take the rectangular region to be 0 ≤ x ≤ a and 0 ≤ y ≤ b.

Then∫
A

−∂P
∂y

dA = −
∫ a

0

dx

∫ b

0

dy
∂P

∂y

=

∫ a

0

dx
(
− P (x, b) + P (x, 0)

)
=

∫
C

P dx

where only the horizontal segments contribute, and the minus signs are such that C is

traversed anti-clockwise. Meanwhile, we also have∫
A

∂Q

∂x
dA =

∫ b

0

dy

∫ a

0

dx
∂Q

∂x

=

∫ b

0

dy
(
Q(a, y)−Q(0, y)

)
=

∫
C

Qdy

where, this time, only the vertical segments contribute.

Green’s theorem also holds if the area A has a number of disconnected components,

as shown in Figure 14. In this case, the integral should be done in an anti-clockwise

direction around the exterior boundary, and in a clockwise direction on any interior

boundary. The quickest way to see this is to do the integration around a continu-

ous boundary, as shown in the right-hand figure, with an infinitesimal gap. The two

contributions across the gap then cancel.

An Example

Let P = x2y and Q = xy2. We’ll take A to be the region bounded by the parabola

y2 = 4ax and the line x = a, both with −2a ≤ y ≤ 2a. Then Green’s theorem in the

plane tells us that ∫
A

(y2 − x2) dA =

∫
C

x2y dx+ xy2 dy

But this was a problem on the examples sheet, where you found that both give the

answer 104
105
a4.

4.3.1 George Green (1793-1841)

George Green was born in Nottingham, England, the son of a miller. If you were born

to a family of millers in the 18th century, they didn’t send you to a careers officer at

school to see what you want to be when you grow up. You’d be lucky just to be sent to

school. Green got lucky. He attended school for an entire year before joining his father

baking and running the mill.
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Figure 14. Don’t mind the gap. Green’s theorem for an area with disconnected boundaries.

It is not known where Green learned his mathematics. The Nottingham subscription

library held some volumes, but not enough to provide Green with the background

that he clearly gained. Yet, from his mill, Green produced some of the most striking

mathematics of his time, including the development of potential theory and, most

importantly, the formalism of Green’s functions that you will meet in Section 5, as

well as in later courses. Much of this was contained in a self-published pamphlet, from

1828, entitled “An Essay on the Application of Mathematical Analysis to the Theories

of Electricity and Magnetism”. 51 copies were printed.

Green’s reputation spread and, at the age of 40, with no formal education, and

certainly no Latin or Greek, Green the miller came to Cambridge as a mathematics

undergraduate, clothes covered in flour and pretending it was chalk. (University motto:

nurturing imposter syndrome since 1209.) With hindsight, this may not have been the

best move. Green did well in his exams, but his published papers did not reach the

revolutionary heights of his work in the mill. He got a fellowship at Caius, developed

a taste for port, then gout, and died before he reached his 50th birthday.

There are parallels between Green’s story and that of Ramanujan who came to

Cambridge several decades later. To lose one self-taught genius might be regarded as

a misfortune. To lose two begins to look like carelessness.

4.4 Stokes’ Theorem

Stokes’ theorem is an extension of Green’s theorem, but where the surface is no longer

restricted to lie in a plane.

Let S be a smooth surface in R3 with boundary C = ∂S a piecewise smooth curve.

Stokes’ theorem states that, for any smooth vector field F(x), we have∫
S

∇× F · dS =

∫
C

F · dx
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Figure 15. The surface S and bounding curve C for Stokes’ theorem. The normal to the

surface is shown (at one point) by the red arrow. The theorem invites us to compute the flux

of a vector field F, shown by the green arrows, through the surface, and compare it to the

line integral around the boundary.

The orientations of S and C should be compatible. The former is determined by the

choice of normal vector n to S; the latter by the choice of tangent vector t to C. The

two are said to be compatible if t × n points out of S. In practice, this means that if

you orient the open surface so that n points towards you, then the orientation of C is

anti-clockwise. The general set-up is shown in Figure 15.

Note that there will typically be many surfaces S that share the same boundary

C. By Stokes’ theorem, the integral of ∇ × F over S must give the same answer for

all such surfaces. The theorem also holds if the boundary ∂S consists of a number of

disconnected components, again with their orientation determined by that of S.

We’ll give a proof of Stokes’ theorem shortly. But first we put it to some use.

The Meaning of the Curl

Stokes’ theorem gives us some new intuition for the curl of a vector field. If we integrate

∇ × F over a small enough surface such that ∇ × F is approximately constant, then

we will have ∫
S

∇× F · dS ≈ An · (∇× F)
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where A is the area and n the normal of the surface. Taking the limit in which this

area shrinks to zero, Stokes’ theorem then tell us that

n · (∇× F) = lim
A→0

1

A

∫
C

F · dx (4.15)

In other words, at any given point, the value of ∇×F in the direction n tells us about

the circulation of F in the plane normal to n

A useful benchmark comes from considering the vector field u = ω × x, which

describes a rigid rotation with angular velocity ω. (See, for example, the lectures on

Dynamics and Relativity.) In that case, we have ∇ × u = 2ω, so twice the angular

velocity.

Turning this on its head, we can get some in-

tuition for Stokes’ theorem itself. The curl of the

vector field tells us about the local circulation of

F. When you integrate this circulation over some

surface S, most of it cancels out because the cir-

culation going one way is always cancelled by a

neighbouring circulation going the other, as shown

in the figure. The only thing that’s left when you

integrate over the whole surface is the circulation around the edge.

A Corollary: Irrotational Implies Conservative

Before we prove Stokes’ theorem, we can use it to tie off a thread that we previously

left hanging. Recall that in Section 3.2, we proved that F = ∇ϕ =⇒ ∇ × F = 0,

but we didn’t then have the tools to prove the converse. Now we do. It follows

straightforwardly from Stokes’ theorem because an irrotational vector field, obeying

∇× F = 0, necessarily has ∮
C

F · dx = 0

around any closed curve C. But we showed in Section 1.2 that any such conservative

field can be written as F = ∇ϕ for some potential ϕ.
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An Example

Let S be the cap of a sphere of radius R that is

covered by the angle 0 ≤ θ ≤ α, as shown in the

figure. We’ll take

F = (0, xz, 0) ⇒ ∇× F = (−x, 0, z) (4.16)

This is the example that we discussed in Section

2.2.5, where we computed (see (2.11))∫
S

∇× F · dS = πR3 cosα sin2 α (4.17)

That leaves us with the line integral around the rim. This curve C is parameterised by

the angle ϕ and is given by

x(ϕ) = R(sinα cosϕ, sinα sinϕ, cosα) ⇒ dx = R(− sinα sinϕ, sinα cosϕ, 0) dϕ

We then have∫
C

F · dx =

∫ 2π

0

dϕ Rxz sinα cosϕ = R3 sin2 α cosα

∫ 2π

0

dϕ cos2 ϕ = πR3 sin2 α cosα

in agreement with the surface integral (4.17).

Another Example

As a second example, consider the conical surface S defined by z2 = x2 + y2 with

0 < a ≤ z ≤ b. This surface is parameterised, in cylindrical polar coordinates, by

x(ρ, ϕ) = (ρ cosϕ, ρ sinϕ, ρ) (4.18)

with a ≤ ρ ≤ b and 0 ≤ ϕ < 2π. We can compute

two tangent vectors

∂x

∂ρ
= (cosϕ, sinϕ, 1) and

∂x

∂ϕ
= ρ(− sinϕ, cosϕ, 0)

and take their cross product to get the normal

n =
∂x

∂ρ
× ∂x

∂ϕ
= (−ρ cosϕ,−ρ sinϕ, ρ)

This points inwards, as shown in the figure. The

associated vector area element is

dS = (− cosϕ,− sinϕ, 1)ρdρ dϕ
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We’ll integrate the same vector field (4.16) over this surface. We have

∇× F · dS = (x cosϕ+ z)ρ dρ dϕ = ρ2(cos2 ϕ+ 1)dρ dϕ

where we’ve substituted in the parametric expressions for x and z from (4.18). The

integral is then∫
S

∇× F · dS =

∫ b

a

dρ

∫ 2π

0

dϕ ρ2(1 + cos2 ϕ) = π(b3 − a3) (4.19)

Now the surface has two boundaries, and we must integrate over both of them. We

write ∂S = Cb − Ca where Cb has radius b and Ca radius a. Note the minus sign,

reflecting the fact that the orientation of the two circles is opposite.

For a circle of radiusR, we have x(ϕ) = R(cosϕ, sinϕ, 1), and so dx = R(− sinϕ, cosϕ, 0) dϕ

and ∫
CR

F · dx =

∫ 2π

0

dϕ R3 cos2 ϕ = πR3

Remembering that the orientation of Ca in the opposite direction, we reproduce the

surface integral (4.19).

4.4.1 A Proof of Stokes’ Theorem

It’s clear that Stokes’ theorem is a version of Green’s theorem in the plane, but

viewed through 3d glasses. Indeed, it’s trivial to show that the latter follows from

the former. Consider the vector field F = (P,Q, 0) in R3 and a surface S that

lies flat in the z = 0 plane. The normal to this surface is n = ẑ, and we have

∫
S

∇× F · dS =

∫
S

(
∂Q

∂x
− ∂P

∂y

)
dS

But Stokes’ theorem then tells us that this can also

be written as∫
C

F · dx =

∫
C

Pdx+Qdy

However, with a little more work we can also show that the converse is true. In other

words, we can lift Green’s theorem out of the plane to find Stokes’ theorem.

– 86 –



Consider a parameterised surface S defined by x(u, v) and denote the associated area

in the (u, v) plane as A. We parameterise the boundary C = ∂S as x(u(t), v(t)) and

the corresponding boundary ∂A as (u(t), v(t)). The key idea is to use Green’s theorem

in the (u, v) plane for the area A and then uplift this to prove Stokes theorem for the

surface S.

We start by looking at the integral around the boundary. It is∫
C

F · dx =

∫
C

F ·
(
∂x

∂u
du+

∂x

∂v
dv

)
=

∫
∂A

Fu du+ Fv dv

where Fu = F · ∂x/∂u and Fv = F · ∂x/∂v. Now we’re in a position to invoke Green’s

theorem, in the form ∫
∂A

Fu du+ Fv dv =

∫
A

(
∂Fv

∂u
− ∂Fu

∂v

)
dA

Now our task is clear. We should look at the partial derivatives on the right hand side.

We just need to be careful about what thing depends on what thing:

∂Fv

∂u
=

∂

∂u

(
F · ∂x

∂v

)
=

∂

∂u

(
Fi
∂xi

∂v

)
=

(
∂Fi

∂xj
∂xj

∂u

)
∂xi

∂v
+ Fi

∂2xi

∂u∂v

Meanwhile, we have

∂Fu

∂v
=

∂

∂v

(
F · ∂x

∂u

)
=

∂

∂v

(
Fi
∂xi

∂u

)
=

(
∂Fi

∂xj
∂xj

∂v

)
∂xi

∂u
+ Fi

∂2xi

∂v∂u

Subtracting the second expression from the first, the second derivative terms cancel,

leaving us with

∂Fv

∂u
− ∂Fu

∂v
=
∂xj

∂u

∂xi

∂v

(
∂Fi

∂xj
− ∂Fj

∂xi

)
= (δjkδil − δjlδik)

∂xk

∂u

∂xl

∂v

∂Fi

∂xj

At this point we wield everyone’s favourite index notation identity

ϵjipϵpkl = δjkδil − δjlδik

We then have

∂Fv

∂u
− ∂Fu

∂v
= ϵjipϵpkl

∂xk

∂u

∂xl

∂v

∂Fi

∂xj
= (∇× F) ·

(
∂x

∂u
× ∂x

∂v

)
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Figure 16. You may now turn the page. . . the original version of Stokes’ theorem, set as an

exam question.

Now we’re done. Following through the chain of identities above, we have∫
C

F · dx =

∫
A

(
∂Fv

∂u
− ∂Fu

∂v

)
dudv

=

∫
A

(∇× F) ·
(
∂x

∂u
× ∂x

∂v

)
dudv

=

∫
S

(∇× F) · dS

This is Stokes’ theorem. □

4.4.2 George Gabriel Stokes (1819-1903)

Stokes was born in County Sligo, Ireland, but moved to

Cambridge shortly after his 19th birthday and remained

there for the next 66 years, much of it as Lucasian professor.

He contributed widely to different area of mathematics and

physics, with the Navier-Stokes equation, describing fluid

flow, a particular highlight.

What we now call Stokes’ theorem was communicated

to Stokes by his friend William Thomson, better known by

his later name Lord Kelvin. The theorem first appeared

in print in 1854 as part of the Smith’s prize examination

competition, a second set of exams aimed at those students

who felt the Tripos wasn’t brutal enough.
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If you’re in Cambridge and looking for a tranquil place away from the tourists to

sit, drink coffee, and ponder the wider universe, then you could do worse than the Mill

Road cemetery, large parts of which are overgrown, derelict, and beautiful. Stokes is

buried there, as is Cayley, although both gravestones were destroyed long ago. You can

find Stokes’ resting place nestled between the graves of his wife and daughter1.

4.4.3 An Application: Magnetic Fields

Consider an infinitely long wire carrying a current. What is the magnetic field that is

produced? We can answer this by turning to the Maxwell equations (3.7). For time

independent situations, like this, one of the equations reads

∇×B = µ0J (4.20)

where J is the current density and µ0 is a constant of nature that determines the

strength of the magnetic field and has some pretentious name that I can never remem-

ber. Another of the Maxwell equations reads∇·B = 0 and in most situations we should

solve this in conjunction with (4.20) but here it will turn out, somewhat fortuitously,

that if we just find the obvious solution to (4.20) then it solves ∇·B = 0 automatically.

The equation (4.20) provides a simple opportunity to use Stokes’ theorem. We inte-

grate both sides over a surface S that cuts through the wire, as shown in the figure to

the right. We then have∫
S

∇×B · dS =

∫
C

B · dx = µ0

∫
S

J · dS = µ0I

where the integral of the current density gives I,

the total current through the wire. This equa-

tion tells us that there must be a circulation of

the magnetic field around the wire. In particular,

there must be a component of B that lies tangent

to any curve C that bounds a surface S.

Let’s suppose that the wire lies in the z-

direction. (Rotate your head or your screen if you

1A long, tree lined avenue runs north off Mill Road. At the end, turn right to enter the cemetery.

There is a gravel path immediately off to your left, which you should ignore, but take the first mud

track that runs parallel to it. Just after the gravestone bearing the name “Frederick Cooper” you will

find the Stokes’ family plot.
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don’t like the z direction to be horizontal.) Then if S is a disc of radius ρ, then the

boundary C = ∂S is paramterised by the curve

x = ρ(cosϕ, sinϕ, 0) =⇒ t =
∂x

∂ϕ
= ρ(− sinϕ, cosϕ, 0)

We’ll make the obvious guess that B lies in the same direction as t and work with the

ansatz

B(x) = b(ρ)(− sinϕ, cosϕ, 0)

Then B · t = ρb(ρ). Provided that ρ is bigger than the radius of the wire, Maxwell’s

equation tells us that

µ0I =

∫
C

B · dx =

∫ 2π

0

dϕ ρb(ρ) =⇒ B(x) =
µ0I

2πρ
(− sinϕ, cosϕ, 0)

You can check that this answer also satisfies the other Maxwell equation ∇ · B = 0.

We learn that the magnetic field circulates around the wire, and drops off as 1/ρ with

ρ the distance from the wire.

4.4.4 Changing Coordinates Revisited

Back in Section 3.3, we wrote down the expressions for the divergence and curl in a

general orthonormal curvilinear coordinate system. Now we can offer a proof using the

integral theorems above.

Claim: The divergence of a vector field F(u, v, w) in a general orthogonal, curvilinear

coordinate system is given by

∇ · F =
1

huhvhw

(
∂

∂u
(hvhwFu) +

∂

∂v
(huhwFv) +

∂

∂w
(huhvFw)

)
(4.21)

Proof: We sketch a proof that works with the integral definition of the divergence

(4.2),

∇ · F = lim
V→0

1

V

∫
S

F · dS

We can take the volume V to consist of a small

cuboid at point (u, v, w) with sides parallel to the ba-

sis vectors eu, ev and ew. The volume of the cube

is huhvhwδu δv δw. Meanwhile, the area of, say, the
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upper face in the figure is roughly huhvδu δv. Since hu and hv may depend on the

coordinates, this could differ from the area of the lower face, albeit only by a small

amount δw. Then, assuming that F is roughly constant on each face, we have∫
S

F · dS ≈
[
huhvFw(u, v, w + δw)− huhvFw(u, v, w)

]
δu δv + two more terms

≈ ∂

∂w
(huhvFw)δu δv δw + two more terms

Dividing through by the volume then gives us the advertised expression for ∇ · F. □

Claim: The curl of a vector field F(u, v, w) in a general orthogonal, curvilinear coor-

dinate system is given by

∇× F =
1

huhvhw

∣∣∣∣∣∣∣∣
hueu hvev hwew

∂
∂u

∂
∂v

∂
∂w

huFu hvFv hwFw

∣∣∣∣∣∣∣∣
=

1

hvhw

(
∂

∂v
(hwFw)−

∂

∂w
(hvFv)

)
eu + two similar terms

Proof: This time we use the integral definition of curl

(4.15)

n · (∇× F) = lim
A→0

1

A

∫
C

F · dx

We’ll take a surface S with normal n = ew and in-

tegrate over a small region, bounded by one of the

squares in the figure on the right. The area of the

square huhvδu δv while the length of each side is huδu and hvδv. Assuming that the

square is small enough so that F is roughly constant along any given side, we have∫
C

F · dx ≈ huFu(u, v)δu+ hvFv(u+ δu, v)δv − huFu(u, v + δv)δu− hvFv(u, v)δv

≈
[ ∂
∂u

(hvFv)−
∂

∂v
(huFu)

]
δu δv

Dividing by the area, this gives

ew · ∇ × F =
1

huhv

[ ∂
∂u

(hvFv)−
∂

∂v
(huFu)

]
which is one of the three promised terms in the expression for ∇× F. □
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5 The Poisson and Laplace Equations

Until now, our focus has been very much on understanding how to differentiate and

integrate functions of various types. But, with this under our belts, we can now take

the next step and explore various differential equations that are written in the language

of vector calculus. Our goal in this section is to find solutions to the Poisson equation

and the related Laplace equation. This we will do in Section 5.2. But first we will

explain why these equations underly two of the most important forces in the universe.

5.1 Gravity and Electrostatics

The first two fundamental forces to be discovered are also the simplest to describe

mathematically. Newton’s law of gravity states that two masses, m and M , separated

by a distance r will experience a force

F(r) = −GMm

r2
r̂ (5.1)

with G Newton’s constant, a fundamental constant of nature that determines the

strength of the gravitational force. Meanwhile, Coulomb’s law states that two elec-

tric charges, q and Q, separated by a distance r will experience a force

F(r) =
Qq

4πϵ0r2
r̂ (5.2)

with the electric constant ϵ0 a fundamental constant of nature that determines the

inverse strength of the electrostatic force. The extra factor 4π reflects the fact that in

the century between the Newton and Coulomb people had figured out where factors of

4π should sit in equations.

Most likely it will not have escaped your attention that these two equations are

essentially the same. The only real difference is that overall minus sign which tells

us that two masses always attract while two like charges repel. The question that we

would like to ask is: why are the forces so similar?

Certainly it’s not true that there is a deep connection between gravity and the elec-

trostatic force, at least not one that we’ve uncovered to date. In particular, when

masses and charges start to move, both the forces described above are replaced by

something different and more complicated – general relativity in the case of gravity,

the full Maxwell equations (3.7) in the case of the Coulomb force – and the equations

of these theories are very different from each other. Yet, when we restrict to the simple,

static set-up, the forces take the same form.
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The reason for this is twofold. First, both forces are described by fields. Second,

space has three dimensions. The purpose of this section is to explain this in more

detail. And, for this, we need the tools of vector calculus.

5.1.1 Gauss’ Law

Each of the force equations (5.1) and (5.2) contains some property that characterises

the force: mass for gravity and electric charge for the electrostatic force. For our

purposes, it will be useful to focus on one of the particles that carries mass m and

charge q. We call this a test particle, meaning that we’ll look at how this particle is

buffeted by various forces but won’t, in turn, consider its effect on any other particle.

Physically, this is appropriate if m ≪ M and q ≪ Q. Then it is useful to write the

equation in a way that separates the properties of the test particle from the other. The

force experienced by the test particle is

F(x) = mg(x) + qE(x)

where g(x) is the gravitational and E(x) is the electric field. Clearly Newton’s law is

telling us that a particle of mass M sets up a gravitational field

g(x) = −GM
r2

r̂ (5.3)

while a particle with electric charge Q sets up an electric field

E(x) =
Q

4πϵ0r2
r̂ (5.4)

So far this is just a trivial rewriting of the force laws. However, we will now reframe

these force laws in the language of vector calculus. Instead of postulating the 1/r2 force

laws (5.3) and (5.4), we will replace them by two properties of the fields from which

everything else follows. Here we specify the first property; the second will be explained

in Section 5.1.2.

The first property is that if you integrate the relevant field over a closed surface, then

it captures the amount of “stuff” inside this surface. For the gravitational field, this

stuff is mass ∫
S

g · dS = −4πGM (5.5)

while for the electric field it is charge∫
S

E · dS =
Q

ϵ0
(5.6)
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Again, the difference in minus sign signals the important attractive/repulsive difference

between the two forces. In contrast, the factors of 4πG and 1/ϵ0 are simply convention

for how we characterise the strength of the fields. These two equations are known as

Gauss’ law. Or, more precisely, “Gauss’ law in integrated form”. We’ll see the other

form below.

Examples

For concreteness, let’s focus on the gravitational field. We will take a sphere of radius

R and total mass M . We will require that the density of the sphere is spherically

symmetric, but not necessarily constant. The spherical symmetry of the problem then

ensures that the gravitational field itself is spherically symmetric, with g(x) = g(r)r̂.

If we then integrate the gravitational field over any spherical surface S of radius r > R,

we have ∫
S

g · dS =

∫
S

g(r)dS = 4πr2g(r)

where we recognise 4πr2 as the area of the sphere. From

Gauss’ law (5.5) we then have

g(r) = −GM
r2

r̂ (5.7)

This reproduces Newton’s force law (5.1). Note, however,

that we’ve extended Newton’s law beyond the original re-

mit of point particles: the gravitational field (5.7) holds for

any spherically symmetric distribution of mass, provided that we’re outside this mass.

For example, it tells us that the gravitational field of the Earth (at least assuming

spherical symmetry) is indistinguishable from the gravitational field of a point-like par-

ticle with the same mass, sitting at the origin. This way of solving for the vector field

is known as the Gauss flux method.

Another rather cute consequence of this is that, at least for spherically symmetric

mass distributions, you don’t feel the mass outside you. According to Gauss’ law, the

gravitational field at any point is determined only by what lies inside a sphere of a

given radius. So if, for example, you were able to hollow out the centre of a planet

(unlikely, admittedly) then anyone living there would feel no gravitational force from

the mass that surrounds them.
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For our second example, we turn to the electric field. Consider an infinite line of

charge, with charge per unit length σ. This situation is crying out for cylindrical polar

coordinates. Until now, we’ve always called the radial direction in cylindrical polar

coordinates ρ but, for reasons that will become clear shortly, for this example alone

we will instead call the radial direction r as shown in the figure. The symmetry of

the problem shows that the electric field is radial so takes the form E(r) = E(r)r̂.

Integrating over cylinder S of radius r and length L we have∫
S

E · dS = 2πrLE(r)

where there is no contribution from the end caps because

n ·E = 0 there, with n the normal vector. The total charge

inside this surface is Q = σL. From Gauss’ law (5.6), we

then have the electric field

E(r) =
σ

2πϵ0r
r̂

Note that the 1/r behaviour arises because the symmetry

of the problem ensures that the electric field lies in a plane.

Said differently, the electric field from an infinite charged

line is the same as we would get from a point particle in a

flatland world of two dimensions.

More generally, if space were Rn, then the Gauss’ law equations (5.5) and (5.6) would

still be the correct description of the gravitational and electric fields. Repeating the

calculations above would then tell us that a point charge gives rise to an electric field

E(r) =
1

An−1ϵ0rn−1
r̂

where Anr
n is the “surface area” of an n-dimensional sphere Sn of radius r. (For what

it’s worth, the prefactor is An−1 = 2πn/2/Γ(n/2) where Γ(x) is the gamma function

which coincides with the factorial function Γ(x) = (x− 1)! when x is integer.) For the

rest of this section, we’ll keep our feet firmly in R3.

Gauss’ Law Again

There’s a useful way to rewrite the Gauss’ law equations (5.5) and (5.6). For the

gravitational field, we introduce the density, or mass per unit volume, ρ(x). Invoking

the divergence theorem then, for any volume V bounded by S, we have∫
V

∇ · g dV =

∫
S

g · dS = −4πGM = −4πG

∫
V

ρ(x) dV
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But, rearranging, we have ∫
V

(
∇ · g + 4πGρ(x)

)
dV = 0

for any volume V . This can only hold if the integrand itself vanishes, so we must have

∇ · g = −4πGρ(x) (5.8)

This is also known as Gauss’ law for the gravitational field, now in differential form. The

equivalence with the earlier integrated form (5.5) follows, as above, from the divergence

theorem.

We can apply the same manipulations to the electric field. This time we introduce

the charge density ρe(x). We then get Gauss’ law in the form

∇ · E =
ρe(x)

ϵ0
(5.9)

This is the first of the Maxwell equations (3.7). (In our earlier expression, we denoted

the charge density as ρ(x). Here we’ve added the subscript ρe to distinguish it from

mass density.) The manipulations that we’ve described above show that Gauss’ law is

a grown-up version of the Coulomb force law (5.2).

5.1.2 Potentials

In our examples above, we used symmetry arguments to figure out the direction in

which the gravitational and electric fields are pointing. But in many situations we

don’t have that luxury. In that case, we need to invoke the second important property

of these vector fields: they are both conservative.

Recall that, by now, we have a number of different ways to talk about conservative

vector fields. Such fields are necessarily irrotational ∇×g = ∇×E = 0. Furthermore,

their integral vanishes when integrated around any closed curve C,∮
C

g · dx =

∮
C

E · dx = 0

You can check that both of these hold for the examples, such as the 1/r2 field, that we

discussed above (as long as the path C avoids the singular point at the origin).
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Here the key property of a conservative vector field is that it can be written in terms

of an underlying scalar field,

g = −∇Φ and E = −∇ϕ (5.10)

where Φ(x) is the gravitational potential and ϕ(x) the electrostatic potential. Note

the additional minus signs in these definitions. We saw in the discussion around (1.18)

that the existence of such potentials ensures that test particles experiencing these forces

have a conserved energy:

energy =
1

2
mẋ2 +mΦ(x) + qϕ(x)

Combining the differential form of the Gauss’ law (5.8) and (5.9) with the existence of

the potentials (5.10), we find that the gravitational and electric fields are determined,

in general, by solutions to the following equations

∇2Φ = 4πGρ(x) and ∇2ϕ = −ρe(x)
ϵ0

Equations of this type are known as the Poisson equation. In the special case where

the “source” ρ(x) on the right-hand side vanishes, this reduces to the Laplace equation,

for example

∇2Φ = 0

These two equations are commonplace in mathematics and physics. Here we have

derived them in the context of gravity and electrostatics, but their applications spread

much further.

To give just one further example, in Fluid Mechanics the motion of the fluid is

described by a velocity field u(x). If the flow is irrotational, then ∇× u = 0 and the

velocity can be described by a potential function u = ∇ϕ. If, in addition, the fluid

is incompressible then ∇ · u = 0 and we once again find ourselves solving the Laplace

equation ∇2ϕ = 0.

5.2 The Poisson and Laplace Equations

In the rest of this section we will develop some methods to solve the Poisson equation.

We change notation and call the potential ψ(x) (to avoid confusion with the polar angle

ϕ). We are then looking for solutions to

∇2ψ(x) = −ρ(x)

The goal is to solve for ψ(x) given a “source” ρ(x). As we will see, the domain in which

ψ(x) lives, together with associated boundary conditions, also plays an important role

in determining ψ(x).
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The Laplace equation ∇2ψ = 0 is linear. This means that if ψ1(x) is a solution

and ψ2(x) is a solution, then so too is ψ1(x) + ψ2(x). Any solution to the Laplace

equation acts as a complementary solution to the Poisson equation. This should then

be accompanied by a particular solution for a given source ρ(x) on the right-hand side.

5.2.1 Isotropic Solutions

Both the Laplace and Poisson equations are partial differential equation. Life is gen-

erally much easier if we’re asked to solve ordinary differential equations rather than

partial differential equations. For the Poisson equation, this is what we get if we have

some kind of symmetry, typically one aligned to some polar coordinates.

For example, if we have spherical symmetry then we can look for solutions of the

form ψ(x) = ψ(r). Using the form of the Laplacian (3.15), Laplace equation becomes

∇2ψ = 0 ⇒ d2ψ

dr2
+

2

r

dψ

dr
=

1

r2
d

dr

(
r2
dψ

dr

)
= 0

⇒ ψ(r) =
A

r
+B (5.11)

for some constants A and B. Clearly the A/r solution diverges as r → 0 so we should

be cautious in claiming that this solves the Laplace equation at r = 0. (We will shortly

see that it doesn’t, but it does solve a related Poisson equation.) Note that the solution

A/r is relevant in gravity or in electrostatics, where ψ(r) has the interpretation as the

potential for a point charge.

Meanwhile, in cylindrical polar coordinates we will also denote the radial direction as

r to avoid confusion with the source ρ in the Poisson equation. The Laplace equation

becomes

∇2ψ = 0 ⇒ d2ψ

dr2
+

1

r

dψ

dr
=

1

r

d

dr

(
r
dψ

dr

)
= 0

⇒ ψ(r) = A log r +B (5.12)

This again diverges at r = 0, this time corresponding to the entire z axis.

Note that if we ignore the z direction, as we have above, then cylindrical polar coor-

dinates are the same thing as 2d polar coordinates, and the log form is the rotationally

invariant solution to the Laplace equation in R2. In general, in Rn, the non-constant

solution to the Laplace equation is 1/rn−2. The low dimensions of R2 and R are special

because the solution grows asymptotically as r → ∞, while for Rn with n ≥ 3, the

rotationally invariant solution to the Laplace equation decays to a constant asymptot-

ically.
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If ψ(r) is a solution to the Laplace equation, then so too is any derivative of ψ(r).

For example, if we take the spherically symmetric solution ψ(r) = 1/r, then we can

construct a new solution

ψdipole(x) = d · ∇
(
1

r

)
= −d · x

r3

for any constant vector d and, again, with r ̸= 0. This kind of solution in important in

electrostatics where it arises as the large distance solution for a dipole, two equal and

opposite charges at a fixed distance apart.

Discontinuities and Boundary Conditions

In many situations, we must specify some further data when solving the Poisson equa-

tions. Typically this is some kind of boundary condition and, in some circumstances,

a requirement of continuity and smoothness on the solution.

This can be illustrated with a simple example. Suppose that we are looking for a

spherically symmetric solution to:

∇2ψ =

{
−ρ0 r ≤ R

0 r > R

with ρ0 constant. We will further ask that ψ(r = 0) is non-singular, that ψ(r) → 0

as r → ∞, and that ψ(x) and ψ′(x) are continuous. We will now see that all of these

conditions give us a unique solution.

First look inside r ≤ R. As we mentioned above, a solution to the Poisson equation

can be found by adding a complementary solution and a particular solution. Since

we’re looking for a spherically symmetric particular solution, we can restrict our ansatz

to ψ(r) = rp for some p. It’s simple to check that ∇2rp = p(p+1)rp−2. This then gives

us the general solution

ψ(r) =
A

r
+B − 1

6
ρ0r

2 r ≤ R

But now we can start killing some terms by invoking the boundary conditions. In

particular, the requirement that ψ(r) is non-singular at r = 0 tells us that we must

have A = 0. Meanwhile, outside r > R the most general solution is

ψ(r) =
C

r
+D
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Figure 17. The plot of Φ = −4πGψ on the left, with the radius R = 1 the cross over point.

This is more apparent in the gravitational field g = −Φ′ shown on the right.

Now we must have D = 0 if ψ(r) → 0 as r → ∞. To finish, we must patch these two

solutions at r = R, invoking continuity

ψ(r = R) = B − 1

6
ρ0R

2 =
C

R

and smoothness

ψ′(r = R) = −1

3
ρ0R = − C

R2

These determine our last two unknown constants, B and C. Putting this together, we

have a unique solution

ψ(r) =

{
1
6
ρ0(3R

2 − r2) r ≤ R
1
3
ρ0R

3/r r > R

This example has application for the gravitational potential Φ = −4πGψ of a planet

of radius R and density ρ0. The plot of Φ is shown on the left of Figure 17; the plot of

the gravitational field g = −dΦ/dr is on the right, where we see a linear increase inside

the planet, before we get to the more familiar 1/r2 fall-off.

5.2.2 Some General Results

So far our solutions to the Poisson equation take place in R3. (Or, more precisely,

R3 − {0, 0} for the 1/r solution (5.11) and R3 − R for the log r solution (5.12).) In

general, we may want to solve the Poisson or Laplace equations ∇2ψ = −ρ in some

bounded region V . In that case, we must specify boundary conditions on ∂V .

There are two common boundary conditions:

• Dirichlet condition: We fix ψ(x) = f(x) for some specific f(x) on ∂V .
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• Neumann condition: We fix n ·∇ψ(x) = g(x) for some specific g(x) on ∂V , where

n is the outwardly pointing normal of ∂V .

The Neumann boundary condition is sometimes specified using the slightly peculiar

notation ∂ψ/∂n := n · ∇ψ. Or even, sometimes, ∂ψ/∂n. We have the following state-

ment of uniqueness:

Claim: Consider the Poisson equation on a bounded region V , with either Dirich-

let or Neumann boundary conditions specified on each boundary ∂V . If a solution

exists, then it is unique. (In the case of Neumann boundary conditions everywhere, the

solution is only unique up to a constant.)

Proof: Let ψ1(x) and ψ2(x) both satisfy the Poisson equation with the specified

boundary conditions. Then ψ(x) = ψ1 − ψ2 obeys ∇2ψ = 0 and either ψ = 0 or

n · ∇ψ = 0 on ∂V . Then consider∫
V

∇ · (ψ∇ψ) dV =

∫
V

(
∇ψ · ∇ψ + ψ∇2ψ

)
dV =

∫
V

|∇ψ|2dV

But by the divergence theorem, we have∫
V

∇ · (ψ∇ψ) dV =

∫
∂V

ψ∇ψ · dS =

∫
∂V

ψ(n · ∇ψ) dS = 0

where either Dirichlet or Neumann boundary conditions set the boundary term to zero.

Because |∇ψ|2 ≥ 0, the integral can only vanish is ∇ψ = 0 everywhere in V , so ψ must

be constant. If Dirichlet boundary conditions are imposed anywhere, then that constant

must be zero. □

This result means that if we can find any solution – say an isotropic solution, or

perhaps a separable solution of the form ψ(x) = Φ(r)Y (θ) – then this must be the

unique solution. By considering the limit of large spheres, it is also possible to extend

the proof to solutions on R3, with the boundary condition ψ(x) → 0 suitably quickly

as r → ∞.

Note, however, that this doesn’t necessarily tell us that a solution exists. For ex-

ample, suppose that we wish to solve the Poisson equation ∇2ψ = ρ(x) with a fixed

Neumann boundary condition n ·∇ψ = g(x) on ∂V . Then there can only be a solution

provided that there is a particular relationship between ρ and g,∫
V

∇2ψ dV =

∫
∂V

∇ψ · dS ⇐⇒
∫
V

ρ dV =

∫
S

g dS

In other situations, there may well be other requirements.
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If the region V has several boundaries, it’s quite possible to specify a different type

of boundary condition on each, and the uniqueness statement still holds. This kind of

problem arises in electromagnetism where you solve for the electric field in the presence

of a bunch of “conductors” (for now, conductors just means a chunk of metal). The

electric field vanishes inside a conductor because, if it didn’t, then the electric charges

inside would move around until they created a counterbalancing field. So any attempt

to solve for the electric field outside the conductors must take this into account by

imposing certain boundary conditions on the surface of the conductor. It turns out

that both Dirichlet and Neumann boundary conditions are important here. If the

conductor is “grounded”, meaning that it is attached to some huge reservoir of charge

like the Earth, then it sits at some fixed potential, typically ψ = 0. This is a Dirichlet

boundary condition. In contrast, if the conductor is isolated and carries some non-

vanishing charge then it will act as a source of electric field, but this field is always

emitted perpendicular to the boundary. This, then, specifies n · E = −n · ∇ψ, giving
Neumann boundary conditions. You can learn more about this in the lectures on

Electromagnetism.

Green’s Identities

The proof of the uniqueness theorem used a trick known as Green’s (first) identity,

namely ∫
V

ϕ∇2ψ dV = −
∫
V

∇ϕ · ∇ψ dV +

∫
S

ϕ∇ψ · dS

This is essentially a 3d version of integration by parts and it follows simply by applying

the divergence theorem to ϕ∇ψ. We used it in the above proof with ϕ = ψ, but the

more general form given above is sometimes useful, as is a related formula that follows

simply by anti-symmetrisation,∫
V

(
ϕ∇2ψ − ψ∇2ϕ

)
dV =

∫
S

(ϕ∇ψ − ψ∇ϕ) · dS

This is known as Green’s second identity.

Harmonic Functions

Solutions to the Laplace equation

∇2ψ = 0

arise in many places in mathematics and physics. These solutions are so special that

they get their own name: they are called harmonic functions. Here are two properties
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of these functions

Claim: Suppose that ψ is harmonic in a region V that includes the solid sphere

with boundary SR : |x− a| = R. Then the value of ψ at a, the centre of the sphere, is

given by ψ(a) = ψ̄(R) where

ψ̄(R) =
1

4πR2

∫
SR

ψ(x) dS

is the average of ψ over SR. This is known as the mean value property.

Proof: In spherical polar coordinates centred on a, the area element is dS = r2 sin θdθ dϕ,

so

ψ̄(r) =
1

4π

∫
dϕ

∫
dθ sin θ ψ(r, θ, ϕ)

and

dψ̄(R)

dr
=

1

4π

∫
dϕ

∫
dθ sin θ

∂ψ(R)

∂r
=

1

4πR2

∫
SR

∂ψ(R)

∂r
dS

=
1

4πR2

∫
SR

∇ψ · dS =

∫
Ball

∇2ψ dV = 0

But clearly ψ̄(R) → ψ(a) as R → 0 so we must have ψ̄(R) = ψ(a) for all R. □

Claim: A harmonic function can have neither a maximum nor minimum in the in-

terior of a region V . Any maximum of minimum must lie on the boundary ∂V .

Proof: If ψ has a local maximum at a in V then there exists an ϵ such that ψ(x) < ψ(a)

for all |x−a| < ϵ. But, we know that ψ̄(R) = ψ(a) and this contradicts the assumption

for any 0 < R < ϵ. □

This is consistent with our standard analysis of maxima and minima. Usually we

would compute the eigenvalues λi of the Hessian ∂
2ψ/∂xi∂xj. For a harmonic function

∇2ψ = ∂2ψ/∂xi∂xi = 0. Since the trace of the Hessian vanishes, we must have eigen-

values of opposite sign since
∑

i λi = 0. Hence, any stationary point must be a saddle.

Note that this standard analysis is inconclusive when λi = 0, but the argument using

the mean value property closes this loophole.
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5.2.3 Integral Solutions

There is a particularly nice way to write down an expression for the general solution

to the Poisson equation in R3, with

∇2ψ = −ρ(x) ( )

at least for a localised source ρ(x) that drops off suitably fast, so ρ(x) → 0 as r → ∞.

To this end, let’s look back to what is, perhaps, our simplest “solution”,

ψ(x) =
λ

4πr
(5.13)

for some constant λ. The question we want to ask is: what equation does this actually

solve?! We’ve seen in (5.11) that it solves the Laplace equation ∇2ψ = 0 when r ̸= 0.

But clearly something’s going on at r = 0 because the function diverges there. In the

language of physics, we would say that there is a point particle sitting at r = 0, carrying

some mass or charge, giving rise to this potential. What is the correct mathematical

way of capturing this?

To see that there must be something going on at r = 0, let’s replay the kind of Gauss

flux games that we met in Section 5.1. We integrate ∇2ψ, with ψ given by (5.13), over

a volume V which we take to be a spherical region of radius R, to find∫
V

∇2ψ dV =

∫
S

∇ψ · dS = −λ

Comparing to ( ), we see that the function (5.13) must solve the Poisson equation

with a source and this source must obey∫
V

ρ(x) dV = λ

This makes sense physically, since
∫
ρdV is the total mass, or total charge, which does

indeed determine the overall scaling λ of the potential. But what mathematical function

obeys ρ(x) = 0 for all x ̸= 0 yet, when integrated over all space, gives a non-vanishing

constant λ?

The answer is that ρ(x) must be proportional to the 3d Dirac delta function,

ρ(x) = λ δ3(x)
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The Dirac delta function should be thought of as an infinitely narrow spike, located at

the origin. It has the properties

δ3(x) = 0 for x ̸= 0

and, when integrated against any function f(x) over any volume V that includes the

origin, it gives ∫
V

f(x) δ3(x) dV = f(x = 0)

The superscript in δ3(x) is there to remind us that the delta function should be in-

tegrated over a 3-dimensional volume before it yields something finite. In particular,

when integrated against a constant function, we get a measure of the height of the

spike, ∫
V

δ3(x) dV = 1

The Dirac delta function is an example of a generalised function, also known as a

distribution. And it is exactly what we need to source the solution ψ ∼ 1/r. We learn

that the function (5.13) is not a solution to the Laplace equation, but rather a solution

to the Poisson equation with a delta function source

∇2ψ = −λ δ3(x) ⇒ ψ(x) =
λ

4πr
(5.14)

With this important idea in hand, we can now do something quite spectacular: we can

use it to write down an expression for a solution to the general Poisson equation.

Claim: The Poisson equation ( ) has the integral solution

ψ(x) =
1

4π

∫
V ′

ρ(x′)

|x− x′|
dV ′ (5.15)

where the integral is over a region V ′ parameterised by x′.

Proof: First, some simple intuition behind this formula. A point particle at x′ gives

rise to a potential of the form ψ(x) = ρ(x′)/4π|x−x′|, which is just our solution (5.14),

translated from the origin to point x′. The integral solution (5.15) then just takes ad-

vantage of the linear nature of the Poisson equation and sums a whole bunch of these

solutions.
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The technology of the delta function allows us to make this precise. We can evaluate

∇2ψ =
1

4π

∫
V ′
ρ(x′)∇2

(
1

|x− x′|

)
dV ′

where you have to remember that ∇2 differentiates x and cares nothing for x′. We then

have the result

∇2 1

|x− x′|
= −4πδ3(x− x′)

which is just a repeat of (5.14), but with the location of the source translated from the

origin to the new point x′. Using this, we can continue our proof

∇2ψ = −
∫
V ′
ρ(x′) δ3(x− x′) dV ′ = −ρ(x)

which is what we wanted to show. □

The technique of first solving an equation with a delta function source and sub-

sequently integrating to find the general solution is known as the Green’s function

approach. It is a powerful method to solve differential equations and we will meet it

again in many further courses.
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6 Tensors

A famously annoying definition of a tensor is:

A tensor is something whose components transform like a tensor

This becomes even more annoying when you appreciate that this is, in fact, one of

the better definitions of a tensor. The purpose of this section is to explain why this

definition is not as dumb as it sounds and to give some insight into what it means to

be a tensor.

Very roughly speaking, tensors are generalisations of objects like vectors and matri-

ces. In index notation, a vector has a single index while a matrix has two indices. A

tensor is an object with any number of indices, something like Tij...k.

However, this simplistic description hides the most important property of a tensor.

Vectors, matrices and, more generally, tensors are more than just a list of numbers.

Instead, those numbers should be thought of as a useful way of characterising the un-

derlying object and, because of this, inherit some properties of that underlying object.

As we will see, the key property is how the list of numbers transform under a change

of basis.

We will start by explaining this in more detail, firstly with vectors and then building

up to the definition of a tensor. Initially we will keep the discussion restricted to some

(admittedly rather dry) mathematical formalism. Then, in Section 6.2 we will describe

some physical examples.

6.1 What it Takes to Make a Tensor

Not any list of n numbers constitutes a vector in Rn. Or, said more precisely, not any

list of n numbers constitutes the components of a vector in Rn. For example, if you

write down the heights of the first three people you met this morning, that doesn’t make

a vector in R3. Instead, a vector comes with certain responsibilities. In particular, the

components describe an underlying object which should be independent of the choice

of basis. As we now explain, that means that the components should transform in the

right way under rotations.

We consider a point x ∈ Rn. If we wish to attach some coordinates to this point, we

first need to introduce a set of basis vectors {ei} with i = 1, . . . , n. We will take these

to be orthonormal, meaning that ei · ej = δij. Any vector can then be expressed as

x = xiei (6.1)
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Usually we conflate the components xi = (x1, . . . , xn) with the “vector”. But, for our

purposes, we should remember that these are just a useful way of representing the more

abstract object x. In particular, we’re entirely at liberty to take a different set of basis

vectors,

e′i = Rijej

If we ask that e′i are also orthonormal, so e′i · e′j = δij, then we have

e′i · e′j = RikRjl ek · el = RikRjk = δij

or, in matrix notation,

RRT = 1

Matrices of this kind are said to be orthogonal. We write R ∈ O(n). Taking the

determinant, we have detR = ±1. Those matrices with detR = +1 correspond to

rotations and are said to be special orthogonal. We write R ∈ SO(n). In R3, a

rotation R ∈ SO(3) takes a right-handed orthonormal basis into another right-handed

orthonormal basis. Those matrices with detR = −1 correspond to a rotation together

with a reflection and take a right-handed basis to a left-handed basis.

Under a change of basis, the vector x itself doesn’t change. But its components do.

We have

x = xiei = x′ie
′
i = x′iRijej

So the components transform under the same rotation matrix R,

xj = Rijx
′
i ⇒ x′i = Rijxj (6.2)

A tensor T is a generalisation of these ideas to an object with more indices. Just as

the vector x has an identity independent of any choice of basis, so too does the tensor

T . But when measured with respect to a chosen basis {ei}, a tensor of rank p has

components Ti1...ip . When we change the basis using (6.1), the tensor transforms as

T ′
i1...ip

= Ri1j1 . . . RipjpTj1...jp (6.3)

This is known as the tensor transformation rule. A tensor of rank p is sometimes

referred to simply as a p-tensor.
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The simplest examples of tensors are very familiar. A tensor of rank 0 is just a

number, or scalar, T . Here there’s no requirement because a number doesn’t change if

you do a rotation: T ′ = T . So any single number can be said to be a tensor, although

it isn’t a particularly helpful designation.

A tensor of rank 1 is a vector. Here, however, it’s important that the components of

the vector transform as T ′
j = RijTj. If they don’t transform in this way, then you don’t

have a tensor on your hands. You just have a bunch of numbers.

A tensor of rank 2 is a matrix that transforms as T ′
ij = RikRjlTkl. Again, the trans-

formation property is key. Just because you have an array of numbers Aij, arranged

in an n× n grid, doesn’t mean that you have a 2-tensor. You have to check the trans-

formation property holds. Otherwise, as with a vector, the array of numbers isn’t a

tensor; it’s just a bunch of numbers.

What’s a Tensor and What’s Not?

It’s worth elaborating on the definition of a tensor. For example, suppose that someone

hands you a matrix, say

Tij =


3 8 0

5 −4 3

1 1 3


and asks you: “is this a tensor?”. It’s natural to answer yes. After all, it’s written as

Tij which is the name we’ve given to a tensor. And it looks for all the world like a

matrix. So is it a tensor? The answer is: we don’t know. We haven’t been given enough

information2. As we’ve stressed several times, a tensor isn’t just a bunch of numbers

arranged in some pattern. This sometimes goes by the name of an array of numbers.

Instead, we only know that a given array of numbers is a tensor if it transforms as

(6.3). That means that we need to firstly know what basis the array of numbers above

has been measured in. And then we need to know what the array looks like when

measured in other bases. Only then do we have enough information to say whether

this is a tensor or not. It’s a tensor only if transforms as (6.3): this transformation law

is the definition of a tensor.

2When I gave these lectures on 6th March 2023, I used the example of
(

7

0

)
which, at least on

that day, most certainly wasn’t a tensor. It was a football score. A glorious, wonderful, humiliating,

shameful football score.
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Here’s another example. In a given basis, the position of a point is given by xi. We

write this as the components of a vector

xi =


x

y

z


This is a tensor. Indeed, our starting point is that the components of this simple vector

transforms in the tensorial way (6.2). This is just the statement that the components

of this vector transform in the familiar way under rotation.

Suppose that you now square each of these elements and decide to write them as a

column vector. We’ll give it a fancy name Λi, complete with that hanging i index,

Λi =


x2

y2

z2


That i index makes this look for all the world like it’s a tensor. But it’s not. We know

that after a rotation, xi → x′i = Rijxj. This means that if we do a rotation and then

measure the components of the array Λ′
i we get

Λ′
i =


(R11x+R12y +R13z)

2

(R21x+R22y +R33z)
2

(R31x+R32y +R33z)
2


But that’s most definitely not how a tensor transforms! It’s not the rule (6.3) that we

wanted. The upshot is that Λi is not a tensor and it was a little bit naughty to write

it as Λi because it suggests that it has some property that it doesn’t.

Relatedly, this explains something that you may have wondered about in school.

Suppose that you’re given two vectors. You know that you can take an inner product

to get a scalar, or you can take the cross-product to get another vector. But what stops

you from doing something much simpler, just multiplying the component of one vector

with the corresponding component of another vector to get a third vector. It seems

like such an obvious thing to do. But it’s a bad thing to do, precisely because the thing

you end up with is not a tensor. It does not transform in the way (6.2), which is how

components of a vector should transform.

– 110 –



There is a similar story for matrices. If you have two matrices, then there’s a ridicu-

lously complicated way to multiply them, multiplying rows with columns. Why don’t

we just do something much simpler and multiply entries together component by compo-

nent? You’ve probably guessed the answer by now. If we started with genuine matrices,

meaning that they transform (6.3), then the object that you get if you do proper matrix

multiplication will also transform as (6.3), but the simpler, stupid way to multiplying

will not.

Why are we making such a big deal about this? What is so special about things

that transform nicely as (6.3) under rotations? Well, there are several answers to this,

depending on taste. At the most basic level, if you’re a physicist, then you might

genuinely want to know how something looks in different, rotated frames of reference.

Moreover, once you realise that there’s a preferred way for things to transform —

the tensor way (6.3) – this brings some extra power to the calculations, a little like

dimensional analysis. Suppose that you have an equation of the form “left-hand side”

= “right-hand side”. If the thing on the left is a tensor then the thing on the right

better also be a tensor. And sometimes there’s not many tensors available, which limits

your options for what the thing on the right can actually be. We’ll see an example of

this in Section 6.1.3 when we’ll use tensors to make some scary looking integrals a little

more palatable.

The discussion above is very much from a physics perspective. But what about a

pure maths perspective? This gives a more formal, but arguably cleaner, definition of

a tensor. We’ll explain this imminently in Section 6.1.1.

We’ll meet a number of tensors as we proceed. But there is a one that is special:

this is the rank 2 tensor δij or, equivalently, the unit matrix. Importantly, it has the

same 0 and 1 entries in any basis because, under the transformation (6.3), it becomes

δ′ij = RikRjlδkl = δij

We will devote Section 6.1.3 to “invariant tensors” which, like δij, take the same form

in any basis.

6.1.1 Tensors as Maps

There is something a little strange about the definition of a tensor given above. We

first pick a set of coordinates, and the transformation law (6.3) then requires that the

tensor transforms nicely so that, ultimately, nothing depends on these coordinates.

But, if that’s the case, surely there should be a definition of a tensor that doesn’t rely

on coordinates at all!
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There is. A tensor T of rank p is a multi-linear map that takes p vectors, a,b, . . . , c

and spits out a number in R,

T (a,b, . . . , c) = Ti1i2...ipai1bi2 . . . cip (6.4)

Here “multi-linear” means that T is linear in each of the entries a,b, . . . , c individually.

By evaluating T on a all possible vectors a,b, . . . , c, we get the components Ti1i2...ip .

The transformation rule (6.3) is simply the statement that the map T is independent

of the choice of basis, and we can equally well write

T (a,b, . . . , c) = T ′
i1i2...ip

a′i1b
′
i2
. . . c′ip

= (Ri1j1Ri2j2 . . . RipjpTj1j2...jp)(Ri1k1ak1)(Ri2k2bk2) . . . (Ripkpckp)

= Tj1j2...jpaj1bj2 . . . cjp

which follows because RTR = 1 or, in components, RijRik = δjk. The key is that this

formula takes the same form in any basis.

Tensors as Maps Between Vectors

Rather than thinking of a tensor as a map from many vectors to R, you can equivalently

think of it as a map from some lower-rank tensor to another. For example, in (6.4),

if you don’t fill in the first entry, then a rank p tensor can equally well be viewed as

taking (p− 1) vectors and spitting out a single vector

ai = Ti j1...jp−1bj1 . . . cjp−1

This is the way that tensors typically arise in physics or applied mathematics, where

the most common example is simply a rank 2 tensor, defined as a map from one vector

to another

u = Tv ⇒ ui = Tijvj

Until now, we’ve simply called T a matrix but for the equation u = Tv to make sense,

T must transform as a tensor (6.3). This is inherited from the transformation rules of

the vectors, u′i = Rijuj and v
′
i = Rijvj, giving

u′i = T ′
ijv

′
j with T ′

ij = RikRjlTkl

Written as a matrix equation, this is T ′ = RTRT .
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6.1.2 Tensor Operations

Given a bunch of tensors, there are some manipulations that leave you with another

tensor. Here we describe these operations.

• We can add and subtract tensors of the same rank, so if S and T are both tensors

of rank p then so too is S + T . We can also multiply a tensor by a constant α

and it remains a tensor.

• If S is a tensor of rank p and T a tensor of rank q, then the tensor product S⊗T

is a tensor of rank p+ q, defined by

(S ⊗ T )i1...ipj1...jq = Si1...ipTj1...jq

You can check that the components of (S⊗T ) do indeed satisfy the transformation

rule (6.3). In particular, if we have p different vectors a, b, . . . , c then we can

construct a tensor

T = a⊗ b⊗ . . .⊗ c with Ti1...ip = ai1bi2 . . . cip

• Given a tensor T of rank p, we can construct a new tensor S of rank (p − 2) by

contracting on two indices using δij,

Sk1...kp−2 = δijTijk1...kp−2

For a rank 2 tensor, the contraction is what we call the trace, TrT = Tii. It’s a

valid tensor operation because the end result is a scalar that does not transform

under rotations

T ′
ii = RijRikTjk = δjkTjk = Tjj

The same derivation shows that higher rank tensors can also be contracted, with

the additional indices unaffected by the contraction.

Combining a contraction with a tensor product gives a way to contract two

different tensors together. For example, given a p-tensor P and q-tensor Q, we

can form a p + q − 2 tensor by contracting, say, the first index on each to get

P ik1...kp−1Qi l1...lq−1 . This may sound abstract, but it’s very much something you’ve

seen before: given a pair of 1-tensors a and b, also known as vectors, we can

combine them to get a 0-tensor, also known as a number

a · b = aibi

This, of course, is just the inner-product. It is a useful operation precisely because

the 0-tensor on the right-hand side is, like all 0-tensors, independent of the choice

of basis that we choose to express the vectors.
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The Quotient Rule

In practice, it’s not hard to recognise a tensor when you see one. In any setting, they’re

usually just objects with a bunch of i and j indices, each of which clearly transforms as

a vector. If in doubt, you can just check explicitly how the thing transforms. (There

are cases where this check is needed. In later courses, you’ll meet an object called the

Levi-Civita connection Γi
jk which looks for all the world like a tensor but turns out, on

closer inspection, to be something more subtle.)

There is a more formal way to say this. Let Ti1...ip+q be a bunch of numbers that you

think might comprise a tensor of rank p + q in some coordinate basis. If Ti1...ip+q are

indeed the components of a tensor then you can feed it a rank q tensor uj1...jq and it

will spit back a rank p tensor

vi1...ip = Tii...ipj1...jquj1...jq (6.5)

There is a converse to this statement. If for every tensor uj1...jq , the output vi1...ip
defined in (6.5) is a tensor, then Tii...ipj1...jq are the components of a tensor. This is

called the quotient rule.

It is straightforward, if a little fiddly, to prove the quotient rule. It’s sufficient to

restrict attention to tensors u formed from the tensor product of vectors uj1...jq =

cj1 . . . djq . Then, by assumption, vi1...ip = Tii...ipj1...jquj1...jq is a tensor. If we then con-

tract with p further vectors a, . . . ,b then vi1...ipai1 . . . bip = Ti1...ipj1...jqai1 . . . bipcj1 . . . djq
is necessarily a scalar. This is then enough to ensure the correct transformation rule

(6.3) for the components Ti1...ipj1...jq .

Symmetry and Anti-Symmetry

The symmetrisation properties of tensors are worthy of comment. A tensor that obeys

Tijp...q = ±Tjip...q

is said to be symmetric (for +) or anti-symmetric (for −) in the indices i and j. If a

tensor is (anti)-symmetric in one coordinate system then it is (anti)-symmetric in any

coordinate system

T ′
ijp...q = RikRjlRpr . . . RqsTklr...s = ±RikRjlRpr . . . RqsTlkr...s = ±T ′

jip...q

A tensor that is (anti)-symmetric in all pairs of indices is said to be totally (anti)-

symmetric. Note that for tensors in Rn, there are no anti-symmetric tensors of rank

p > n because at least one of the indices must take the same value and so the tensor nec-

essarily vanishes. A totally anti-symmetric tensor of rank p in Rn has
(
n
p

)
independent

components.
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Let’s now restrict our attention to R3. A tensor of rank 2 is our new fancy name

for a 3 × 3 matrix Tij. In general, it has 9 independent components. We can always

decompose it into the symmetric and anti-symmetric pieces

Sij =
1

2
(Tij + Tji) and Aij =

1

2
(Tij − Tji)

which have 6 and 3 independent components respectively. Our discussion above shows

that S and A are each, themselves, tensors. In fact, the symmetric piece can be

decomposed further,

Sij = Pij +
Q

3
δij

where Q = Sii is the trace of S and carries a single degree of freedom, while Pij is the

traceless part of S and carries 5. The importance of this decomposition is that A, P

and Q are individually tensors. In contrast, if you were to take, say, the upper-left-hand

component of the original matrix Tij then that doesn’t form a tensor.

In R3, we can also rewrite an anti-symmetric matrix in terms of a vector,

Aij = ϵijkBk ⇐⇒ Bk =
1

2
ϵijkAij

The upshot is that in any 3× 3 matrix can be decomposed as

Tij = Pij + ϵijkBk +
1

3
δijQ (6.6)

where Pii = 0.

6.1.3 Invariant Tensors

There are two important invariant tensors in Rn.

• We’ve met the first already: it is the rank 2 tensor δij. As we noted previously,

this is invariant because

δ′ij = RikRjlδkl = δij

Note that δij is invariant under any R ∈ O(n).

• The rank n totally anti-symmetric tensor ϵi1...in . This is defined by ϵ12...n = +1.

If you swap any two indices you get a minus sign. In particular, if any two indices

are repeated, the epsilon symbol vanishes. This is invariant because

ϵ′i1...in = Ri1j1 . . . Rinjnϵj1...jn = detR ϵi1...in = ϵi1...in
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Note that the epsilon symbol is only invariant under R ∈ SO(n) but it is not

invariant under R ∈ O(n) with detR = −1. It picks up a minus sign under

reflections. The invariance of ϵijk in R3 is the reason why the cross-product

(a × b)i = ϵijkajbk is itself a vector. Or, said differently, why the triple product

a · (b× c) = ϵijkaibjck is independent of the choice of basis.

In general, a tensor is said to be invariant under a given rotation R if

T ′
i1...in

= Ri1j1 . . . RinjnTj1...jn = Ti1...in

A tensor that is invariant under all rotations R is said to be isotropic. Obviously all

tensors of rank 0 are isotropic. What about higher rank tensors?

Claim: The only non-zero isotropic tensors in R3 of rank p = 1, 2 or 3 are Tij = αδij
and Tijk = βϵijk with α and β constant. In particular, there are no isotropic tensors of

rank 1 (essentially because a vector always points in a preferred direction).

Proof: The idea is simply to look at how tensors transform under a bunch of spe-

cific rotations by π or π/2 about certain axes.

For example, consider a tensor of rank 1, so that

T ′
i = RijTj with Rij =


−1 0 0

0 −1 0

0 0 +1

 (6.7)

Requiring T ′
i = Ti gives T1 = T2 = 0. Clearly a similar argument, using a different R,

also gives T3 = 0.

For a tensor of rank 2, consider the transformation

T ′
ij = R̃ikR̃jlTkl with R̃ij =


0 1 0

−1 0 0

0 0 +1

 (6.8)

which is a rotation by π/2 about the z-axis. The rotation gives T ′
13 = T23 and T ′

23 =

−T13 so if T ′
ij = Tij, we must have T13 = T23 = 0. Meanwhile T ′

11 = T22. Similar

arguments tell us that all off-diagonal elements must vanish and all diagonal elements

must be equal: T11 = T22 = T33 = α for some α. Hence Tij = αδij.
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Finally, for a rank 3 tensor we have

T ′
ijk = RilRjpRkqTlpq

If we pick R given in (6.7), then we find T ′
133 = −T133 and T ′

111 = −T111. Similar

arguments show that an isotropic tensor must have Tijk = 0 unless i, j and k are all

distinct. Meanwhile, if we pick R = R̃ given in (6.8), then we get T ′
123 = −T213. We

end up with the result we wanted: Tijk is isotropic if and only if Tijk = βϵijk for some

constant β. □

Although we won’t prove it here, all other isotropic tensors can be formed from δij
and ϵijk. For example, the only isotropic 4-tensor in R3 is

Tijkl = αδijδkl + βδikδjl + γδilδjk

with α, β and γ constants. You could try to cook up something involving ϵijk but it

doesn’t give anything new. In particular, ϵijkϵilp = δjlδkp − δjpδkl.

There is also an analogous result in Rn: all isotropic tensors can be constructed from

the symmetric 2-tensor δij and the totally anti-symmetric n-tensor ϵi1...in .

Invariant Integrals

It is sometimes possible to use invariance properties to immediately write down the

index structure of an integral, without doing the hard work of evaluating everything

term by term. Suppose that we have some integral of the form

Tij...k =

∫
V

f(r)xixj . . . xk dV

with r = |x|. Then under a rotation, we have

T ′
ij...k = RipRjq . . . RkrTpq...r =

∫
V

f(r)x′ix
′
j . . . x

′
k dV

with, as usual, x′i = Rijxj. But if we now change the integration variables to x′,

both r = |x| = |x′| and dV = dV ′ are invariant. (The latter because the Jacobian is

detR = 1). If the domain of integration is also rotationally invariant, so V = V ′, then

the final result must itself be an invariant tensor, T ′
ij...k = Tij...k.
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Here are some examples. First, suppose that we have a 3d integral over the interior

of a sphere of radius R, given by

Ti =

∫
V

ρ(r)xi dV (6.9)

This must be equal to some invariant 1-tensor (i.e. a vector), but there are no such

objects. In other words, we can say immediately that Ti = 0. You can check this

straightforwardly by doing the integral in, say, spherical polar coordinates.

Things change if we look at an integral with two hanging indices,

Tij =

∫
V

ρ(r)xixj dV (6.10)

(In Section 6.2, we will find integrals of this form arising when we compute the inertia

tensor of a sphere.) By the argument above Tij must be an isotropic tensor and hence

proportional to δij,

Tij =

∫
V

ρ(r)xixj dV = αδij

for some α. If we take the trace, we get∫
V

ρ(r)r2 dV = 3α

Hence,

Tij =
1

3
δij

∫
V

ρ(r)r2 dV =
4π

3
δij

∫ R

0

dr ρ(r)r4 (6.11)

For example, if ρ(r) = ρ0 is constant, then Tij =
4
15
πρ0R

5δij.

Here’s a slightly more complicated example (taken from the calculation of Stokes

flow around a sphere in Fluid Mechanics). Consider the surface integral over a sphere

of radius R,

T̃k = aj

∫
S2

dSi
xixjxk
r5

This time we have a vector a in the game, so it must be the case that T̃k = βak for

some constant β. One way to compute β is to strip off the vector a and instead look at

T̃jk =

∫
S2

dSi
xixjxk
r5

= βδjk
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which now should be proportional to the invariant tensor δjk as shown, with the same

coefficient β since T̃k = Tjkaj = βak. At this point, we again take the trace over the j

and k indices to get ∫
S2

dSi
xixjxj
r5

= 3β

But this integral is given by∫
S2

dSi
xi
r3

=

∫
S2

dS · n
r2

= 4π

and so we get β = 4π/3.

6.1.4 Tensor Fields

A tensor field over R3 is the assignment of a tensor Ti...k(x) to every point x ∈ R3.

This is the generalisation of a vector field

F : R3 → R3

to a map of the kind

T : R3 → Rm

with m the number of components of the tensor. So, for example, a map that assigns

a symmetric, traceless rank 2 tensor Pij(x) to every point has m = 5.

The tensor field Ti...k(x) is sometimes denoted as Ti...k(x
l) which is supposed to show

that the field depends on all coordinates x1, . . . , x3. It’s not great notation because the

indices as subscripts are supposed to take some definite values, while the index l in the

argument is supposed to denote the whole set of indices. It’s especially bad notation

when combined with the summation convention and we won’t adopt it here.

There is one very famous example of a tensor field. Einstein’s theory of general rela-

tivity is described by a rank 2 tensor at every point in space. This is called the metric.

The dynamics of this rank 2 tensor field describe gravity. (I’ve brushed something

rather important under the rug here. Einstein’s theory is a rank 2 tensor in spacetime,

not just in space. Which means that the rank 2 tensor is a 4× 4 matrix, rather than a

3× 3 matrix.)

Before we move on, it’s worth pausing to mention a slightly subtle point. Not all

maps R3 → R3 qualify as “vector fields”. The point x in the codomain R3 is a vector

and so its components transform in the appropriate way under rotation. To be a vector

field, the components of the map must transform under the same rotation. Similar

comments hold for a tensor field.
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To illustrate this, the electric field E(x) is an example of a vector field. If you rotate

in space, and so change x, then the direction E also changes: the rotation acts on both

the argument x and the function itself E.

In contrast, there are maps R3 → R3 where, although the domain and codomain have

the same dimension, vectors in them transform under different rotations. For example,

in particle physics there exists an object called a quark field which, for our (admittedly,

slightly dumbed down) purposes, can be thought of as a map R3 → R3. This is a

quantum field whose ripples are the particles that we call quarks, but these details can

be safely ignored for the next couple of years of your life. We will write this field as

qa(x) where the a = 1, 2, 3 label is the “colour” of the quark. If we rotate in space,

then x changes but the colour of the quark does not. There is then an independent

rotation that acts on the codomain and rotates the colour, but leaves the point in space

unchanged. Because the rotations that act on the domain and codomain are unrelated,

the quark field is usually not referred to as a vector field.

Taking Derivatives

Given a tensor field, we can always construct higher rank tensors by taking derivatives.

In fact, we’ve already seen a prominent example of this earlier in these lectures. There,

we started with a scalar field ϕ(x) and differentiated to get the gradient ∇ϕ. This

means that we start with a rank 0 tensor and differentiate to get a rank 1 tensor.

Strictly speaking, we didn’t previously prove that ∇ϕ is a vector field. But it’s

straightforward to do so. As we’ve seen above, we need to show that it transforms

correctly under rotations. Any vector v can be decomposed in two different ways,

v = viei = v′ ie′i

where {ei} and {e′i} are two orthonormal bases, each obeying ei · ej = e′i · e′j = δij, and

vi and v′ i are the two different coordinates for v. If we expand x in this way

x = xiei = x′ie
′
i =⇒ xi = (ei · e′j)x′j =⇒ ∂xi

∂x′j
= ei · e′j

Here ei ·e′j is the rotation matrix that takes us from one basis to the other. Meanwhile,

we can always expand one set of basis vectors in terms of the other,

ei = (ei · e′j)e′j =
∂xi

∂x′ j
e′j

This tells us that we could equally as well write the gradient as

∇ϕ =
∂ϕ

∂xi
ei =

∂ϕ

∂xi
∂xi

∂x′ j
e′j =

∂ϕ

∂x′ j
e′j
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This is the expected result: if you work in a different primed basis, then you have the

same definition of ∇ϕ, but just with primes on both e′i and ∂/∂x
′ i. This means that

the components ∂iϕ transform correctly under a rotation, so ∇ϕ is indeed a vector.

We can extend the result above to any, suitably smooth, tensor field T (x) of rank

p. We can differentiate this any number of times to get a new tensor field of rank, say,

p+ q,

Xi1...iqj1...jp =
∂

∂xi1
. . .

∂

∂xiq
Tj1...jp(x) (6.12)

To verify that this is indeed a tensor, we need to check how it changes under a rotation.

In a new basis, we have x′i = Rijxj (where Rij = e′i · ej in the notation above) and so

∂x′i
∂xj

= Rij =⇒ ∂

∂x′i
=
∂xj
∂x′i

∂

∂xj
= Rij

∂

∂xj

which is the result we need for X in (6.12) to qualify as a tensor field.

We can implement any of the tensorial manipulations that we met previously for

tensor fields. For example, if we start with a vector field F(x), we can form a rank 2

tensor field

Tij(x) =
∂Fi

∂xj

But we saw in (6.6) that any rank 2 tensor field can be decomposed into various pieces.

There is an anti-symmetric piece

Aij(x) = ϵijkBk(x) with Bk =
1

2
ϵijk

∂Fi

∂xj
= −1

2
(∇× F)k

and a trace piece

Q =
∂Fi

∂xi
= ∇ · F

and, finally, a symmetric, traceless piece

Pij(x) =
1

2

(
∂Fi

∂xj
+
∂Fj

∂xi

)
− 1

3
∇ · F

Obviously, the first two of these are familiar tensors (in this case a scalar and vector)

from earlier sections.
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6.2 Physical Examples

Our discussion above was rooted firmly in mathematics. There are many places in

physics where tensors appear. Here we give a handful of examples.

6.2.1 Electric Fields in Matter

Apply an electric field E to a lump of stuff. A number of things can happen.

If the lump of stuff is an insulator then the material will become polarised. This

means that the positive electric charge will be pushed in one direction, the negative

in another until the lump of stuff acts like a dipole. (This is described in some detail

in Section 7 of the lectures on Electromagnetism.) One might think that the resulting

polarisation vector P points in the same direction as the electric field E, but that’s too

simplistic. For many lumps of stuff, the underlying crystal structure allows the electric

charges to shift more freely in some directions than others. The upshot is that the

relation between polarisation P and applied electric field E is given by

P = αE

where α is a matrix known as the polarisation tensor. In a given basis, it has compo-

nents αij.

There is a similar story if the lump of stuff is a conductor. This time an applied

electric field gives rise to a current density J. Again, the current is not necessarily

parallel to the electric field. The relationship between them is now

J = σE

This is known as Ohm’s law. In general σ is a 3× 3 matrix known as the conductivity

tensor; in a given basis, it has components σij.

What can we say about σ when the material is isotropic, meaning that it looks the

same in all directions? In this case, no direction is any different from any other. With

no preferred direction, the conductivity tensor must be proportional to an invariant

tensor, so that it looks the same in all coordinate systems. What are our options?

For 3d materials, the only option is σij = σδij, which ensures that the current

does indeed run parallel to the electric field. In this case σ is just referred to as the

conductivity.
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However, suppose that we’re dealing with a thin wafer of material in which both the

current and electric field are restricted to lie in a plane. This changes the story because

now we’re dealing with vectors in R2 rather than R3 and R2 is special because there

are two invariant 2-tensors in this dimension: δij and ϵij. This means that the most

general conductivity tensor for an isotropic 2d material takes the form

σij = σxxδij + σxyϵij =

(
σxx σxy

−σxy σxx

)
Here σxx is called the longitudinal conductivity while σxy is called the Hall conductivity.

If σxy ̸= 0 then an electric field in the x-direction induces a current in the y-direction.

As an aside, it turn out that the seemingly mundane question of understanding

σxy in real materials is closely tied to some of the most interesting breakthroughs in

mathematics in recent decades! This is the subject of the Quantum Hall Effect.

6.2.2 The Inertia Tensor

Another simple example of a tensor arises in Newtonian mechanics. A rigid body ro-

tating about the origin can be modelled by some number of masses ma at positions xa,

all moving with velocity ẋa = ω × xa. Here ω is known as the angular velocity. The

angular velocity ω is related to the angular momentum L by

L = Iω (6.13)

with I the inertia tensor. The angular momentum does not necessarily lie parallel to

the angular velocity and, correspondingly, I is in general a matrix, rather than a single

number. In fact, we can easily derive an expression for the inertia tensor. The angular

momentum is

L =
∑
a

maxa × ẋa =
∑
a

maxa × (ω × xa) =
∑
a

ma

(
|xa|2ω − (xa · ω)xa

)
In components, Li = Iijωj, where

Iij =
∑
a

ma

(
|xa|2δij − (xa)i(xa)j

)
For a continuous object with density ρ(x), we can replace the sum with a volume

integral

Iij =

∫
V

ρ(x)
(
|x|2δij − xixj

)
dV (6.14)

So, for example, I33 =
∫
ρ(x21 + x22) dV and I12 = −

∫
ρx1x2 dV .
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An Example: A Sphere

For a ball of radius R and density ρ(r), the inertia tensor is

Iij =

∫
V

ρ(r)(r2δij − xixj) dV

The second of these terms is the integral (6.10) that we simplified in Section 6.1.3 using

isotropy arguments. Using (6.11), we have

Iij =
2

3
δij

∫
V

ρ(r)r2 dV =
8π

3
δij

∫ R

0

dr ρ(r)r4

For example, if ρ(r) = ρ0 is constant, then Iij = 8
15
πρ0R

5δij = 2
5
MR2δij where M is

the mass of the sphere.

Another Example: A Cylinder

The sphere is rather special because the inertia tensor is proportional to δij. That’s

not the case more generally. Consider, for example, a solid 3d cylinder of radius a and

height 2L, with uniform density ρ. The mass is M = 2πa2Lρ. We align the cylinder

with the z-axis and work in cylindrical polar coordinates x = r cosϕ and y = r sinϕ.

The components of the inertia tensor are then

I33 =

∫
V

ρ(x2 + y2) dV = ρ

∫ 2π

0

dϕ

∫ a

0

dr

∫ +L

−L

dz r r2 = ρπLa4

I11 =

∫
V

ρ(y2 + z2) dV = ρ

∫ 2π

0

dϕ

∫ a

0

dr

∫ +L

−L

dz r(r2 sin2 ϕ+ z2) = ρπa2L

(
a2

2
+

2L2

3

)
By symmetry, I22 = I11. For the off-diagonal elements, we have

I13 = −
∫
V

ρx1x3 dV = −ρ
∫ 2π

0

dϕ

∫ a

0

dr

∫ L

−L

dz r2z cosϕ = 0

where the integral vanishes due to the ϕ integration. Similarly, I12 = I13 = 0. We find

that the inertia tensor for the cylinder is

I = diag

(
M

(
a2

4
+
L2

3

)
, M

(
a2

4
+
L2

3

)
,
1

2
Ma2

)
(6.15)

Note that the inertia tensor is diagonal in our chosen coordinates.
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The Eigenvectors of the Inertia Tensor

The inertia tensor I defined in (6.14) has a special property: it is symmetric

Iij = Iji

Any symmetric matrix I can always be diagonalised by an appropriate rotation. This

means that there exists an R ∈ SO(n) such that

I ′ = RIRT = diag(I1, I2, I3)

Another way of saying this is that any symmetric rank 2 tensor has a basis of orthonor-

mal eigenvectors {ei}, with Ii the corresponding eigenvalues.

In the case of the inertia tensor, the eigenvectors e1, e2 and e3 are called the principal

axes of the solid. It means that any object, no matter how complicated, has its own

preferred set of orthonormal axes embedded within it. If the object has some symmetry,

then the principal axes will always be aligned with this symmetry. This, for example,

was the case for the cylinder that we computed above where aligning the cylinder with

the z-axis automatically gave us a diagonal inertia tensor (6.15).

In general, it will be less obvious where the principal

axes lie. For example, the figure on the right shows the

asteroid Toutatis, which is notable for its lumpy shape.

The principal axes are shown embedded in the asteroid.

From (6.13), the angular momentum L is aligned

with the angular velocity ω only if a body spins about

one of its principal axes. It turns out that, in this

case, nice things happen and the body spins smoothly.

However, if L and ω are misaligned, the body exhibits more complicated tumbling,

wobbling motion as it spins. You can learn all about this in the lectures on Classical

Dynamics. (For what it’s worth, Toutatis does not spin about a principal axes.)

6.2.3 Higher Rank Tensors

You might reasonably complain that, after all that work defining tensors, the examples

that we’ve given here are nothing more exotic than matrices, mapping one vector to

another. And you would be right. However, as we get to more sophisticated theories of

physics, tensors of higher rank do make an appearance. Here we don’t give full details,

but just say a few words to give you a flavour of things to come.
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Perhaps the simplest example arises in the theory of elastic materials. These mate-

rials can be subjected to strain, which describes the displacement of the material at

each point, and stress, which describes the forces acting on the material at each point.

But each of these is itself a 2-tensor (strictly a tensor field). The strain tensor eij is

a symmetric tensor that describes the way the displacement in the xi direction varies

in the xj. The stress tensor σij describes the component of the force Fi across a plane

normal to xj. These two tensors are related by

σij = Cijklekl

This is the grown up version of Hooke’s law. In general an elastic material is charac-

terised by the elasticity tensor, also known as the stiffness tensor, Cijkl.

Higher rank tensors also appear prominently in more advanced descriptions of ge-

ometry. In higher dimensions, the simple Gaussian curvature that we met in Section 2

isn’t enough to capture all the interesting ways in which spaces can curve in different

directions. Instead, it is replaced by a 4-tensor Rijkl known as the Riemann curvature.

In the context of physics, this 4-tensor describes the bending of space and time and is

needed for the grown-up version of Newton’s law of gravity.

6.3 A Unification of Integration Theorems

In this final section, we turn back to matters of mathematics. The three integral

theorems that we met in Section 4 are obviously closely related. To end these lectures,

we show how they can be presented in a unified framework. This requires us to introduce

some novel and slightly formal ideas. These go quite a bit beyond what is usually

covered in an introductory course on vector calculus, but we will meet these objects

again in later courses on Differential Geometry and General Relativity. View this

section as a taste of things to come.

6.3.1 Integrating in Higher Dimensions

Our unified framework will give us integral theorems in any dimension Rn. If you look

back at Section 4, you’ll notice that the divergence theorem already holds in any Rn.

Meanwhile, Stokes’ theorem is restricted to surfaces in R3 for the very simple reason

that the cross-product is only defined in R3. This suggests that before we can extend

our integral theorems to higher dimensions, we should first ask a more basic question:

how do we extend the cross product to higher dimensions?
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The introduction of tensors gives us a way to do this. Given two vectors a and b in

R3, the cross-product is

(a× b)i = ϵijkajbk

From this perspective, the reason that the cross product can only be employed in R3

is because it’s only there that the ϵijk symbol has three entries. If, in contrast, we’re in

R4 then we have ϵijkl and so if we feed it two vectors a and b, then we find ourselves

with a tensor of rank 2, Tij = ϵijklakbl.

The tensors that we get from an epsilon symbol are always special, in the sense

that they are totally anti-symmetric. The anti-symmetry condition doesn’t impose any

extra constraint on a 0-tensor ϕ or a 1-tensor ai as these are just scalar fields and vector

fields respectively. It only kicks in when we get to tensors of rank 2 or higher.

With this in mind, we can revisit the cross product. We can define the cross product

in any dimension Rn: it is a map that eats two vectors a and b and spits back an

anti-symmetric (n− 2)-tensor

(a× b)i1...in−2 = ϵi1...inain−1bin

The only thing that’s special about R3 is that we get back another vector, rather than

a higher dimensional tensor.

There is also a slightly different role played by the epsilon symbol ϵi1,...,in : it provides

a map from anti-symmetric p-tensors to anti-symmetric (n − p)-tensors, simply by

contracting indices,

ϵ : Ti1...ip 7→ 1

(n− p)!
ϵi1...inTin−p+1...in (6.16)

This map goes by the fancy name of the Hodge dual. (Actually, it’s an entirely trivial

version of the Hodge dual. The proper Hodge dual is a generalisation of this idea to

curved spaces.)

Our next step is to think about what this has to do with integration. Recall that

earlier in these lectures we found two natural ways to integrate vector fields in R3. The

first is along a line ∫
C

F · dx (6.17)
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which captures the component vector field tangent to the line. We can perform this

procedure in any dimension Rn. The second operation is to integrate a vector field over

a surface ∫
S

F · dS (6.18)

where dS points in the direction normal to the surface. This integration captures the

component of the vector field normal to the surface and only makes sense in R3. This

is because it’s only in R3 that a two-dimensional surface has a unique normal. More

operationally, this normal, which is buried in the definition of dS, requires us to use

the cross product. For a parameterised surface x(u, v), the vector area element is

dS =
∂x

∂u
× ∂x

∂v
du dv

or, in components,

dSi = ϵijk
∂xj

∂u

∂xk

∂v
du dv

Now comes a mathematical sleight of hand. Rather than thinking of (6.18) as the

integral of a vector field projected normal to the surface, instead think of it as the

integral of an anti-symmetric 2-tensor Fij = ϵijkFk integrated tangent to the surface.

We then have∫
S

F · dS =

∫
S

Fij dSij with dSij =
1

2

(
∂xj

∂u

∂xk

∂v
− ∂xj

∂v

∂xk

∂u

)
du dv (6.19)

This is the same equation as before, just with the epsilon symbol viewed as part of

the integrand Fij rather than as part of the measure dSi. Note that we’ve retained the

anti-symmetry of the area element dSij that was inherent in our original cross product

definition of dS. Strictly speaking this isn’t necessary because we’re contracting with

anti-symmetric indices in Fij, but it turns out that it’s best to think of both objects

Fij and dSij as individually anti-symmetric.

This new perspective suggests a way to generalise to higher dimensions. In the line

integral (6.17) we’re integrating a vector field over a line. In the surface integral (6.19),

we’re really integrating an anti-symmetric 2-tensor over a surface. The key idea is that

one can integrate a totally anti-symmetric p-tensor over a p-dimensional subspace.
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Specifically, given an anti-symmetric p-tensor, the generalisation of the line integral

(6.17) is the integration over a p-dimensional subspace,∫
M

Ti1...ip dSi1...ip (6.20)

where dim(M) = p. Here dSi1...ip is a higher dimensional version of the “area element”

defined in (6.19).

Alternatively, the higher dimensional version of the surface integral (6.18) involves

first mapping the p-tensor to an (n− p)-tensor using the Hodge dual. This can subse-

quently be integrated over an (n− p)-dimensional subspace∫
M̃

Ti1...ipϵi1...ipj1...jn−p dS̃j1...jn−p (6.21)

with dim(M̃) = n− p.

In fact, we’ve already met an integral of the form (6.21) elsewhere in these lectures,

since this is what we’re implicitly doing when we integrate a scalar field over a volume.

In this case the “area element” is just dSi1...in = 1
n!
ϵi1...in dV and the two epsilon symbols

just multiply to a constant.. When actually computing a volume integral, this extra

machinery is more of a distraction than a help.. But if we want to know how to think

about things more generally then it’s extremely useful.

6.3.2 Differentiating Anti-Symmetric Tensors

We’ve now learned how to integrate anti-symmetric tensors. Our next step is to learn

how to differentiate them. We’ve already noted in (6.12) that we can differentiate a p

tensor once to get a tensor of rank p + 1, but in general differentiating loses the anti-

symmetry property. As we now explain, there is a way to restore it so that when we

differentiate a totally anti-symmetric p tensor, we end up with a totally anti-symmetric

(p+ 1)-tensor.

For a scalar field, things are trivial. We can construct a vector field ∇ϕ and this is

automatically “anti-symmetric” because there’s nothing to anti-symmetrise.

If we’re given a vector field Fi, we can differentiate and then anti-symmetrise by

hand. I will introduce a new symbol for “differentiation and anti-symmetrisation” and

write

(DF )ij :=
1

2

(
∂Fi

∂xj
− ∂Fj

∂xi

)
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where the anti-symmetry is manifest on the right-hand side. I should confess that the

notation DF is not at all standard. In subsequent courses, this object is usually viewed

as something called a “differential form” and written simply as dF but the notation

dF is loaded with all sorts of other connotations which are best ignored at this stage.

Hence the made-up notation DF .

In R3, this anti-symmetric differentiation is equivalent to the curl using the Hodge

map (6.16),

(∇× F)i = ϵijk(DF )jk

But now we can extend this definition to any anti-symmetric p-tensor. We can always

differentiate and anti-symmetrise to get a (p+ 1)-tensor defined by

(DT )i1...ip+1 =
1

p+ 1

(
∂Ti1...ip
∂xip+1

+ p further terms

)
where the further terms involve replacing the derivative ∂/∂xip+1 with one of the other

coordinates ∂/∂xj so that the whole shebang is fully anti-symmetric.

Note that, with this definition of D, if we differentiate twice then we take a p-tensor

to a (p+ 2)-tensor. But this (p+ 2)-tensor always vanishes!

(DDT )i1...ip+2 = 0

for any tensor T . This is because we’ll have two derivatives contracted with an epsilon

and is the higher dimensional generalisation of the statements that ∇ × ∇ϕ = 0 or

∇ · (∇× F) = 0.

As an aside: this is actually the second time in these lectures that we’ve seen some-

thing vanish when you act twice, although you’d be forgiven for failing to notice the

connection. Here our new anti-symmetric derivative obeys D2(anything) = 0. But we

previously saw that the “boundary of a boundary” is always zero. This means that if

a higher dimensional space (really a manifold) M has boundary ∂M then ∂(∂M) = 0.

Conceptually, these two ideas are very different but one can’t help but be struck by

the similarity of the equations D2(anything) = 0 and ∂2(anything) = 0, even though

the “anything”’s are very different objects in the two formulae. It turns out that this

similarity is pointing at a deep connection between the topology of spaces and the

kinds of tensors that one can put on these spaces. In fancy maths words, this is the

link between homology and cohomology.

– 130 –



Finally, we can now state the general integration theorem. Given an anti-symmetric

p-tensor T , then ∫
M

(DT )i1...ip+1 dSi1...ip+1 =

∫
∂M

Ti1...ip dSi1...ip (6.22)

Here dim(M) = p + 1 and, therefore the boundary has dim(∂M) = p. Note that we

don’t use a different letter to distinguish the integration measure over these various

spaces: everything is simply dS and you have to look closer at the indices to see what

kind of space you’re integrating over.

The equation (6.22) is a unification of all integration theorems. It contains the

fundamental theorem of calculus (when p = 0), the divergence theorem (when p = n−1)

and Stokes’ theorem (when p = 1 and Rn = R3). Geometers refer to this generalised

theorem simply as Stokes’ theorem since that is the original result that it resembles

most. The proof is simply a higher dimensional version of the proofs that we sketched

previously.

There is, to put it mildly, quite a lot that I’m sweeping under the rug in the discussion

above. In particular, the full Stokes’ theorem does not hold only in Rn but in a general

curved space known as a manifold. In that context, one has to be a lot more careful

about what kind of tensors we’re dealing with and, as I mentioned above, Stokes’

theorem should be written using a kind of anti-symmetric tensor known as a differential

form. None of this really matters when working in flat space, but the differences become

crucial when thinking about curved spaces. If you want to learn more, these topics will

be covered in glorious detail in later courses on Differential Geometry or, for physicists,

General Relativity.
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What You Really Need

Here are expressions for div, grad, curl and the Laplacian in various coordinate systems.

Cartesian: x = (x, y, z)

∇f =
∂f

∂x
x̂+

∂f

∂y
ŷ +

∂f

∂z
ẑ

∇ · F =
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z

∇× F =

(
∂Fz

∂y
− ∂Fy

∂z

)
x̂+

(
∂Fx

∂z
− ∂Fz

∂x

)
ŷ +

(
∂Fy

∂x
− ∂Fx

∂y

)
ẑ

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

Cylindrical Polars: x = (ρ cosϕ, ρ sinϕ, z)

∇f =
∂f

∂ρ
ρ̂+

1

ρ

∂f

∂ϕ
ϕ̂+

∂f

∂z
ẑ

∇ · F =
1

ρ

∂(ρFρ)

∂ρ
+

1

ρ

∂Fϕ

∂ϕ
+
∂Fz

∂z

∇× F =

(
1

ρ

∂Fz

∂ϕ
− ∂Fϕ

∂z

)
ρ̂+

(
∂Fρ

∂z
− ∂Fz

∂ρ

)
ϕ̂+

1

ρ

(
∂(ρFϕ)

∂ρ
− ∂Fρ

∂ϕ

)
ẑ

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2
∂2f

∂ϕ2
+
∂2f

∂z2
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Spherical Polars: x = (r sin θ cosϕ, r sin θ sinϕ, r cos θ)

∇f =
∂f

∂r
r̂+

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂ϕ
ϕ̂

∇ · F =
1

r2
∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fϕ

∂ϕ

∇× F =
1

r sin θ

(
∂(sin θFϕ)

∂θ
− ∂Fθ

∂ϕ

)
r̂+

1

r

(
1

sin θ

∂Fr

∂ϕ
− ∂(rFϕ)

∂r

)
θ̂ +

1

r

(
∂(rFθ)

∂r
− ∂Fr

∂θ

)
ϕ̂

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
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