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S U M M A R Y
The cracks in a porous matrix that is subjected to a change in the applied stress or fluid pressure
will undergo a distortion related to their orientation relative to the principal directions of the
applied stress. Both the crack distribution and the fluid-flow properties of the aggregate will be
altered as a consequence, of a change in either the applied stress or fluid pressure, resulting in
a change in the effective elastic parameters of the material. An effective medium theory, based
on the method of smoothing and incorporating a transfer of fluid between connected cracks via
non-compliant pores, is used to derive an expression for the effective elastic parameters of the
material, to first order in the crack density ε. This expression involves a dependence on both
the applied stress and the fluid pressure, and is used to determine the effects on the anisotropy
of the effective medium of the applied stress and the fluid pressure. A number of azimuthally
symmetric compressive stresses are applied to an isotropic crack distribution to determine the
material properties of the resulting transversely isotropic effective medium, as a function of the
excess in compressive stress over fluid pressure. As a result of competing processes, the theory
predicts that, for a non-hydrostatic stress, there is a pressure at which the anisotropy reaches a
maximum value before the properties of the effective medium decay, under increasing stress,
to those of the uncracked matrix. The theory does not, however, account for the material failure
that will occur at large compressive stresses. Finally, the theory predicts that S waves are more
sensitive to changes in the applied stress or fluid pressure than P waves.
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1 I N T RO D U C T I O N

The cracks in a matrix rock are, potentially, a result of a number
of competing processes (Menéndez et al. 1999) that dictate the re-
sulting crack distribution. Within unstressed rock cracks exist as
a result of either the mineralogy of the rock, thermal processes
or stress history (e.g. Fredrich & Wong 1986). The crack orien-
tation distribution may be anisotropic, as a result of anisotropic
paleostresses. A non-isotropic stress applied to the rock will result
in preferential crack closure. The greater the alignment between
the crack normal and the principal directions of the stress, the less
the stress needed to close any given crack. The resulting crack dis-
tribution will exhibit further anisotropy. Furthermore, an applied
stress will, in general, result in the formation of new cracks (e.g.
Montoto et al. 1995) that are likewise predominantly oriented par-
allel to the direction of maximum principal stress (Menéndez et al.
1999).

The presence of pores or cracks in matrix rock will influence
the mechanical properties of the rock (Walsh 1965a,b). Thus, by
modelling the crack distribution to account for the effects of stress

(Nur 1971; Sayers 1988b; Gibson & Toksöz 1990) we may study
the effects of the cracks on these mechanical properties, such as
the velocities (Nur 1971; Kuster & Toksöz 1974; Sayers 1988b)
or the permeability (Gibson & Toksöz 1990). One may then at-
tempt to invert measurements of such properties for crack or pore
parameters (Cheng & Toksöz 1979; Sayers 1988a; Sun & Goldberg
1997). Clearly, then, advancements in the modelling of the mechan-
ical properties resulting from a distribution of cracks will aid the
accuracy of inversion techniques.

The effects of the application of an ambient stress to a cracked
medium has been studied both analytically (Horii & Nemat-Nasser
1983; Carlson & Gangi 1985; Li & Nordlund 1993; Pecorari 1997;
Zatsepin & Crampin 1997) and experimentally (Winkler 1985;
Freund 1992; Hornby 1994; Wulff et al. 1999) concluding that wave
speeds increase with differential pressure, defined as the difference
between the compressive stress and fluid pressure, whatever the form
of the compression that the rock is subjected to. The behaviour of
fractures under compression has also been the subject of analytic
(Bai et al. 2000) and experimental (Brown & Scholz 1986) stud-
ies. Results are explained in terms of preferentially oriented crack
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closure. However, none of these models have an explicit dependence
on the flow of fluid between cracks.

The method of smoothing (Hudson 1980) i.e. an effective medium
theory, gives the effective elastic parameters of a cracked mate-
rial, which allows the calculation of the speeds of waves of long
wavelengths. The method has recently been extended to allow for
the cracks to be connected through the porosity of the matrix rock
(Hudson et al. 1996; Tod 2001) where fluid may flow between cracks
that have been distorted differently by an incident wave owing to
differences in their orientation and aspect ratio. This model, up to
Tod (2001), fails to account for the dependence of the crack distri-
bution on both the applied stress field and the fluid pressure, and the
fact that the distributions of crack aspect ratio and orientation are
interdependent.

In this paper a model for the number density of cracks is devel-
oped that depends on both the aspect ratio and orientation of the
cracks, and, furthermore, depends on both the applied stress and
the fluid pressure. While Sun & Goldberg (1997) categorize the dy-
namic process of rock deformation under a changing differential
pressure into four stages, only the first and third of these are con-
sidered in the model herein; collapse of, and closure of, the original
cracks. The remaining two stages are defined as the deformation
of pores into cracks and the formation of new cracks of small as-
pect ratio. The model developed here thus predicts that the crack
density decays monotonically with an increase in the applied stress
from some initial value corresponding to the unstressed state. Thus,
this model is purely elastic, and assumes that during subsequent
unloading, the material relaxes to its original state. The model does
not therefore incorporate hysteresis (Li & Nordlund 1993; Gangi &
Carlson 1996), a result of crack growth (Gangi & Carlson 1996) or
crack formation (Sun & Goldberg 1997).

This model for the crack number density is used in conjunction
with the dependence of the effective elastic parameters on the crack
distribution, as derived by Tod (2001), to model the relation between
the anisotropy of the effective medium, incorporating fluid flow, and
the applied stress and fluid pressure.

2 A F L U I D - F L O W M O D E L

We follow the model of connected cracks proposed by Hudson et al.
(1996) and extended by Tod (2001) for the transfer of fluid between
cracks by non-compliant pores. The model is based on a local flow
governed by the mass transport equation

∂

∂t

(
ρn

f φn

) = −φ0
nρ0

κfτ

(
pn

f − pf

)
, (1)

which introduces attenuation into the model, and a global flow re-
sulting from D’Arcy’s law and the conservation of mass,

∂
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)
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where φn , φ0
n , ρn

f and pn
f are the porosity, stress-free porosity, fluid

density and fluid pressure, respectively, in the nth set of cracks,
where the cracks have been divided into families of parallel cracks
with identical aspect ratio and radius. ρ0 is the unstressed density,
κf the bulk modulus of the fluid, ρf the average fluid density, pf

the average (local) pressure in the fluid, ηf the fluid viscosity, K r

the permeability tensor of the matrix and τ a relaxation parameter
that characterizes the timescale of pressure equalization between
neighbouring cracks. The model is only valid at low pore porosities.
A basis for eq. (1) is given in Appendix A of Tod (2001), where it
is erroneously referred to as a diffusion equation.

This model is used by Tod (2001) to derive an expression, in
frequency–wavenumber space, for the effective elastic parameters
of a cracked material to first order in the crack density ε;

c = c0 + εc1 + O(ε2), (3)

where c0 is the elastic tensor for the, assumed isotropic, porous
matrix material,

c0
i pjq = λδi pδ jq + µ(δi jδpq + δiqδ j p), (4)

with λ and µ being the Lamé constants of the material; c1 accounts
for scattering off individual cracks.

3 T H E E F F E C T S O F S T R E S S
A N D F L U I D P R E S S U R E
O N T H E A S P E C T R AT I O

A change in the stress and/or fluid pressure on a cracked material
will result in a distortion of the cracks, which will alter the effective
elastic parameters. Hudson (2000) derives an expression for the
change in crack aspect ratio δα caused by a change in applied stress
field δσ and fluid pressure δpf on a crack, the normal of which lies
in the direction n;

δα = 2(1 − ν)

πµ
(δσi j ni n j + δpf) − α

κ
δpf, (5)

where ν is Poisson’s ratio for the matrix material. The last term on
the right-hand side is neglected by Hudson (2000) in comparison
with the other terms. This result is also given by Walsh (1965a)
and Zatsepin & Crampin (1997), without the last term. The sign
convention is such that a positive δσ or δpf will cause the cracks to
open. Integrating eq. (5), we find that

ln

(
1 + krα

1 + krα0

)
= 2kr (1 − ν)

πµ
(σi j ni n j + pf), (6)

where α0 is the aspect ratio of a given crack in the absence of stress
and fluid pressure and

kr = −3π (1 − 2ν)

4(1 − ν2)
(7)

is an O(1) constant. Expanding the left-hand side of eq. (6) as a
Taylor series yields

α − kr

2

(
α2 − α2

0

)+O
(
α3 − α3

0

)= α0 + 2(1 − ν)

πµ
(σi j ni n j + pf),

(8)

and for small aspect ratios we may neglect all terms of O(α2 − α2
0)

or above, such that

α = α0 + 2(1 − ν)

πµ
(σi j ni n j + pf). (9)

Attention is restricted to three alternative forms of compression:
uniaxial, biaxial and hydrostatic. For the uniaxial and biaxial forms,
the axis of symmetry is taken to be the x3-axis. This is the axis of
maximum stress for uniaxial compression and the axis of minimum
stress for biaxial compression. The corresponding stress tensors are
given by

σ U
i j = −σδi3δ j3, (10)

σ B
i j = −σ (δi1δ j1 + δi2δ j2), (11)

and
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σ H
i j = −σδi j , (12)

respectively. We then have that the differential pressure is given by

pd ≡ −
(

max
1≤i≤3

{−ζ i } + pf

)
= σ − pf, (13)

where the ζ i correspond to the eigenvalues of the tensile stress
tensor {σi j }. The differential pressure is a measure of the closing
pressure on the cracks, where the compressive stress works to close
the cracks, to which the fluid pressure provides a resistance.

On the application of a uniaxial compression (eq. 10) in the ab-
sence of fluid pressure, eq. (9) yields a critical angle, θ0, for the crack
normal below which a crack with initial aspect ratio α is closed:

cos2 θ0 = πµα

2(1 − ν)σ
. (14)

This result differs from that given by Gibson & Toksöz (1990) as
a result of an approximation made by Walsh (1965a). The corre-
sponding result for biaxial compression is

sin2 θ0 = πµα

2(1 − ν)σ
. (15)

4 E F F E C T I V E E L A S T I C PA R A M E T E R S

The expression derived for the first-order correction to the effec-
tive elastic parameters by Tod (2001) may be given in terms of a
continuous distribution of crack aspect ratio and orientation as

εc1
ipjq = − ε0

µ
c0

kripc0
usjqT̃ krus, (16)

where

T̃ krus = 8

3
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}

, (17)

where

γ ≡ γ (α) = 1 + 2κf (1 − ν)

πµα
. (18)

Here κ is the bulk modulus of the matrix, ω is the frequency and
{li j } is the rotation matrix from the background axes for a crack with
normal in direction n, to axes with normal in the x3-direction. We
write

dnc = nc(α; σ, pf, θ, φ) dα d� (19)

for the probability density of cracks in the elemental volume dα d�,
such that∫

�0

nc(α; 0, 0, θ, φ) dα d� = 1. (20)

d� is the solid angle sin θ dθ dφ and integration is over the volume
� ⊆ �0 ≡ R+ × �, where � is the region 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π

and the angular dependence is defined such that θ = 0 corresponds
to the x3-direction. � may differ from �0 by, for example, excluding

a region of � in which no cracks remain on application of a sufficient
compressive stress. ε0 is the crack density in the absence of an
applied stress or fluid pressure and the non-dimensional constants
K1 are K2 are defined as

K1 = 4(1 − ν)ηf

(2 − ν)πµτ
(21)

and

K2 = 3κfk̂ p K r
pq k̂q

4πε0v2τηf
, (22)

where k̂ is the normalized wavenumber—the wavenumber divided
by its magnitude—and v is a zeroth-order approximation to the wave
speed of the incident wave. K1 and K2 are related to the constants
Pm and Pk used in Tod (2001).

A term (−κf/κ) is neglected from the expression for γ (eq. 18),
which had been retained by Tod (2001) though previously ignored by
Hudson et al. (1996). While Thomsen (1995) retains this term, it was
originally neglected in Hudson (1981). Retention of the term here
breaks the necessary symmetry T̃ krus = T̃ uskr when the crack aspect
ratio distribution is orientation-dependent. This lack of symmetry
was not therefore evident in Tod (2001) as only independent distri-
butions were considered. It is anticipated that this lack of symmetry
is a result of the inconsistency between Tod (2001) and Hudson
(1981). Furthermore, it was found in Tod (2001) that it was neces-
sary to disregard this term in order for the effective elastic constants
to be consistent with Brown & Korringa (1975) in the low-frequency
limit.

Exploiting the symmetries of eq. (16), we may replace T̃ krus in
eq. (16) with S̃krus, where

4S̃krus ≡ T̃ krus + T̃ krsu + T̃ rkus + T̃ rksu, (23)

such that

εc1
ipjq = − ε0

µ
c0

kripc0
usjq S̃krus (24)

and

εs1
ipjq = ε0

µ
S̃ipjq, (25)

where the elastic compliances are of the form

s = s0 + εs1 + O(ε2) (26)

and

s0
ipjq = − λ

2µ(3λ + 2µ)
δi pδ jq + 1

4µ
(δi jδpq + δiqδ j p). (27)

An expression relating the first-order correction to the elastic com-
pliances to the first-order correction to the elastic stiffnesses can be
found in Tod (2001).

The total crack density ε is given by

ε(σ, pf) = ε0

∫
�

dnc. (28)

We make the simplifying assumption that in the absence of any ap-
plied stress or fluid pressure the distribution of cracks is independent
of the crack normal orientation;

nc(α; 0, 0, θ, φ) = nc
0(α), (29)

though by choosing otherwise, we may account for the effects of
anisotropic paleostresses.
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Using eq. (5) we may then write

nc(α; σ, pf, θ, φ)

=
{

nc
0[α − f (σ, pf, θ, φ)] α ≥ max{ f (σ, pf, θ, φ), 0}

0 otherwise,

(30)

where

f (σ, pf, θ, φ) = 2(1 − ν)

πµ
(σi j ni n j + pf). (31)

Restricting attention to the three compressive stresses (eqs 10–
12), we have that the crack distribution is transversely isotropic
about the x3-axis for uniaxial or biaxial compression and isotropic
for hydrostatic compression. In all three cases, the function f
(eq. 31) is independent of the polar angle φ.

As an approximation to the initial crack aspect ratio distribu-
tion nc

0(α), we use an exponential distribution, Exp(1/α0) (e.g. Ross
1989);

nc
0(α) = 1

2πα0
e−α/α0 for 0 ≤ α, (32)

where now α0 denotes the average aspect ratio in the absence of
stress and fluid pressure.

The resulting crack density is given by

ε(σ, pf) = ε0

∫ π/2

0

e−g(σ,pf,θ ) sin θ dθ, (33)

where

g(σ, pf, θ ) = max{− f (σ, pf, θ )/α0, 0}. (34)

Taking vP = 4.2 × 103 m s−1, vS = 2.7 × 103 m s−1, ρ = 2.49 ×
103 kg m−3, corresponding to the sandstone of model 1 in Sayers &
Rickett (1997), ε0 = 0.3 and α0 = 5.0×10−4, then under hydrostatic
stress the crack density is given by

ε(σ, pf) = ε0e−cr pd for pd ≥ 0, (35)

where we define

cr = 2(1 − ν)

πµα0
(36)

and for the choice of parameters above, cr = 6.0 × 10−8 Pa−1, in
good agreement with Zhang & Bentley (2000) and Chapman (2001).

The corresponding expressions for biaxial and uniaxial compres-
sion are given by

ε(σ, pf) = ε0

[
1 −

√
pd

σ
− i

2
e−cr pd

√
π

crσ
erf (i

√
cr pd )

]
for pd ≥ 0 (37)

and

ε(σ, pf) = ε0

{√
pf

σ
+ 1

2
ecr pf

√
π

crσ
[erf (

√
crσ ) − erf (

√
cr pf)]

}
for pd ≥ 0, (38)

respectively, where erf( x) is the error function (e.g. Gradshteyn &
Ryzhik 1980). In all three cases ε = ε0 for pd ≤ 0. We note that
i erf (i x) (eq. 37) is real.

We may simplify eq. (17) considerably in the zero-frequency limit
when the initial crack distribution is given by eq. (32). Represent-
ing the scaled compliance tensor S̃krus in terms of the conventional

condensed, two-subscript, 6 × 6 matrix notation, S̃i j , say, pairs of
indices are represented as a single index: kr → i , us → j , such that
11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5 and 12 → 6. Further-
more, a multiplicative factor of 2 is introduced if one of the indices
i or j is greater than 3 and a factor of 4 if both of them are. We find
that when pd ≤ 0,

S̃12 = 8

3
(1 − ν)

{
− 1

15

2

2 − ν
+ 1

15
− 2κf (1 − ν)

9πµ

×
[
α0γ0 − 2(1 − ν)

πµ

(
n

3
σ − pf

)]−1
}

(39)

= S̃13 = S̃23,

S̃66 = 32

3
(1 − ν)

(
1

10

2

2 − ν
+ 1

15

)
= S̃44 = S̃55 (40)

and

S̃11 = S̃12 + 1

2
S̃66

= S̃22 = S̃33, (41)

where n = 1, 2 and 3 for uniaxial, biaxial and hydrostatic compres-
sion, respectively, and γ0 ≡ γ (0) (eq. 18). Thus, c (eq. 3) is isotropic
and we may write the perturbations to the Lamé constants as

λ → λ − ε0

[(
9
λ2

µ
+ 12λ + 4µ

)
S̃12 +

(
3

2

λ2

µ
+ 2λ

)
S̃66

]
(42)

and

µ → µ − ε0µS̃66. (43)

For pd ≥ 0, under hydrostatic compression, S retains the same
symmetries as the above, but with

S̃12 = 8

3
(1 − ν)e−cr pd

{
− 1

15

2

2 − ν
+ 1

15
− 2κf (1 − ν)

9πµ

×
[
α0γ0 − 2(1 − ν)

πµ
pd

]−1
}

(44)

and

S̃66 = 32

3
(1 − ν) e−cr pd

(
1

10

2

2 − ν
+ 1

15

)
. (45)

Under either biaxial or uniaxial compression S̃ loses some of its
symmetries and the resulting expression for c has five independent
components.

5 R E S U LT S

We assume that {K r
pq} = K rδpq and take K r = 103 mD (�10−12 m2),

κf = 2.25 × 109 Pa and ηf = 10−3 Pa s. Taking τ = 10−5 s, and
assuming that the incident wave is of compression-wave type,
with frequency 50 rad s−1, the non-dimensional constants become
K1 = 3.2 × 10−9, K2 = 1.0 × 10−2 and ωτ = 5.0 × 10−4.

When the differential pressure pd (eq. 13) is negative, that is
σ/pf < 1, there is no crack closure, thus no change in crack density.
However, the change in crack aspect ratio is orientation-dependent,
so that the effective medium exhibits minor anisotropy.
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Figure 1. (a) Crack density ε as a function of differential pressure at 0 MPa
(solid line), 10 MPa (long dashes) and 20 MPa (short dashes) fluid pressure,
under biaxial compression. (b) Crack density as a function of differential
pressure for fluid pressure 0 MPa under biaxial (solid line), uniaxial (long
dashes) and hydrostatic (short dashes) compression.

Once σ/pf > 1, preferentially oriented crack closure occurs and
the crack density decreases with increasing compressive biaxial
stress (Fig. 1a). At large stresses only those cracks with normals
lying in, or close to, the x3-direction remain open. The presence
of a non-zero pressure within the fluid medium increases the crack
density at any given value of the compressive stress, as it hinders the
process of crack closure (Fig. 1a). Crack density decreases faster,
as a function of differential pressure, for hydrostatic compression
(eq. 12) than for biaxial compression (eq. 11), (Fig. 1b), which in
turn decreases faster than for uniaxial compression (eq. 10).

The anisotropy of the effective medium is measured using
Thomsen’s parameters; εT, δT and γT (eqs A1–A3) (Thomsen 1986).
As can be seen (Figs 2a and b) all three of the parameters reach a max-
imal (absolute) value under biaxial or uniaxial compression before
decaying towards zero at large differential pressure as the properties
of the cracked aggregate approach those of the uncracked matrix.
We notice that δT, a measure of the SH -wave anisotropy, reaches far
larger values than εT, a measure of the P-wave anisotropy, and so is
more likely to be detected. For uniaxial compression (Fig. 2b), peak
values of the anisotropy parameters are reached at larger values of
the differential pressure than for biaxial compression (Fig. 2a). This
is largely as a result of the larger crack density at comparative dif-
ferential pressures for uniaxial compression as opposed to biaxial
compression.

For waves propagating in a direction parallel to the symmetry
axis, there is no shear wave splitting, just two wave speeds. Both

Figure 2. (a) Thomsen’s parameters εT (solid line), δT (long dashes) and
γT (short dashes) as a function of differential pressure at a fluid pressure
of 20 MPa, under biaxial compression. (b) As in (a), except under uniaxial
compression.

of these wave speeds are seen to increase with differential pressure
(Figs 3a–c ), approaching the matrix wave speeds at large pressures.
For a biaxial (Fig. 3a) or hydrostatic (Fig. 3c) compression the shear
wave speed shows a significantly greater proportional change with
pressure than the compressional wave speed does, indicating that
shear waves are more sensitive to pressure changes than compres-
sional ones. However, for a uniaxial compression (Fig. 3b) this dif-
ference is only very slight. Comparing the wave speeds at different
fluid pressures for biaxial and uniaxial compression (Figs 3a and b),
we notice that a non-zero fluid pressure decreases the rate at which
the wave speeds increase towards the uncracked isotropic values. At
increasingly negative differential pressure both compressional and
shear wave speeds continue to decrease, though only marginally
(not shown). Under hydrostatic compression the wave speeds, as a
function of differential pressure, are independent of fluid pressure.
This is as expected, since, from eqs (12) and (31), the function f
is independent of the angular variables. Indeed, f is linear in pd

(eq. 13).
At an angle of incidence normal to the symmetry axis, we

see shear wave splitting (Figs 4a and b). For biaxial compression
(Fig. 4a) the wave speed of the SH wave increases faster than that
of the SV wave. Also, the wave speed of the P wave decreases faster
at normal incidence than it does at parallel incidence (cf. Fig. 3a).
Both of the trends are reversed for uniaxial compression (Fig. 4b
and 3b). The level of shear wave splitting, as a function of dif-
ferential pressure, at normal incidence corresponds to the change
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Figure 3. (a) Compressional (solid line and medium dashes) and shear
wave speeds (long dashes and short dashes) normalized by their values in
the isotropic uncracked matrix, as a function of differential pressure, at fluid
pressures of 0 and 20 MPa, respectively, at incidence parallel to the direction
of symmetry, under biaxial compression. (b) As in (a), except under uniaxial
compression. (c) As in (a), except under hydrostatic compression, but only
at a fluid pressure of 0 MPa; compressional wave speed (solid line) and shear
wave speed (dashes).

in Thomsen’s parameter γT with differential pressure—indeed γT is
equal to the difference between the two shear wave speeds at normal
incidence, to first order in the crack density ε.

With no shear wave splitting at parallel incidence, we only have
two attenuation coefficients (Figs 5a–c ), that peak in value at dif-
ferential pressures corresponding to the points at which the corre-
sponding wave speeds are changing most rapidly (Figs 3a and b).

Figure 4. (a) Normalized compressional (solid line) and vertically and hori-
zontally polarized shear wave speeds (long dashes, short dashes) as a function
of differential pressure, at a fluid pressure of 0 MPa, at incidence normal to
the direction of symmetry, under biaxial compression. (b) As in (a), except
under uniaxial compression.

The S-wave attenuation is everywhere greater than the P-wave at-
tenuation. Fluid pressure is seen to reduce the attenuation at low
differential pressures, while increasing it at higher differential pres-
sures. As with the wave speeds, both the P- and S-wave attenuation
coefficients continue to decrease for increasingly negative differ-
ential pressure (not shown). A similar behaviour is seen with hy-
drostatic compression (Fig. 5c), where the attenuation coefficients
as functions of differential pressure are independent of fluid pres-
sure, as were the wave speeds under hydrostatic compression. This
attenuation is a direct result of the presence of a local fluid flow.

6 C O N C L U S I O N S

The model proposed by Hudson et al. (1996) for the transfer of fluid
between connected cracks via non-compliant pores and extended by
Tod (2001) to allow for a continuous distribution of values of both
crack orientation and aspect ratio has been further extended to allow
these distributions to depend upon each other via the applied stress
and fluid pressure, using the results of Hudson (2000).

The pressure effects are included via a mechanism that allows for
the collapse and closure of the cracks present in an unstressed state,
and does not allow for the possible growth of existing cracks, the
deformation of pores into cracks, or the formation of new cracks.
This leads to a description that is purely elastic under loading and
unloading, rather than one that exhibits hysteresis. Furthermore,
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Figure 5. (a) Compressional (solid line, medium dashes) and shear atten-
uation coefficients (long dashes, short dashes) as a function of differential
pressure, at fluid pressures of 0 and 20 MPa, respectively, at incidence par-
allel to the direction of symmetry, under biaxial compression. (b) As in (a),
except under uniaxial compression. (c) As in (a), except under hydrostatic
compression, and only at a fluid pressure of 0 MPa; compressional (solid
line) and shear (dashes) attenuation coefficients.

stress history is not accounted for in the model, by assuming that
in the unstressed state the crack distribution is isotropic. We may,
however, remedy this by including an initial crack distribution that
is anisotropic. This would increase the magnitude of the anisotropy
parameters.

While the effect of an increase in the differential pressure will
increase the polarization of the distribution of remaining cracks,
which will serve to increase the anisotropy, the total crack density
will decrease, thus decreasing the anisotropy. These two competing

processes explain the rise in the anisotropy parameters with differ-
ential pressure (Figs 2a and b) to a maximum absolute value, before
a decay towards zero as the differential pressure increases yet fur-
ther, as the properties of the effective material approach those of
the isotropic matrix—in this large pressure limit, all of the origi-
nal cracks are effectively closed, so that the material resembles the
uncracked isotropic matrix.

The predicted increase in wave speed with differential pressure
agrees with other theoretical models (Nur 1971; Toksöz et al. 1976;
Cheng & Toksöz 1979; Carlson & Gangi 1985; Pecorari 1997; Sun
& Goldberg 1997) and experimental results (Winkler 1985; Freund
1992; Hornby 1994). That the S-wave attenuation is greater than that
for the P waves agrees with other low-porosity theories, though the
two are reversed at higher porosities (Chapman 2001).

This model of an effective medium theory may be combined with
a model of a fault (e.g. Tod & Hudson 2001) or used in a full-
waveform or a ray-tracing modelling package to produce synthetic
seismograms, which may be compared with surface seismics or VSP
data.
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Kuster, G.T. & Toksöz, M.N., 1974. Velocity and attenuation of seismic
waves in two-phase media: part 1. Theoretical formulations, Geophysics,
39, 587–606.

Li, C. & Nordlund, E., 1993. Deformation of brittle rocks under
compression—with particular reference to microcracks, Mech. Mater.,
15, 223–239.

Menéndez, B., David, C. & Darot, M., 1999. A study of the crack network
in thermally and mechanically cracked granite samples using confocal
scanning laser microscopy, Phys. Chem. Earth A, 24, 627–632.

Montoto, M., Martı́nez-Nistal, A., Rodrı́guez-Rey, A., Fernández-Merayo,
N. & Soriano, P., 1995. Microfractography of granite rocks under confocal
scanning laser microscopy, J. Microscopy, 177, 138–149.

Nur, A., 1971. Effects of stress on velocity anisotropy in rocks with cracks,
J. geophys. Res., 76, 2022–2034.

Pecorari, C., 1997. Acoustoelasticity in cracked solids, Geophys. J. Int., 129,
169–175.

Ross, S.M., 1989. Probability Models, 4th edn, Academic, San Diego, CA.
Sayers, C.M., 1988a. Inversion of ultrasonic wave velocity measurements

to obtain the microcrack orientation distribution function in rocks, Ultra-
sonics, 26, 73–77.

Sayers, C.M., 1988b. Stress-induced ultrasonic wave velocity anisotropy in
fractured rock, Ultrasonics, 26, 311–317.

Sayers, C.M. & Rickett, J.E., 1997. Azimuthal variation in AVO response
for fractured gas sands, Geophys. Prospect., 45, 165–182.

Sun, Y.F. & Goldberg, D., 1997. Estimation of aspect-ratio changes with
pressure from seismic velocities, in Developments in Petrophysics, Vol.
122, pp. 131–139, eds Lovell, M.A. & Harvey, P.K., Geological Society
Special Publication, The Geological Society, London.

Thomsen, L., 1986. Weak elastic anisotropy, Geophysics, 51, 1954–1966.
Thomsen, L., 1995. Elastic anisotropy due to aligned cracks in porous rock,

Geophys. Prospect., 43, 805–829.
Tod, S.R., 2001. The effects on seismic waves of interconnected nearly

aligned cracks, Geophys. J. Int., 146, 249–263.
Tod, S.R. & Hudson, J.A., 2001. Continuity conditions for a fault consisting

of obliquely aligned cracks, Geophys. J. Int., 144, 679–684.
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A P P E N D I X A : T H O M S E N ’ S
P A R A M E T E R S , W A V E S P E E D S
A N D A T T E N U A T I O N C O E F F I C I E N T S

In the conventional condensed, two-subscript, 6 × 6 matrix notation,
pairs of indices are represented as a single index: i j → p, kl → q,
such that 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5 and 12 → 6. We
thus use the representation Cpq , rather than ci jkl .

We make use of the anisotropy parameters defined by Thomsen
(1986) for transversely isotropic material with symmetry axis in the
x3-direction:

εT ≡ C11 − C33

2C33
, (A1)

δT ≡ (C13 + C44)2 − (C33 − C44)2

2C33(C33 − C44)
, (A2)

γT ≡ C66 − C44

2C44
, (A3)

where the real part is assumed when the stiffnesses are complex.
For an incident wave, whose direction of propagation is at an

angle θ to the symmetry axis, the perturbation to the wave speeds
and attenuation coefficients, to first order in crack density ε, are
given by Tod (2001) as

vq P

vP
= 1 + ε

2(λ + 2µ)
Re

(
sin4 θC1

11 + cos4 θC1
33

+ 1

2
sin2 2θC1
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)
, (A4)

vq SV
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(
1

4
sin2 2θ

(
C1

11 +C1
33 −2C1

13

)+ cos2 2θC1
44

)
,
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vqSH
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= 1 + ε

2µ
Re
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)
(A6)

and

Q−1
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