
Continuity conditions for a fault consisting of obliquely
aligned cracks

S. R. Tod1,2 and J. A. Hudson1

1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, CB3 9EW, UK.

E-mails: S.R.Tod@damtp.cam.ac.uk; J.A.Hudson@damtp.cam.ac.uk
2 British Geological Survey, West Mains Road, Edinburgh, EH9 3LA, UK

Accepted 2000 October 3. Received 2000 September 29; in original form 2000 May 24

SUMMARY

Expressions exist for the continuity conditions that apply to a plane fault that is modelled
as a distribution of circular cracks lying in the plane of the fault. These are conditions
that apply when the wavelength of the incident wave is large compared with crack size
and spacing, and they are approximate for a small number density of the cracks. In form
they are identical to the `fault-slip' conditions of Murty, Schoenberg and Pyrak-Nolte,
Myer & Cook, in which the traction is proportional to the displacement discontinuity
across the fault. It is possible to envisage a fault consisting of obliquely aligned cracks
whose centres lie in the median plane of the fault but whose normals are not necessarily
perpendicular to the fault. We have found the interface conditions for this model to be
more complex than those for the fault-slip model and involve elements of the stress
tensor other than the tractions on the plane of the fault. The continuity conditions are
compared with those for a thin anisotropic layer and it is found that there is no
equivalent material layer representation unless the cracks are parallel to the plane.
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1 I N T R O D U C T I O N

The effect of stress on geological materials is very complex.

When loaded above the yield strength, a rock mass may deform

in a continuous or plastic manner, it may slip along surfaces of

weakness or pre-existing faults, and it may fail through the

creation of new fractures. The pattern of fractures that is set up

when a material fails for the ®rst time can be quite varied, even

in relatively homogeneous engineering materials (e.g. Naumann

1983). Faults in geological structures are generally assumed to

be the results of tectonic shear stress of such a magnitude that

fracture and slip occur across a more or less plane surface. The

two sides of the fault no longer conform and the interface may

be characterized by regions of ®rm contact, with the fault faces

pressed together by the ambient stress, and other regions that

are open and ¯uid- or air-®lled (e.g. Nagy 1992). The fault may

be seen as a distribution of cracks lying in a surface with the

crack normals parallel to the normal of the surface. However,

failure may be accompanied by cracks oriented in quite different

directions (Naumann 1983). For instance, slip on a fracture can

generate cracks striking away from the fracture surface. The

plastic slip surfaces of a bar in torsion can be seen to form

a criss-cross pattern on the surface of the bar, indicating that

the surface of failure will lie at roughly 45u to the surface of

maximum shear stress. Finally, materials with preferred planes

of weakness will, in general, fracture along such planes. If the

surface of maximum shear stress is inclined to these planes,

the failure mechanism may show a sequence of short en echelon

cracks. The cracks lie in the planes of weakness while their

centroids lie in roughly the plane of shear, or fault plane.

Faults are signi®cant and interesting features of geological

structures. They may signify the orientation and magnitude

of tectonic stresses over geological time. A fault can act as a

¯uid conduit or a seal depending on the fault zone complexity

or microstructural details (Jones & Knipe 1996). Therefore,

prediction of the fault seal potential is important. One way

to characterize the fault zone complexities is to use seismic

methods (Downey 1990; Yielding et al. 1992). In that they are

structurally different from the surrounding rock, faults will

have a seismic signature that, if it can be identi®ed, would be a

valuable tool for interpretation.

The simplest kind of fault, in which the fault surface is

represented by a distribution of open regions interspersed with

contact regions lying in the surface, has been modelled by several

authors. The ®rst seems to have been Sezawa & Kanai (1940),

who proposed continuity of traction and normal displacement,

and a discontinuity in transverse displacement proportional

to the shear traction as a smoothed out representation of the

motion at an incompletely welded interface of this kind. Similar

empirical models by Murty (1976), Schoenberg (1980) and Pyrak-

Nolte et al. (1990) have allowed for a general discontinuity

in displacement linearly related to the traction, via a diagonal

`fracture compliance' matrix (the fault-slip model). A general-

ization of this model in which the fracture compliance matrix
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has non-zero off-diagonal terms has been proposed (Schoenberg

& Douma 1988; Nakagawa et al. 2000), resulting in an `aniso-

tropic fault'. Such models have been shown to be applicable

at long wavelengths for the fault model consisting of a distri-

bution of cracks lying in a plane; they fail to take into account

the scattering present at shorter wavelengths. Expressions have

been derived for the coef®cients in the relation between displace-

ment discontinuity and traction in the case where the density of

open regions, or cracks, is small (Hudson et al. 1996b) and

where it is large (Hudson et al. 1997). The latter model has been

used to interpret seismic data from vertical seismic pro®les with

good results (Worthington & Hudson 2000).

A straightforward extension of the model of the fault as a

plane distribution of cracks lying in the fault plane (Hudson

et al. 1996b) is one where the cracks are aligned with one another

but with normals at an arbitrary angle to the fault plane

(see Fig. 1). A 2-D numerical simulation of a periodic array of

inclined cracks was carried out by Mikata & Achenbach (1988).

Following the discussion above, we may consider the fault

plane to be the slip plane dictated by the stress ®eld, while the

cracks lie in planes of weakness of the material. For convenience

we assume that the centroids of the cracks lie in the fault plane

and, assuming that the cracks are of random shape, take the

mean crack to be circular (see Fig. 2).

We analyse the effect that this crack distribution has on

seismic waves using the method of smoothing and we work to

second order in the number density of cracks. The results are

valid for wavelengths long compared with the crack size and

spacing, and for small crack number densities.

2 T H E O R Y

Following Hudson et al. (1996b), the formula for the mean

displacement num in response to an incident ®eld u0 scattered by

a distribution of scatterers is

SuT~u0zeNSS1TSuT{e2 N2SS1T2{N�N{1�SS1S2T
ÿ �

SuT

zO�e3� , (1)

where N is the total number of cracks, enS1m is the mean

scattering operator for the cracks and e2nS1S2m is the mean of

the operator for sequential scattering at two separate cracks.

We de®ne the crack density e to be

e~lsa2 , (2)

where ns is the number of cracks per unit area of fault and a is

the mean diameter of a crack.

The mean scattering operator applied to the mean ®eld is

eNSS1
i TSuT~

a3

k

�
S

ls�î� 1

a2

�
&

Ukl tl SuT� ���&; îzX
� �

dSX

� �

|c0
kjmq

LGm
i

Lmq

�x, î�njdSî , (3)

where n is the normal to the typical crack, c0 is the stiffness

tensor of the homogeneous material in which the cracks are

embedded,

c0
ipjq~jdipdjqzk dijdpqzdiqdpj

ÿ �
, (4)

S is the fault surface in which the centroids j of the cracks lie

with number density ns(j), j+X is a point on the surface S of a

typical crack, t(num)|S is the traction on the crack due to the

displacement ®eld num, and (a/m)Ukl(tl; j+X) is the kth com-

ponent of the discontinuity in displacement on the crack due to

tractions t on the faces. The displacements u for any speci®c

distribution of cracks are discontinuous across the face of each

crack, but we expect the mean ®eld, which is an expectation

over all such distributions, to be continuous. However, we also

expect that it will vary rapidly across the `fault region', which

we may de®ne as a thin layer enclosing the cracks (see Fig. 1).

If this is the case, the corresponding stresses will also vary

continuously but rapidly across the fault region. The interface

conditions that we derive are continuity conditions across

the layer de®ning the fault region, in the case where the layer

thickness is negligibly small compared with a wavelength.

To evaluate

1

a2

�
&

Ukl tl SuT� ���&; X� �
dSX , (5)

we may replace tl by tÄl+tlk, the sum of a constant component,

tÄl=sÄ lrnr, where sÄ lr is the mean of the two values of slr (num) on

either side of the fault region,

~plr~
1

2
plrjx3~0z

zplrjx3~0{

h i
, (6)

and tlk is the remainder. Due to the linearity of Ukl, we may

write eq. (5) as

1

a2

�
&

Ukl ~tl

��
&; X

� �
dSXz

1

a2

�
&

Ukl t0l
��
&; X

� �
dSX : (7)

Clearly tlk changes sign across the crack face; if it were a

completely anti-symmetric function, we would have

1

a2

�
&

Ukl t0l
��
&; X

� �
dSX~0 , (8)

and we assume this to be approximately true in all cases. Thus,

eNSS1
i TSuT~

a3

k

�
S

ls�î� �Ukl ~plr SuT� �nrc
0
kjmq

LGm
i

Lmq

�x, î�njdSî ,

(9)

Figure 1. The fault model, consisting of a distribution of parallel

cracks aligned at an angle to the fault plane (dashed line) in which they

are centred and enclosed within the `fault region' (dotted lines).

Figure 2. Schematic of a fault model in which the mean crack shape is

taken to be circular.
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where

�Ukl � 1

a2

�
&

Ukl 1; X� �dSX , (10)

and we have again used the fact that Ukl(tl; X) is linear in t.

Similarly,

e2 N2SS1
i TSS2T{N�N{1�SS1

i S
2T

ÿ �
SuT

~
a3

k

�
S

�
S

ls�æ� ls�î�{ls�îjæ�� �c0
kjmq

LGm
i

Lmq

�x, î�nj
�Uklnr

|c0
lrpt

L
Lmt

Auonx

LGu
p

Lfo
�î, æ� L gSunT

Lfx

�æ�
" #

dSîdSæ , (11)

where

Auonx~
a3

k
c0

kjuoc
0
lrnxnjnr

�Ukl (12)

and ns(j|f) is the conditional number density.

We wish to represent eqs (9) and (11) as radiation from

discontinuities in displacement and traction on the fault S.

Suppose we have

SuT� �~A�x1, x2�
StT� �~B�x1, x2�

)
on x3~0 : (13)

The associated radiation is given (e.g. Hudson 1980b) by v,

where

oi�x�~
�
S

Ak�m1, m2�c0
k3pq

LG
p
i

Lmq

�x, î�{Bk�m1, m2�Gk
i �x, î�

� �
dSî :

(14)

In order to identify this with the second and third terms in

eq. (1), we need to bring it into the form

oi�x�~
�
S

Ck�m1, m2�njc
0
kjpq

LG
p
i

Lmq

�x, î�dSî : (15)

To do this, we write

Bk�x1, x2�~ L
Lx1

Bk1�x1, x2�z L
Lx2

Bk2�x1, x2� , (16)

so that eq. (14) becomes

oi�x�~
�
S

Ak�m1, m2�c0
k3pq

LG
p
i

Lmq

�x, î�
�

zBpc�m1, m2�
LG

p
i

Lmc
�x, î�

�
dSî , (17)

where the suf®x c is summed over 1, 2 only.

For equality with eq. (15), we must have

Akc0
k3pczBpc~Cknjc

0
kjpc ,

Akc0
k3p3~Cknjc

0
kjp3

(18)

for c=1, 2, and p=1, 2, 3.

If the material outside the fault is isotropic, then

Ac~Ccn3zC3nc ,

�jz2k�A3~j�C1n1zC2n2�z�jz2k�C3n3 ,

�jz2k�B11~2k 2�jzk�C1n1zjC2n2� � ,
B12~k C1n2zC2n1� �~B21 ,

�jz2k�B22~2k jC1n1z2�jzk�C2n2� � ,
B3c~0

(19)

for c=1, 2. This corresponds exactly to the result derived for

point dislocations by Hudson (1969).

Identifying eq. (15) with the sum of eqs (9) and (11), we have

Ck�î�~ ea
k

�Ukl

"
~plrnr{c0

lrstnrAuonx

�
S

ls{ls�îjæ�� �

|
L2Gu

s

LmtLfo
�î, æ� L gSunT

Lfx

�æ�dSæ

#

~
ea
k

�Ukl dlnz
ea
k2

c0
lqstnqc0

mjuonj
�UmnKs

stuo

� �
~pnrnr , (20)

where

Ks
stuo~{k

�
S

1{ns�î{æ�� � L2Gu
s

LmtLfo
�î{æ�dSæ , (21)

ns�îÿ æ� � ls�îjæ�
ls

, (22)

and we have corrected a sign error in eq. (16) of Hudson et al.

(1996b).

Now, if we let X=jxf, which represents the distance

between two points on the fault plane S, we have

Ks
stuo~k

�
S

1{ns�X�� � L2Gu
s

LXtLXo
�X�dSX , (23)

where X=|X|, and we have further assumed that ns depends on

X only.

Exploiting the symmetries of eq. (20), we replace it by

Ck~
ea
k

Vknnr~pnr , (24)

where

Vkn � �Ukl dln � ea
k2

c0
lqstnqc0

mjuonj
�Umn

~Kstuo

� �
(25)

and

4 ~Kstuo~Ks
stuozKs

stouzKs
tsuozKs

tsou : (26)

We may further symmetrize C by exploiting the symmetries of

sÄ , and thus replace sÄnr in eq. (24) by (1/2) (dnpdrq+drpdnq)sÄpq.

We choose not to use this throughout the remainder of this

paper for the sake of brevity.

We follow the same approach as Hudson (1980a) in approxi-

mating Green's function in the long-wavelength near-®eld limit,
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so the non-zero terms of the KÄ stuo are

~Kigcq � 1

32

�?
0

Lns

LX

dX

X
1{

b2

a2

 !
digdcq

"

{ 3z
b2

a2

 !
dicdgqzdiqdgc
ÿ �#

,

~K33gq � 1

8

�?
0

Lns

LX

dX

X
1{

b2

a2

 !
dgq~ ~Kgq33 ,

~K3g3q � 1

16

�?
0

Lns

LX

dX

X
3{2

b2

a2

 !
dgq~ ~K3gq3

~ ~Kg33q~ ~Kg3q3 ,

~K3333 �{
1

4

�?
0

Lns

LX

dX

X
1{3

b2

a2

 !

(27)

for k, g, c, t=1, 2.

Adopting the same functional dependence of ns on X as

Hudson et al. (1996b),

ns X� �~
1{e{ X{2a� �2=l2

, X§2a

0 , 0¦X < 2a

8<: , (28)

where l represents the crack spacing, we ®nd that�?
0

Lns

LX

dX

X
~n ls� �1=2 : (29)

Thus eq. (1) may be seen to represent the mean ®eld as a sum of

the incident ®eld together with radiation from discontinuities

on the fault surface S. The effect of the fault is, therefore,

to introduce these discontinuities on S; the discontinuity in

displacement is A, which is given in terms of C by eq. (19), and

the discontinuity in traction is B, which is given in terms of C by

eqs (16) and (19); C is given by eqs (24) and (25).

Finally, to evaluate UÅ kl we use

a

k
�Ukl�tl�~ SukT� � , (30)

where [nukm] is the displacement discontinuity on a crack with

normal n, under the in¯uence of tractions t on the crack face.

We now change to new axes oriented with the 3-axis normal

to the crack, i.e. along n. Let {lij} be the rotation matrix, so that

l3i~ni , ljini~dj3 : (31)

The displacement referred to the new axes is

Su0iT
� � � lij SujT

� �
� a

k
lij lpk

�Ujk�t0p�

� a

k
�Uip�t0p� ,

(32)

where UÅ ip(tkp) is m/a times the discontinuity in displacement in the

xi-direction due to tractions tk acting on a crack with its normal

in the x3-direction. Expressions for UÅ ip are given by Hudson

(1980a, 1981, 1988) and Hudson et al. (1996b). Thus,

�Ujk~lpj lqk
�Upq : (33)

For circular cracks {UÅ pq} is a diagonal matrix with UÅ 11=UÅ 22

(Hudson 1980a), so we have

�Ujk~�djk{njnk� �U11znjnk
�U33 : (34)

Thus the continuity conditions for a fault consisting of obliquely

aligned cracks are

u1� � � ea
k

n3V1nzn1V3n� �nr~pnr ,

u2� � � ea
k

n3V2nzn2V3n� �nr~pnr ,

u3� � � ea
k

j
jz2k

n1V1nzn2V2n� �zn3V3n

� �
nr~pnr ,

t1� �~ea
�

2
2 jzk� �
jz2k

n1V1nz
j

jz2k
n2V2n

� �
L

Lx1

z n2V1nzn1V2n� � L
Lx2

�
nr~pnr ,

t2� � � ea
�

2
2 jzk� �
jz2k

n2V2nz
j

jz2k
n1V1n

� �
L

Lx2

z n2V1nzn1V2n� � L
Lx1

�
nr~pnr ,

t3� � � 0 :

(35)

We now examine the traction discontinuity, [t]. We ®rst note

that when the cracks are aligned in the plane of the fault,

n1=n2=0, [t] is identically zero and the continuity conditions

reduce to those of Hudson et al. (1996b),

Su1T� � � ea
k

V11p13 ,

Su2T� � � ea
k

V11p23 ,

Su3T� � � ea
k

V33p33 ,

(36)

with UÅ kl=UÅ kl. It may be noted that since the traction is

continuous across the fault, sÄ has been replaced by s on the

right-hand sides of these equations. We may also compare these

with the empirical continuity conditions given by Pyrak-Nolte

et al. (1990),

u1� � � 1

i1
p13 ,

u2� � � 1

i2
p23 ,

u3� � � 1

i3
p33,

(37)

so that the two correspond exactly if

i1 � i2~
ea
k

V11

� �{1

,

i3 � ea
k

V33

� �{1

:

(38)
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A similar correspondence may be found with the empirical

relations of Schoenberg (1980). Furthermore, under static loading

perpendicular to the fault, or shear parallel to it, [t] vanishes, as

it depends directly on derivatives parallel to the fault.

However, under dynamic conditions [t] is not zero in general

and, as far as the authors are aware, no empirical conditions

have been suggested that entail a discontinuity in traction, since

such a discontinuity at an interface is normally taken to imply

a distribution of uncompensated forces on the interface. The

argument on which this is based relies on the process of taking

a small disc of material, with one face above the interface and

one below, and taking the limit as the thickness of the disc goes

to zero. The disc then has zero mass but, if the tractions are

unequal on either side of the interface, it is acted on by a ®nite

force, thus implying a contradiction. However, in the case of the

fault model we have chosen, this limit cannot be taken because

the fault region is of ®nite, if small, thickness unless the cracks

lie parallel to the fault, so there is, in fact, no contradiction in

having a non-zero [t].

The origin of the discontinuity in the traction is clear.

Although the tractions are continuous across a crack, the stress

tensor is not. Since the fault has a different orientation from

that of the cracks, we should expect the tractions across the

fault to be discontinuous.

If a plane wave of the form qei(kexxvt) is incident on the

fault (whose normal is in the x3-direction), all quantities will

depend on x1, x2, t through the factor ei(k1x1+k2x2xvt). In this

case the operators h/hx1 and h/hx2 in eq. (35) can be replaced,

respectively, by ik1 and ik2.

3 C O N T I N U I T Y C O N D I T I O N S F O R A
T H I N A N I S O T R O P I C L A Y E R

We compare our continuity conditions with those derived for a

thin anisotropic layer of width h lying in 0jx3jh by a ®nite

difference approximation in the x3-direction. We assume that

the wave propagates in a medium whose properties vary only

in the x3-direction and we consider a solution to the equations

of motion of the form

u~F�x3� ei k1x1zk2x2{ut� � ; (39)

this construction corresponds to a plane wave incident on the

layer when it is set in homogeneous material above and below.

We integrate the equations of motion

Lpij

Lxj
~o0

L2ui

Lt2
(40)

and the stress±strain relations

eij~s0ijklpkl (41)

across the layer, where sk is the tensor of compliances and rk is

the density of the material in the layer. In doing so, we make the

approximations�h

0

pkldx3^h~pkl ,

�h

0

ujdx3^h~uj :

(42)

In this way we obtain conditions for the discontinuities in

displacements and tractions across the layer,

u1� � � 2hs013kl ~pkl{ik1h~u3 ,

u2� � � 2hs023kl ~pkl{ik2h~u3 ,

u3� � � hs033kl ~pkl ,

t1� � �{ho0u2~u1{ih k1~p11zk2~p12� � ,
t2� � �{ho0u2~u2{ih k1~p12zk2~p22� � ,
t3� � �{ho0u2~u3{ih k1~p13zk2~p23� � ,

(43)

and three further relations that do not contain terms involving

discontinuities across the layer. Thus we ®nd that this thin

anisotropic layer exhibits a traction discontinuity; indeed, even

for a thin isotropic layer we have such a discontinuity.

If the layer thickness is very much smaller than a wavelength,

i.e.

kh%1 , (44)

where k is the wavenumber of the incident wave, eq. (43)

reduces to

u1� � � 2hs013kl ~pkl ,

u2� � � 2hs023kl ~pkl ,

u3� � � hs033kl ~pkl ,

t1� � �{ho0u2~u1 ,

t2� � �{ho0u2~u2 ,

t3� � �{ho0u2~u3 :

(45)

While boundary conditions for displacement discontinuities

for thin anisotropic layers have been derived by many authors

(e.g. Schoenberg & Douma 1988), the expressions obtained by

Rokhlin & Huang (1993) also include a traction discontinuity

of the same form as eq. (45).

The displacement and traction discontinuities are of the

order

u� �*kh
kck
kc0k juj ,

t� �*kh
o0

o
kók ,

(46)

where c and r are the stiffness and density of the material

outside the layer, thus we cannot neglect the displacement

discontinuities if the material in the layer is much weaker than

the matrix material; that is, dcd/dckd is suf®ciently large that

khdcd/dckd is not negligibly small. This case was studied by

Hudson (1981) and introduced by Hudson et al. (1996b) to

construct an equivalent layer formulation for the continuity

conditions (eq. 36) for a distribution of cracks lying in the fault

plane.

On the other hand, the discontinuity in traction cannot be

neglected if rk/r is suf®ciently large that khrk/r is not small.

This implies a very dense layer and, of course, it is physically

very plausible that such a layer can be represented as a traction

discontinuity.

The continuity conditions (eq. 45) for a thin anisotropic

layer show some similarity with those for an array of parallel

cracks (eq. 35) in that they involve discontinuities in traction,
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and the displacement discontinuities are related to all com-

ponents of stress, not just the traction on the fault plane.

However, the conditions for the parallel cracks include [t3]=0,

and this cannot be reproduced for a thin layer without having

[t1]=0 and [t2]=0 as well. It appears, therefore, that there is

no equivalent layer representation of a plane distribution of

parallel cracks unless the cracks are parallel to the plane.

4 C O N C L U S I O N S

In generalizing the model of Hudson et al. (1996b), we have let

the orientation of the cracks with respect to the fault planeÐ

the plane in which the centroids of the cracks lieÐvary, provided

that they remain parallel to each other. This enables us to

model a greater range of potential fault con®gurations.

We have derived the continuity conditions for this model and

found that the traction is discontinuous across the fault. We

also found that the discontinuities depend upon all elements of

the average stress tensor, rather than just those components

that constitute the traction on the fault. As far as the authors

are aware, such conditions have not been postulated in any

empirical models of an imperfectly bonded fault.

When the normal to the cracks is parallel to the normal to the

fault, our conditions reduce to those of Hudson et al. (1996b),

and are identical in form to empirical models (e.g. Murty 1976;

Schoenberg 1980; Pyrak-Nolte et al. 1990).

Justi®cation has been provided for the traction discontinuity,

and we have further shown that traction is discontinuous

across a thin layer of anisotropic material, even when the layer

thickness is very much smaller than the wavelength, provided

that the material in the layer is very much denser than the

matrix material in which it is embedded. We have also shown

that the displacement is discontinuous across the layer when

the layer thickness is very much smaller than the wavelength,

provided that the material in the layer is very much weaker

than the matrix. However, it is clear that no material layer

can be constructed that is equivalent, for wave propagation

problems, to a distribution of parallel cracks unless the cracks

are oriented with normals perpendicular to the fault plane. This

does not prevent use of the boundary conditions (eq. 35) in

re¯ection/transmission problems.

The model is independent of the nature of the crack in®ll,

and we may account for different scenarios by varying the

values of the parameters UÅ 11 and UÅ 33 to allow for ¯uid-®lled

cracks (Hudson 1980a), dry cracks or cracks ®lled with weak

material (Hudson 1981), partially saturated cracks (Hudson

1988) and interconnected cracks (Hudson et al. 1996a). To

allow for a number of sets of cracks with different orientations,

we may calculate the contribution to UÅ ij of each such set and

form a weighted sum of these to calculate the total values of

the UÅ ij (Hudson 1986). To allow for a continuous distribution

of crack orientation and aspect ratio, the sum becomes an

integral in a straightforward way (see Hudson 1990; Peacock &

Hudson 1990; Tod 2001).
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