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SUMMARY

Transfer of fluid between connected cracks may occur during the passage of seismic
waves. Such fluid flow can be modelled using an extension of effective medium theory
(Hudson et al. 1996) and is effected via non-compliant pores. The flow is governed by
a parameter t representing the relaxation time of pressure equalization between cracks.
However, if the cracks are fully aligned and have the same aspect ratio, the theory
produces the unexpected result that, at low frequencies, the cracks are effectively
isolated and at high frequencies they are fully drained. The artificial restriction of the
model to perfectly aligned cracks of identical aspect ratio is seen to be the cause of
this result. By reworking the model to allow the crack orientation and aspect ratios
to vary, we see that a more realistic model has the usual properties in which the cracks
are isolated at high frequencies and undrained at low frequencies. We have chosen the
distributions of aspect ratios to be in agreement with observation (Hay et al. 1988).
Thomsen’s parameters (Thomsen 1986) and the attenuation coefficients are seen to be
frequency-dependent via the non-dimensional parameter vt.
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1 I N T R O D U C T I O N

Cracking originates in rocks from a number of geological

processes, of which thermal gradients and tectonic stress are

particularly important. The resulting fracture network will

depend upon both the mineralogy and grain orientation within

the rock. Experiments on thermally induced cracking (Fredrich

& Wong 1986; Hadley 1976; Homand-Etienne & Houpert 1989)

and stress-induced cracking (Montoto et al. 1995; Tapponnier

& Brace 1976; Wong 1982) suggest that the former process

produces a fairly isotropic distribution of predominantly inter-

granular cracks, while the latter produces a strongly aniso-

tropic distribution of intragranular and transgranular cracks,

with the majority of cracks oriented parallel to the direction of

maximum principal stress (David et al. 1999; Menéndez et al.

1999).

Effective medium theories giving expressions for the overall

mechanical properties (in particular, the wave speeds) of materials

with cracks are now well established. Among the best known

are the self-consistent method (O’Connell & Budiansky 1974),

the method of smoothing (Hudson 1980) and the differential

method (Nishizawa 1982). In all such theories it is necessary

to calculate the response of a single crack in an unbounded

homogeneous matrix. Since all the methods involve extensive

averaging, the cracks are represented for this purpose by a ‘mean

crack’, usually taken to be circular. The cracks may be aligned,

partially aligned or randomly oriented (Hudson 1986), they may

be filled with gas (dry), liquid or a weak solid (Hudson 1981)

and they may be connected through the porosity of the matrix

rock (Hudson et al. 1996; O’Connell & Budiansky 1977). In the

latter case, fluid is able to flow between cracks that, because

of their difference in orientation, say, have been distorted

differently by an imposed stress field. We follow the analysis of

Hudson et al. (1996) here and it should be borne in mind that

the theory developed here is valid only to first order in the

number density of the cracks. Although Hudson et al. (1996)

and Pointer et al. (2000) imply that the extension to second

order in the number density is straightforward, it has not been

established that this is the case and we restrict ourselves to a

first-order theory here.

In their paper, Hudson et al. (1996) derived a rather

unexpected result for aligned connected cracks. This was that,

in high-frequency wave propagation, the cracks behave as if

they are completely drained (dry) and, at low frequencies, as

if they are isolated without connections. Although apparently

running against physical intuition, this result is explained by

the fact that because the cracks are fully aligned, the pressure

gradient driving fluid from one crack to another varies on the

scale of a wavelength, inversely proportional to the frequency v;

the diffusion length, on the other hand, varies as vx1/2. Thus,

as the frequency tends to zero, the diffusion is less and less

effective, with the opposite effect as vp?.
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Hudson et al. (1996) derived their results for aligned cracks

by a method that ignores local crack-to-crack flow since it was

assumed that because the cracks all have the same orientation,

it would be unimportant. However, if the formulae for non-

aligned cracks are specialized to cracks with a single orientation,

the result differs from the above in the addition of one term

that becomes important at high frequencies. The incorporation

of crack-to-crack flow shows that it cannot be neglected when

the frequency is sufficiently high that the wavelength approaches

the size of the intercrack spacing. We compare the two results

here and show that, with the more complete theory, fully

aligned cracks behave as if isolated at high frequencies as might

be expected. However, they still behave as if isolated at very

low frequencies for the reasons given above.

As well as depending on the assumption that the cracks are

fully aligned, these results also rely on the fact that the cracks

were assumed all to have the same aspect ratio. Relaxing either

of these two assumptions leads to local fluid flow between

neighbouring cracks that have been distorted in different ways

by the incoming wave because of their different orientations or

aspect ratios or both. In this paper we analyse the effect of

allowing small variations in alignment and aspect ratio and find

that the behaviour of the material is that of undrained cracks at

low frequencies, in accordance with physical expectation. We

show, graphically, how the material behaves when the cracks

are nearly aligned and when they all have nearly the same

aspect ratio.

2 B A C K G R O U N D

The method of smoothing developed by Keller (1964) has been

applied by Hudson (1980, 1981, 1986) to determine expressions

for the effective elastic parameters c of a cracked material,

to first order in crack density e=nsna3m, where ns=N/V, N is

the number of cracks, V is the material volume, a is the crack

radius and the operator n.m denotes the mean value, such that

c ¼ c0 þ ec1 þ O e2
ÿ �

, (1)

where c0 is the elastic tensor for the assumed isotropic, porous

matrix material,

c0
ipjq ¼ jdipdjq þ k dijdpq þ diqdjp

ÿ �
, (2)

where l and m are the Lamé constants of the material; c1

accounts for scattering off individual cracks.

Determination of c1 depends upon the orientation of the cracks

and the nature of the crack infill. Expressions for c1 under

varying conditions for isolated cracks can be found in Hudson

(1980, 1981, 1986). For aligned isolated cracks of identical

aspect ratio, with normals lying in the x3-direction, these are of

the form

c1
ipjq ¼ ÿ

1

k
c0

k3ipc0
l3jq

�Ukl , (3)

where the nature of the crack infill is reflected in the diagonal

matrix {U�kl}, where U�11=U�22, due to the assumed symmetry

of each crack. The resulting effective medium is vertically

transversely isotropic.

3 T H E O R Y

The model of connected cracks proposed by Hudson et al. (1996)

for the transfer of fluid between cracks by non-compliant

pores (seismically transparent pathways) (see Figs 1a and b)

makes the assumptions that the distortion of the pores is

negligible compared with that of the cracks during the passage

of a wave and that the pore porosity is low, so that we neglect

compression of the pore fluid.

The population of cracks is divided into families of parallel

cracks with identical aspect ratio and identical radius, labelled

n=1, 2, . . . . Hudson et al. (1996) give a first-order expression

for the porosity of the nth set of cracks,

�n ¼ �0
n þ w1

n :ðó0 þ pn
f IÞ ÿ

�0
npn

f

i
, (4)

where k=l+2m/3 is the bulk modulus of the matrix material,

wn
0 and wn

1 are the stress-free porosity and the first-order

dependence on stress, respectively, for the nth set of cracks, s0

is the imposed static stress field and pf
n is the fluid pressure in

the nth set of cracks.

(a)

(b)

Figure 1. (a) Schematic of an aggregate in which the misfit between

the particles creates a porous system. (b) Schematic of a possible

distribution of nearly aligned cracks in an aggregate. The insert

(a reduced version of a) represents the structure of the material in which

the cracks lie.
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The relation proposed by Hudson et al. (1996) for the mass

flow out of the nth set of cracks, derived in Appendix A, is

Lðon
f�nÞ
Lt

¼ ÿ�
0
no0

ifq
ðpn

f ÿ pfÞ , (5)

where rf
n is the fluid density in the nth set of cracks, r0 is the

unstressed density, kf is the bulk modulus of the fluid, pf is

the average (local) pressure in the fluid and t is a relaxation

parameter. Estimations of the value of t are made by Hudson

et al. (1996) and O’Connell & Budiansky (1977). This gives us

the relationship between the fluid pressure, pf
n, in the nth set of

cracks, the average fluid pressure and the imposed static stress,

pn
f ¼ pf þ iuqif

w1
n : ó0

�0
n

 !,
1ÿ iuqcnð Þ , (6)

with

cn ¼ 1ÿ if

i
þ

ifðw1
nÞjj

�0
n

, (7)

where we have used the relationship between the fluid pressure

and density,

o0

on
f
ÿ 1 ¼ ÿ pn

f

if
, (8)

and have assumed a plane wave solution to the equations of

motion of the form u=bei(k . xxvt), so that the operators h/hxi

and h/ht are replaced by the factors iki and xiv respectively.

This is the opposite convention to that used by Hudson et al.

(1996).

From Hudson et al. (1996), conservation of mass and

D’Arcy’s law yield an evolution equation for the total mass

concentration of fluid, mf,

Lmf

Lt
¼ + :

of

gf
Kr :+pf

� �
, (9)

with Kr the permeability tensor of the matrix, including cracks—

in general this will be anisotropic, although Hudson et al.

(1996) assumed an isotropic permeability; mf is given by

mf ¼
X

n

on
f�n , (10)

where rf is the average fluid density, gf is the fluid viscosity, and

pf and rf obey the same relation as pf
n and rf

n in eq. (8).

Let us assume that Kr is spatially constant. Substituting eqs

(4), (6) and (8) into eq. (10) and using eq. (9) we gain, to first

order in pf /kf and wn
1 : s0/w0, where w0 is the average stress-free

porosity of the cracks,

pf

if
1ÿ if

i

� �X
n

�0
n

1ÿ iuqcn

þ if

X
n

ðw1
nÞjj

1ÿ iuqcn

þ
iukŒ pKr

pqkŒ qif

o2gf

" #

¼ ÿ
X

n

w1
n : ó0

1ÿ iuqcn

, (11)

where

kŒ p ¼
kp

k
(12)

is the ratio of the wavenumber in the xi-direction to the total

wavenumber, and o is the wave speed; we approximate this to

lowest order by using either oP or oS corresponding to P or S

waves respectively.

Letting the normal to the nth set of cracks be nn, from

Hudson et al. (1996) we have

w1
n

� �
ij

�0
n

¼ 2 1ÿ lð Þ
nkan

nn
i nn

j , (13)

where an=cn /an is the aspect ratio of the nth set of cracks and

l ¼ j
2 jþ kð Þ (14)

is Poisson’s ratio of the matrix material. We now have

cn ¼ 1ÿ if

i
þ 2if 1ÿ lð Þ

nkan
: (15)

Substituting eq. (13) into eq. (11) yields an expression for pf

and hence by eq. (6) an expression for pf
n in terms of s0.

Thus, from eq. (4), the relative change in porosity becomes

�n ÿ �0
n

�0
n

¼ 2 1ÿ lð Þ
nk 1ÿ iuqcnð Þ

"
nn

i nn
j 1ÿ iuqð Þ

an
ÿ cn ÿ 1ð Þ

X
m

emnm
i nm

j

1ÿ iuqcm

|
X

m

emamcm

1ÿ iuqcm

þ
3iukŒ pKr

pqkŒ qif

4no2gf

 !ÿ1#
p0

ij : (16)

As in Hudson et al. (1996), we write this as

3

4nkan
Nn

ijp
0
ij , (17)

thus defining {Nij
n}, the crack opening parameters for the nth

set of cracks. This is a modified version of the corresponding

result derived in Hudson et al. (1996) that allows for variable

aspect ratio.

The analysis of Hudson et al. (1996) now proceeds to show

that the perturbation ec1 in the elastic parameters is given by

ec1
ipjq ¼ÿ

X
n

en

k
ln
mknn

r c0
kripln

luln
tsc

0
usjq

|½dt3 dm1dl1 þ dm2dl2ð Þ �Un
11 þ dm3Nn

lt� , (18)

where en is the crack density of the nth set of cracks; that is,

en=ns
na3

n, where ns
n is the number density and an is the radius of

the nth set of cracks.

{lij
n} is the rotation matrix from the background axes to axes

fixed in the crack with normal in the x3-direction, so that

ln
3i ¼ nn

i , ln
jin

n
i ¼ dj3 (19)

and we have adopted the opposite convention for the definition

of {lij
n} to Hudson (1986), Hudson et al. (1996) and Pointer et al.

(2000). We note that Hudson et al. (1996) incorrectly stated

their choice of the sense of the rotation {lij
n}. The values of

{Nlt
n} in eq. (18) are to be calculated for cracks with normals in
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the x3-direction,

Nn
lt ¼

8

3

1ÿ lð Þ
1ÿ iuqcn

"
dl3dt3 1ÿ iuqð Þ ÿ an cn ÿ 1ð Þln

li l
n
tj

|
X

m

emnm
i nm

j

1ÿ iuqcm

X
m

emamcm

1ÿ iuqcm

þ
3iukŒ pKr

pqkŒ qif

4no2gf

 !ÿ1#
:

(20)

U�n
11 is given by Hudson (1981) for a weak viscous material infill

with effective rigidity xivgf as

�Un
11 ¼

16

3

1ÿ l
2ÿ l

.
1þMnð Þ , (21)

where

Mn ¼ ÿ
4i

n
1ÿ l
2ÿ l

ugf
kan

: (22)

Inserting eq. (20) into eq. (18), we finally arrive at an expression

for the first-order correction to the elastic constants,

ec1
ipjq ¼ÿ

X
n

en

k
ln
tknn

r c0
kripln

lunn
s c0

usjq

|

�
dt1dl1 þ dt2dl2ð Þ �Un

11 þ
8

3
dt3dl3ð1ÿ lÞ 1ÿ iuq

1ÿ iuqcn

�

þ 8

3
1ÿ lð Þ

X
n

en

k
nn

knn
r c0

kripc0
usjq

an cn ÿ 1ð Þ
1ÿ iuqcn

|
X

m

emnm
u nm

s

1ÿ iuqcm

X
m

emamcm

1ÿ iuqcm

þ
3iukŒ qKr

pqkŒ qif

4no2gf

 !ÿ1

:

(23)

4 H I G H - A N D L O W - F R E Q U E N C Y
L I M I T S

The behaviour of eq. (23) at high frequency is given by

ec1
ipjq ¼ÿ

X
n

en

k
ln
tknn

r c0
kripln

lunn
s c0

usjq

| dt1dl1 þ dt2dl2ð Þ �Un
11 þ

8

3
dt3dl3ð1ÿ lÞ

�
cn

� �
, (24)

which corresponds to the result for isolated cracks filled with a

fluid with vgf%kf%k (Hudson 1981); that is, a fluid such that

its effective rigidity is small in relation to its bulk modulus,

which in turn is negligible in comparison with the bulk modulus

of the material. The low-frequency limit of eq. (23) is

ec1
ipjq ¼ÿ

8

3
1ÿ lð Þ

X
n

en

k
ln
tknn

r c0
kripln

lunn
s c0

usjq

| dt1dl1 þ dt2dl2ð Þ 2

2ÿ l
þ dt3dl3

� �

þ 8

3
1ÿ lð Þ

X
n

en

k
nn

knn
r c0

kripc0
usjqan cn ÿ 1ð Þ

|
X

m

emnm
u nm

s

.X
m

emamcm , (25)

the first term of which corresponds to the result for dry cracks

(Hudson 1981). However, the presence of the second term

means that the response at low frequencies is that for undrained

material, as we now show.

We define the compliances s in the same manner as we define

the stiffnesses c (eq. 1), such that

s ¼ s0 þ es1 þ O e2
ÿ �

, (26)

where

s0
jqkr ¼ ÿ

j
2k 3jþ 2kð Þ djqdkr þ

1

4k
djkdqr þ djrdqk

ÿ �
(27)

and

sipjqcjqkr ¼ cipjqsjqkr ¼
1

2
dikdpr þ dirdpk

ÿ �
: (28)

Using the result in eq. (28) and assuming that eqs (1) and (26)

represent power series, we equate the O(e) terms and can

therefore write s1 in terms of c1 as

s1
monw ¼ ÿs0

moipc1
ipjqs0

jqnw : (29)

Thus, for the low-frequency limit,

es1
jqkr ¼

8

3
1ÿ lð Þ

X
n

en

k
ln
tjn

n
qln

lknn
r dt1dl1 þ dt2dl2ð Þ 2

2ÿ l
þ dt3dl3

� �

ÿ 8

3
1ÿ lð Þ

X
n

en

k
nn

j nn
qan cn ÿ 1ð Þ

|
X

m

emnm
k nm

r

.X
m

emamcm : (30)

We write

s1
jqkr ¼ s1a

jqkr þ s1b
jqkr (31)

and identify s1a and s1b with the first and second terms of

eq. (30) respectively. Thus, we may write the limit for dry

cracks as

sdjqkr ¼ s0
jqkr þ es1a

jqkr : (32)

Brown & Korringa (1975) extended the work of Gassmann

(1951) to give an expression for the undrained compliances in

terms of the dry result,

sjqkr ¼ sdjqkr þ
ÿ
sdjqpp ÿ s0

jqpp

�ÿ
sdiikr ÿ s0

iikr

�
�0 1=iÿ 1=ifð Þ ÿ

ÿ
sdllss ÿ s0

llss

� : (33)

Hence, from eq. (32) and using w0=4pea0/3, where a0=nam,

sjqkr ÿ sdjqkr ¼ ÿ
es1a

jqpps1a
iikr

4na0=3ifð Þ 1ÿ if=ið Þ þ s1a
llss

: (34)

From eq. (30),

es1a
jqpp ¼

8

3
1ÿ lð Þ

X
n

en

k
nn

j nn
q (35)

and

s1a
llss ¼

8 1ÿ lð Þ
3k

, (36)
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therefore eq. (34) becomes

sjqkr ÿ sdjqkr ¼ ÿ
8

3
1ÿ lð Þ 2if 1ÿ lð Þ

nea0c0

X
n

en

k
nn

j nn
q

X
m

em

k
nm

k nm
r ,

(37)

where

c0 ¼ 1ÿ if

i
þ 2if 1ÿ lð Þ

nka0
: (38)

We note that Sm em=e and Sm emam=ea0, provided that we

assume that e and a are independently distributed parameters;

then, from the definition of cm (eq. 15), Sm emamcm=ea0c0 and

hence, from eq. (30),

es1b
jqkr ¼ ÿ

8

3
1ÿ lð Þ k

ea0c0

X
n

en

k
nn

j nn
qan cn ÿ 1ð Þ

X
m

em

k
nm

k nm
r :

(39)

We can neglect the term kf /k in (cnx1) on the assumption that

the maximum value of the aspect ratio, amax, satisfies the

condition

amax%
4 1ÿ l2
ÿ �

3n 1ÿ 2lð Þ , (40)

which is consistent with our restriction to small aspect ratios

provided that n^x1; then the term an(cnx1) in eq. (39) is

independent of n, and eq. (39) reduces to the right-hand side of

eq. (37) exactly, so the undrained moduli are given by

sjqkr ¼ sdjqkr ÿ
8

3
1ÿ lð Þ 2if 1ÿ lð Þ

nea0c0

X
n

en

k
nn

j nn
q

X
m

em

k
nm

k nm
r :

(41)

This is identical to eq. (30) for the low-frequency limit for

connected cracks, showing that, at low frequencies, connected

cracks respond at each point in exactly the same way as the

same material under static, undrained conditions.

5 C O N T I N U O U S L I M I T

Having developed the theory from a discrete perspective, we

shall henceforth assume a continuous limit: Sn F(n) in eq. (23)

is replaced byð?
a¼0

ð?
a¼0

ðn

h¼0

ð2n

�¼0

F �, h, a, að Þ fa fa fn sin hd�dhdada (42)

for any function F, where fa, fa and fn are the probability

distribution functions of the random variables a, a and n

(defined by polar angles w and h) respectively. We shall assume

that these distributions are independent of one another, for the

purpose of separately assessing their effects on seismic aniso-

tropy. More realistically perhaps, one would expect aspect ratio

to depend upon orientation, with cracks parallel to the direction

of maximum principal stress having a larger mean aspect

ratio than those perpendicular to it. Gibson & Toksöz (1990)

developed a model of a probability density function for crack

orientation with an aspect ratio distribution included. Their

results from the inversion of velocity measurements are generally

good, although there is an implied non-uniqueness of inversion.

Prior to the exposure to stress, a rock will have a generally

isotropic background distribution of cracks (David et al. 1999).

Stress will induce further cracking, which will be of an aniso-

tropic nature (Menéndez et al. 1999), and thus a more accurate

description of crack distributions within a rock may be obtained

by representing the crack distribution as the sum of an isotropic

and an anisotropic part.

For a given aspect ratio, the crack radius an only appears

within the term en in eq. (23), so that in the continuous limit it

occurs in the form of na3m only, and thus en may be replaced

everywhere by e.

6 A L I G N E D C R A C K S

If we take the limit in which the cracks are fully aligned and of

identical aspect ratio, we find that c1 is given by eq. (3), with

�U11 ¼
16

3

1ÿ l
2ÿ l

.
1þMalignÿ �

, (43)

�U33 ¼
8

3
ð1ÿ lÞ=ð1þ KalignÞ (44)

and

Malign ¼ ÿ 4i

n
1ÿ l
2ÿ l

uqPm , (45)

Kalign ¼ 2if 1ÿ lð Þ
nka0

ÿ if

i

� �
1þ iuqPk

1þ uqð Þ2Pk

 !ÿ1

, (46)

where

Pm ¼ gf
ka0q

(47)

and

Pk ¼
3ifkŒ pKr

pqkŒ q
4nea0o2qgf

: (48)

The quantity vtPm is identical to the intracrack viscosity

parameter Po of Pointer et al. (2000), who estimated that,

with the fluid properties of oil or water, its effect is negligible

for seismological applications for both aligned and randomly

oriented cracks.

We have written the expressions in eqs (45) and (46) in terms

of vt, which is the short-range diffusion parameter Psrd of

Pointer et al. (2000) and the quantity vtPk is 3/4p times the

long-range diffusion parameter Plrd of Pointer et al. (2000).

Apart from the presence of an additional term—the kf/k term,

neglected by Hudson et al. (1996)—this result is identical to the

aligned limit of the expression derived for non-aligned cracks

by Hudson et al. (1996). Both of these expressions for aligned

cracks with identical aspect ratio differ from that given by

Hudson et al. (1996) in the value of the parameter Kalign; the

formula given by Hudson et al. (1996) is

Kalign ¼ 2if 1ÿ lð Þ
nka0

1ÿ iuqPk
ÿ �ÿ1

, (49)

which ignores the term (vt)2Pk and uses the opposite sign

convention on the temporal derivative. This difference arises as

a result of the failure of the aligned cracks result (Hudson et al.

1996) to account for any local fluid flow (note that vtPk is

independent of t).
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We see from eq. (46) that in either of the limits vtp0 or

vtp?,

Kalign?
2if 1ÿ lð Þ

nka0
ÿ if

i
, (50)

which is the result for isolated cracks filled with a fluid with

vnf%kf%k (Hudson 1981). The inclusion of local crack-to-

crack flow gives the expected result at high frequencies, but at

very low frequencies the cracks still act as if isolated for the

reasons given earlier.

7 V A R I A B L E A S P E C T R A T I O

To begin with, we assume that the cracks are fully aligned,

hence

fn h, �jh0, �0ð Þ ¼ d hÿ h0ð Þd �ÿ �0ð Þ= sin h , (51)

and consider the effects of variable aspect ratio only. Let us

further assume that h0=0, so that all the cracks now have

normals in the x3-direction. Eq. (23) now takes a form identical

to that of eq. (3),

c1
ipjq ¼ ÿ

1

k
c0

k3ipc0
l3jq

~Ukl , (52)

where {Ũij} is a diagonal matrix with

~U11 ¼ ~U22 ¼
16

3

1ÿ l
2ÿ l

.
ð1þM 0Þ , (53)

~U33 ¼
8

3
1ÿ lð ÞF1= 1þ K 0ð Þ (54)

and

M 0 ¼ ÿ 4i

n
1ÿ l
2ÿ l

uqPmE mð Þ 1þ 4i

n
1ÿ l
2ÿ l

uqPmE mð Þ
� �ÿ1

, (55)

K 0 ¼ c0 ÿ 1ð Þ

| 1þ
iuqPk þ ðF2 ÿ F1Þ 1þ if=ið Þ c0ÿ1ð Þÿ1

1ÿiuqc0

F1 ÿ ðF2 ÿ F1Þ iuq 1ÿif=ið Þþ if=ið Þ c0ÿ1ð Þÿ1

1ÿiuqc0
þ uqð Þ2Pk

24 35ÿ1

:

(56)

We have defined here two functions that depend upon the

probability distribution function of a,

F1: 1ÿ iuqc0ð Þ
ð?

0

fada
1ÿ iuqc

¼ 1ÿ iuqc0

1ÿ iuq 1ÿ if=ið Þð Þ2

|

�
1ÿ iuq 1ÿ if

i

� �
þ iuq c0 ÿ 1þ if

i

� �
E kð Þ

�
(57)

and

F2:
1ÿ iuqc0

a0

ð?
0

afada
1ÿ iuqc

¼ 1ÿ iuqc0

1ÿ iuq 1ÿ if=ið Þð Þ3
�

1ÿ iuq
1ÿ if

i

� �� �2

þ iuq c0 ÿ 1þ if

i

� �
1ÿ iuq 1ÿ if

i

� �� �
ÿ uqð Þ2 c0 ÿ 1þ if

i

� �2

E kð Þ
�
, (58)

where

E yð Þ ¼ a0
1

aþ a0y

� �
; (59)

and the parameters of the distribution are chosen such that

nam=a0. Finally,

k ¼ ÿ 2if 1ÿ lð Þ
nka0

iuq
1ÿ iuq 1ÿ if=ið Þ (60)

and

m ¼ ÿ 4i

n
1ÿ l
2ÿ l

uqPm : (61)

We can generalize this result to the case of arbitrary values of

h0 and w0, letting the normal to the cracks be n0=(sin h0 cos w0,

sin h0 sin w0, cos h0)T,

c1
ipjq ¼ ÿ

1

k
n0

r c0
kripn0

s c0
lsjq

~Ukl , (62)

where {Ũij} is just the rotation of {Ũij} to the new axes and is

given by

~Uij ¼ dij ÿ n0
i n0

j

� �
~U11 þ n0

i n0
j

~U33 , (63)

with Ũ11 and Ũ33 given as above (eqs 53 and 54).

7.1 Modelling the distribution

Our theory restricts us to consider a%1 only, so we look for

distributions with a finite range and a small mean. For this

we have chosen a generalized form of the Beta distribution

(e.g. Ross 1989), Beta(u, p, q), with a probability density function

(pdf)

faðaju, p, qÞ ¼ 1

uBðp, qÞ
a
u

� �pÿ1

1ÿ a
u

� �qÿ1

for

0ƒaƒu , with p, q > 0 ,

(64)

and B(x, y) is the Beta function (e.g. Carrier et al. 1983). The

three parameters p, q and u allow us considerable flexibility

with our model and in particular we may choose them such that

the pdf closely resembles observational results (Hay et al. 1988).

We wish to fit the parameters of the distribution such that

SaT ¼ a0 ,

VarðaÞ:Sa2Tÿ SaT2 ¼ da0ð Þ2 ,
(65)

for some d. Thus we choose p and q such that

p ¼ uÿ a0 ÿ a0d2

ud2
,

q ¼ uÿ a0

a0
p :

(66)

Our choice of d will dictate the spread of the distribution and

u=amax, the maximum value of a that can be achieved.

Choosing u=0.2, a0=0.00837 and d=0.703 ensures that

our probability density function resembles the results of Hay

et al. (1988) (see Fig. 2) based upon a truncation of the data

provided in Hay (1988), where the larger aspect ratio values

have been ignored. For a greater than some critical value much

less than u, the pdf is effectively zero; it is not surprising,

therefore, that variations in u have a negligible effect upon the
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values of the elastic constants—while there is a very small

observable difference between the Beta distribution with u=0.2

and 0.5 (Fig. 2), there is no discernible difference between the

resulting components of the stiffnesses (eq. 52)—so we replace

eq. (64) with

faðaja0, dÞ ¼ lim
u??

faðaju, p, qÞ

¼
a0d2
ÿ �ÿ1=d2

! 1=d2
ÿ � a1=d2ÿ1 eÿa=a0d2

, for 0ƒa , (67)

which is a Gamma(1/d2, 1/a0d2) distribution (Ross 1989), with

C(z) the Gamma function (Carrier et al. 1983). Graphically,

this looks almost identical to the Beta distribution with u=0.5

(Fig. 2). With this choice of distribution, we have

E yð Þ ¼ 1=d2

! 1=d2
ÿ � ð?

0

x1=d2ÿ1 eÿx

xþ y=d2
dx : (68)

7.2 Results

We start by choosing the parameters of the Gamma distri-

bution such that it closely follows the measurements of Hay

et al. (1988); thus a0=0.00837 and d=0.703. Furthermore, we

shall use e=0.02, oP=3.5r103 m sx1, oS=2.0r103 m sx1 and

r=2.2r103 kg mx3 (average values that could correspond to

a large number of possible matrix materials), kf=2.25r109 Pa

and gf=10x3 Pa s (for water), thus n=0.258 and kf/k=0.148.

We shall, for simplicity, assume that {Kr
pq}=Krdpq and use

Kr=103 mD (c10x12 m2), so that only the parameter t remains

unknown in the expressions for Pm and Pk (eqs 47 and 48

respectively).

We start by considering the variation of Thomsen’s para-

meters (see Appendix B) with the non-dimensional frequency

vt and the constants Pk and Pm. From the definitions (eqs B1,

B2 and B3),

eT ¼
4el

1ÿ 2l
Re ~U33

ÿ �
, (69)

dT ¼ e 2Re ~U33

ÿ �
ÿ 1ÿ 2l

1ÿ l
Re ~U11

ÿ �� �
(70)

and

cT ¼
e
2
Re ~U11

ÿ �
(71)

to first order in crack density e. Thus eT (a measure of the

P-wave anisotropy) is independent of Pm and, from Fig. 3(a), is

described by a bell-shaped curve for lower values of Pk that

develops a flat top for higher values, while cT (a measure of the

SH-wave anisotropy) is independent of Pk and is described by a

monotonically decreasing curve (see Fig. 3b); dT depends upon

both Pk and Pm.

We see from Fig. 3(a) that increasing Pk results in an increase

in the magnitude of the peak of eT up to a maximum reached at

Pkc106 and a decrease in the value of vt at which the peak

occurs, at approximately vt=(Pk)x1/2—thus we see that the

term (vt)2Pk dominates eq. (56). Increasing Pk still further

does not change the peak value of eT, but broadens the range of

vt within which eT is non-negligible.

From Fig. 3(b) it can be seen that an order of magnitude

increase in the value of Pm results in an order of magnitude

decrease in the value of vt at which a transition is made from

Figure 2. The generalized Beta distribution, with mean a0=0.00837,

variance governed by d=0.703 and width u=0.2 (solid line), u=0.5

(long dashes), and the Gamma distribution governed by the same values

of a0 and d (medium dashes) to approximate the sum of the crack aspect

ratio observations for grain boundary, intergranular and intragranular

cracks of Hay et al. (1988) (bars).

(a)

(b)
Figure 3. (a) Thomsen’s parameter eT as a function of non-dimensional

frequency vt for Pk=10 (solid line), 102 (long dashes), 103 (medium

dashes), 104 (short dashes), 105 (long dash-dot), 106 (short dash-dot)

and 107 (double dashes), with the Gamma distribution given in Fig. 2

for the aspect ratio and crack density e=0.02. (b) Thomsen’s parameter

cT as a function of non-dimensional frequency vt for Pm=10 (solid

line), 102 (long dashes), 103 (medium dashes), 104 (short dashes), 105

(long dash-dot), 106 (short dash-dot) and 107 (double dashes), with the

Gamma distribution given in Fig. 2 for the aspect ratio and crack

density e=0.02.
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the maximum to the minimum values of cT (as vtp?,

Emp0 such that Mkp? and thus Ũ11p0) with the transition

occurring over a range [0.1 (Pm)x1, 10 (Pm)x1] of vt.

We now consider the effect upon Thomsen’s parameters

of the distribution parameter d and the crack density e. In

Fig. 4(a) we consider the effect of d and e upon eT, for Pk=104.

We see that a decrease in the variance of the distribution

increases the value of eT at its peak—that is, it increases the

degree of anisotropy, as we would expect. The greatest value of

eT is obtained for d=0, where all the cracks have the same

aspect ratio. Although this case corresponds to an anomalous

result for the elastic moduli at low frequencies, we see that the

behaviour of eT in the limit dp0 is not remarkable. Away from

the peak value, little change is seen in the value of eT when d is

varied. Furthermore, we note that an increase in the crack density

also serves to increase the peak value of eT—thus decreasing

the variance from 0.703 to 0 (the aligned case) produces a

result that is very similar to that achieved by increasing the

crack density from 0.2 to 0.0216, and similarly, increasing

the variance to 1.0 (an exponential distribution) is seen to be

almost equivalent to decreasing the crack density to 0.0182.

So can we distinguish between the effects of the crack density

e and the variance of the aspect ratio distribution d? At values

of vt away from the peak value of eT, a change in d will not

affect the value of eT, whereas an increase or decrease in e will

cause an increase or decrease, respectively, in eT; however, this

effect is barely discernible for such small changes in e as those

discussed above. For larger values of Pk, we are more able to

distinguish between the two effects (see Fig. 4b), where now

Pk=108. Only a small change is seen in eT with d, but a notably

different change is seen when adjusting the value of e.

Fig. 4(c) shows how cT varies with d and e, for Pm=102. We

see that a reduction in the variance of the aspect ratio distri-

bution will increase the value of vt at which the transition from

the maximum to minimum values of cT begins, without affecting

the point at which the minimum value is reached. This effect

can be distinguished from changes in the value of e, which

clearly increases or decreases the maximum value of cT with vt
as it is increased or decreased respectively.

The attenuation coefficients Qx1 for the three waves are

defined in eqs (C13), (C14) and (C15); these are dependent upon

the incident angle of a wave. For an incident wave parallel

to the direction of the crack normals (and thus perpendicular to

the cracks), the x3-direction, the change in Qx1
qP with frequency

is shown in Fig. 5(a) for different values of the parameter Pk

and Fig. 5(b) for different values of e and d. For values of

Pk smaller than about 103 there is a single peak in the value

of Qx1
qP . For sufficiently large Pk this peak remains at a fixed

frequency and amplitude, while a second peak occurs at a

frequency that decreases as Pk increases. Comparing Figs 3(a)

and 5(a), we see that the frequencies at which the peaks in the

attenuation parameter Qx1
qP occur coincide with the frequencies

of the maximum gradient in the corresponding plot of eT.

A change in e clearly changes the magnitude of both peaks

(see Fig. 5b) and a change in d produces a larger change in

the magnitude of the higher-frequency peak than it does in the

lower-frequency peak. Indeed, for larger values of Pk, a change

in d has no effect on the magnitude of the low-frequency peak.

Thus, we can always adjust the value of e to mimic the effect on

the high-frequency peak in Qx1
qP of a change in d, but both

peaks cannot be simultaneously matched. The relative heights

of the two peaks should be able to give us an indication of

the value of d, assuming that both frequencies are seismically

possible. At an incident angle parallel to the cracks, Qx1
qP shows

a similar variation with the parameters Pk, e and d, but is of an

order of magnitude smaller (not shown).

Being able to distinguish between the effects of d and e
on Qx1

qSH is far less likely (see Fig. 6). The frequency at which

the peak in Qx1
qSH occurs coincides with the frequency at

which the corresponding plot of cT has a maximum gradient

(see Fig. 3b).

(a)

(b)

(c)
Figure 4. (a) Thomsen’s parameter eT as a function of non-dimensional

frequency vt for Pk=104, with distribution parameter d=0.703 (solid

line), 0 (long dashes) and 1.0 (medium dashes), and crack density

e=0.02, also with d=0.703, e=0.0216 (short dashes) and 0.0182

(long dash-dot). (b) As (a), but with Pk=108. (c) Thomsen’s parameter

cT as a function of non-dimensional frequency vt for Pm=102, with

distribution parameter d=0.703 (solid line), 0 (long dashes) and 1.0

(medium dashes), and crack density e=0.02, also with d=0.703,

e=0.0216 (short dashes) and 0.0182 (long dash-dot).
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8 V A R I A B L E O R I E N T A T I O N

We shall now consider the effects of allowing the orientation of

the crack normals to vary while keeping a constant; thus

faðaja0Þ ¼ dðaÿ a0Þ : (72)

We find that

c1
ipjq ¼ ÿ

1

k
c0

kripc0
usjqTkrus , (73)

where

Tkrus ¼ dt1dl1 þ dt2dl2ð Þ �U11 þ
8

3
dt3dl3ð1ÿ lÞ 1ÿ iuq

1ÿ iuqc0

� �
)tkrlus

ÿ 8

3
ð1ÿ lÞ c0 ÿ 1

1ÿ iuqc0

%kr%us½c0 þ iuqPk 1ÿ iuqc0ð Þ�ÿ1 ,

(74)

)tkrlus ¼
ðn

h¼0

ð2n

�¼0

ltknrlluns fn sin hd�dh (75)

and

%kr ¼
ðn

h¼0

ð2n

�¼0

nknr fn sin hd�dh : (76)

U�11 is given by

�U11 ¼
16

3

1ÿ l
2ÿ l

.
1þMð Þ , (77)

M ¼ ÿ 4i

n
1ÿ l
2ÿ l

uqPm : (78)

8.1 Modelling the distribution

We shall make the assumption that the crack distribution is

rotationally symmetric—that is, the cracks are uniformly

distributed with respect to w—and consider distributions for

n that are concentrated around a mean orientation. We use

the Watson distribution (Mardia 1972; Fisher et al. 1987), a

bipolar distribution, such that

fn ¼
bðkÞ
2n

ek sin h sin h0 cos �ÿ�0ð Þþcos h cos h0ð Þ2 for

0ƒhƒn=2, 0ƒ�ƒ2n and k§0 , (79)

where

bðkÞ ¼ 1

ð1

0

ekt2

dt

� ��
(80)

and we have restricted the range of h to half that given in the

original definition of the distribution, to avoid any ambiguity

in the definition of crack-normal orientation (as Peacock &

Hudson 1990). We shall take h0=0 so that the mean orientation

of the normal, n0=(0, 0, 1)T, is along the x3-axis, and the

resulting effective medium is vertically transversely isotropic.

The parameter k is a measure of the variance of the

distribution,

Var nð Þ: nÿ n0
�� ��2D E

¼ 2ÿ 2I1,1 , (81)

where the integral Im,n is defined by eq. (D1). k=0 corresponds

to a uniform (isotropic) distribution and as kp? the distri-

bution approaches a delta-like function (eq. 51), so that the

cracks are fully aligned. With this distribution, we find that

(a)

(b)
Figure 5. (a) The P-wave attenuation parameter Qx1

qP for an incident

wave perpendicular to the cracks as a function of non-dimensional

frequency vt for Pk=102 (solid line), 104 (long dashes), 106 (medium

dashes) and 108 (short dashes), with e=0.02 and the Gamma

distribution given in Fig. 2 for the aspect ratio. (b) The P-wave

attenuation parameter Qx1
qP for an incident wave perpendicular to the

cracks as a function of non-dimensional frequency vt for Pk=104, with

distribution parameter d=0.703 (solid line), 0 (long dashes) and 1.0

(medium dashes), and crack density e=0.02, also with d=0.703,

e=0.024 (short dashes) and 0.0173 (long dash-dot).

Figure 6. The SH-wave attenuation parameter Qx1
qSH for an incident

wave perpendicular to the cracks as a function of non-dimensional

frequency vt for Pm=102, with distribution parameter d=0.703 (solid

line), 0 (long dashes) and 1.0 (medium dashes), and crack density

e=0.02, also with d=0.703, e=0.0245 (short dashes) and 0.017 (long

dash-dot).
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{Pkr} is diagonal, with

%11 ¼ %22 ¼
1

2
I3,0 ,

%33 ¼ I1,2 :

(82)

To evaluate the components of {Vtkrlus} we must find {lij},

given that

l3i ¼ ni , ljini ¼ dj3 : (83)

The rotation {lij} is given by Fisher et al. (1987) as

lij
� 	
¼

cos h cos� costÿsin� sint cos h sin� costþcos� sint ÿsin h cost

ÿcos h cos� sintÿsin� cost ÿcos h sin� sintþcos� cost sin h sint

sin h cos� sin h sin� cos h

0BBB@
1CCCA,

(84)

where y represents an arbitrary rotation about the x3-axis.

{Tkrus} (eq. 74) is independent of the angle y, and those

elements of {Vtkrlus} that contribute to {Tkrus} are given in

Appendix D.

8.2 Results

The effect upon Thomsen’s parameters of the crack orientation

distribution is now considered. We examine how they vary with

vt, Pk, Pm, e and the distribution parameter k. We use the same

values of all of the parameters as with the variable aspect ratio

model.

We no longer have such simple expressions for Thomsen’s

parameters as eqs (69), (70) and (71), while cT remains

independent of the parameter Pk, and eT now depends upon

both Pk and Pm, as does dT, as before. When k=0.0, the distri-

bution of crack-normal orientations is uniform (i.e. isotropic) and

all of Thomsen’s parameters are identically zero. For k=10.0, the

distribution of crack-normal orientations about the mean is given

in Fig. 7, and with Pm=104, the variation of eT with vt for a

range of values of Pk is shown in Fig. 8(a). We note that Figs 8(a)

and 3(a) look very similar; however, it is not now until Pk=107

that eT reaches its largest peak value. The peak values obtained

are less than the corresponding ones in Fig. 3(a).

By choosing a different value of Pm, we would have made

only a minimal difference to Fig. 8(a). A smaller value of Pm

would result in a larger value for eT, but only for smaller values

of Pk, whereas a larger value of Pm would reduce eT for the

larger values of Pk—these effects would be difficult to distin-

guish from either a larger value of the distribution parameter

k or a more tightly concentrated distribution or an increased

crack density e.

In Fig. 8(b) we show the variation of cT with Pm (independent

of Pk); compare this with Fig. 3(b). Certainly there is a

considerable similarity, as with eT; however, for Pm=104 and

higher, the transition from the maximal to minimal values of cT

occurs over a larger range of vt than for the variable aspect

ratio model; indeed, for Pm higher than 104, cT appears to reach

a non-zero minimal value before finally approaching zero at

higher values of vt.

For the choice of parameters Pk=104 and Pm=104, the

effect on eT of a change in k is indistinguishable from a change

in e, except perhaps at low frequencies. From Fig. 9(a) it is seen

that increasing k to infinity (the fully aligned limit) appears

identical to increasing the crack density to e=0.0242, while

decreasing k to 1.0 appears indistinguishable from decreasing e
to 0.0034. Altering the value of Pk or Pm does not increase the

difference between the effect on eT of changes in k and e.

For a smaller value of k, the difference between Figs 8(b)

and 3(b) is amplified, while for a larger value of k, Fig. 8(b)

becomes indistinguishable from Fig. 3(b)—compare the long

dashed lines in Figs 4(c) and 9(b). This is as we would expect,

that a very small perturbation in either the crack-normal or

aspect ratio distributions from the perfectly aligned identical

aspect ratio limit would be indistinguishable.

Figure 7. Azimuthally symmetric crack-normal orientation distri-

bution with variance governed by the parameter k=10.0 (solid line)

and k=1.0 (long dashes).

(a)

(b)
Figure 8. (a) Thomsen’s parameter eT as a function of non-dimensional

frequency vt with Pm=104 and the same values of Pk as in Fig. 3(a)

with orientation distribution as in Fig. 7. (b) Thomsen’s parameter cT

as a function of non-dimensional frequency vt with the same values of

Pm as in Fig. 3(b) and distribution as in Fig. 7.
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A change in k is distinguishable from a change in e, although

only at higher frequencies (see Fig. 9b), where at low frequencies

increasing k to infinity appears equivalent to increasing e to

0.242 and decreasing k to 1.0 is almost equivalent to decreasing

e to 0.0034. The P-wave attenuation coefficient, Qx1
qP , also

shows similar behaviour for this model as it does for the

variable aspect ratio model (see Fig. 10a). A change in the value

of Pm would alter this figure marginally for the smaller values of

Pk only.

The change in Qx1
qP with a change in k or e is illustrated in

Fig. 10(b). We note that while we see a close correspondence

between increasing k to infinity and increasing e to 0.023, and

also between decreasing k to 1.0 and decreasing e to 0.01,

the values of e at which this correspondence occurs differ

from those at which a similar correspondence occurs in eT

(see Fig. 9b). As with the variable aspect ratio model, the peak

in Qx1
qP is seen to occur at the same frequency at which eT has a

maximum gradient.

A variation in the SH-wave attenuation coefficient, Qx1
qSH , is

seen with a variation in Pm (Fig. 11a). It is seen that for large

enough values of Pm, there is a second (small) peak in Qx1
qSH

perpendicular to the cracks. For Pm=104, such that a second

peak occurs, the variation in Qx1
qSH with k and e is given in

Fig. 11(b). While we are able to match the height of the low-

frequency peak resulting from a change in k by a corresponding

change in e, the existence and relative height of the higher-

frequency peak enables us to distinguish between the two

competing effects.

For lower values of Pm, at which this second, smaller peak

does not occur, the effects of k and e become indistinguishable.

The peaks in Qx1
qSH occur at the frequency at which cT has a

maximum gradient, thus for smaller Pm when cT exhibits only

one region of change (see Fig. 8b), there is only the one peak in

Qx1
qSH , while for larger Pm, Qx1

qSH exhibits a second peak.

9 D I S C U S S I O N

We have seen that for both the variable aspect ratio and the

variable orientation models there exist critical (non-dimensional)

frequencies in both the variation of Thomsen’s parameters and

the attenuation coefficients at which either a peak is reached or

a transition is made from one value to another. The significance

of these critical frequencies is their potential use in determining

estimates of the unknown parameters within the model—e, a0,

d, k and t; n0 can be determined as the direction correspond-

ing to maximum attenuation. We rely, then, on the value of

t being such that the critical (non-dimensional) frequencies

are attainable within the frequency range that can be achieved

seismically (1<v<104 rad sx1). Estimates of t (Hudson et al.

(a)

(b)
Figure 10. (a) The P-wave attenuation parameter Qx1

qP for an incident

wave perpendicular to the cracks as a function of non-dimensional

frequency vt with Pm=104, for Pk=102 (solid line), 104 (long dashes),

106 (medium dashes) and 108 (short dashes), with e=0.02 and k=10.0.

(b) The P-wave attenuation parameter Qx1
qP for an incident wave

perpendicular to the cracks as a function of non-dimensional frequency

vt for Pk=104 and Pm=104, with distribution parameter k=10.0

(solid line), ? (long dashes) and 1.0 (medium dashes), and crack

density e=0.02, also with k=10.0, e=0.023 (short dashes) and 0.01

(long dash-dot).

(a)

(b)
Figure 9. (a) Thomsen’s parameter eT as a function of non-dimensional

frequency vt for Pk=104 and Pm=104, with distribution parameter

k=10.0 (solid line), ? (long dashes) and 1.0 (medium dashes), and

crack density e=0.02, also with k=10.0, e=0.0242 (short dashes) and

0.0034 (long dash-dot). (b) Thomsen’s parameter cT as a function of

non-dimensional frequency vt for Pm=102 with distribution para-

meter k=10.0 (solid line), ? (long dashes) and 1.0 (medium dashes),

and crack density e=0.02, also with k=10.0, e=0.0242 (short dashes)

and 0.0034 (long dash-dot).
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1996; O’Connell & Budiansky 1977) lead us to believe that this

is possible.

On consideration of either the variable aspect ratio or

variable orientation model alone, it appears that we ought to be

able to differentiate between the effects of e and d in the former,

and e and k in the latter, via Thomsen’s parameters and the

attenuation coefficients. Our ability to do this depends not only

on the range of values of vt at our disposal, but also on the

values of Pk and Pm, both of which are inversely proportional

to t.

As might be expected, a very small variance in the aspect

ratio distribution is not readily distinguishable from a similarly

small variance in the orientation distribution. However, for larger

variances, these effects do indeed become more distinguishable.

We could allow both the orientation and the aspect ratio to

vary simultaneously, leading to an expression for the first-order

correction to the elastic constants of the same form as eq. (73),

but with a more elaborate expression for Tkrus. For complete-

ness, this form is given in Appendix E, although it is used

nowhere within this paper.

Although the limit of fully aligned cracks of identical

aspect ratio is a singular limit, in so far as its behaviour at low

frequency is as if isolated, as opposed to undrained for non-

aligned cracks, we see that this limit is not a significant one—

there is no singularity in the behaviour of either Thomsen’s

parameters or the attenuation coefficients in this limit.

1 0 C O N C L U S I O N S

The model proposed by Hudson et al. (1996) for the transfer of

fluid between connected cracks via non-compliant pores has

been extended to allow for a continuous distribution of values

of both crack orientation and aspect ratio. This more realistic

model has the expected properties that at high frequencies the

cracks behave as if isolated, while at low frequencies they

behave as if undrained, and agree with the results of Brown &

Korringa (1975). In the fully aligned limit they behave as if

isolated at both high and low frequencies.

We looked separately at the cases of allowing the aspect

ratio and orientation to vary, while keeping the other fixed, and

studying the frequency dependence of Thomsen’s parameters

and the attenuation coefficients. For both models, we con-

sidered whether or not we were able to notice, and differentiate

between, the effects of the variance of the distribution and the

crack density of the model. Furthermore, we addressed the

issue of differentiating between the effects of the variable aspect

ratio and orientation.

We believe that it is possible to both notice and differentiate

between the effects of the crack density and the variance of one

or other of the models. Furthermore, we believe that there is

some hope of distinguishing the effects of the variance of one

model from those of the other.

Critically, however, there is a dependence upon the undeter-

mined parameter corresponding to the relaxation time of

pressure equalization between cracks, t. Although estimates of

this parameter have been made (Hudson et al. 1996; O’Connell

& Budiansky 1977), a numerical investigation remains the

subject of future work.
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A P P E N D I X A : L O C A L D I F F U S I O N
E Q U A T I O N

Let rf
n, wn and pf

n be the fluid density, volume and pressure in

the nth crack. The mass flow into the nth crack is

_mn ¼
Lðon

f�nÞ
Lt

: (A1)

Let pf
m be the fluid pressure distribution due to unit pressure in

the mth crack and zero in the rest. Let Mn
m be the associated

flow into the nth crack. Then,

_mn ¼
X

m

pm
f Mm

n ¼ pn
f Mn

n þ
X
m=n

pm
f Mm

n : (A2)

Fluid mass is preserved and does not concentrate in the

pores, soX
m

Mm
n ¼ 0 (A3)

orX
m=n

Mm
n ¼ ÿMn

n , (A4)

thus

_mn ¼ ÿC

�
pn
f ÿ

X
m=n

pm
f Mm

n

�X
m=n

Mm
n

�
, (A5)

where

C ¼
X
m=n

Mm
n ¼ ÿMn

n : (A6)

We make the approximation

X
m=n

pm
f Mm

n

�X
m=n

Mm
n ^pf , (A7)

since it is clearly a weighted average of the pressure in the

cracks (excluding the nth) and the weights decrease with distance,

becoming negligible (probably) at several crack spacing lengths.

Then

_mn ¼ ÿC pn
f ÿ pf xnð Þ

� �
, (A8)

where pf (xn) is an average of the pf
n over a region Dn centred on

xn, the centroid of the nth crack. Taking the average over Dn,

_m xnð Þ ¼ ÿC

�
pf xnð Þ ÿ

X
m

wn xmð Þpf xmð Þ
�X

m

wn xmð Þ
�
, (A9)

where wn are weight functions. Thus,

_m xnð Þ ¼ C
X

m

wn xmð Þ pf xmð Þ ÿ pf xnð Þ½ �
�X

m

wn xmð Þ : (A10)

We identify

C ¼ �
0
no0

ifq
, (A11)

a constant of appropriate dimensions, containing an unknown

relaxation parameter, t.

A P P E N D I X B : T H O M S E N ’ S
P A R A M E T E R S

In the conventional condensed, two-subscript, 6r6 matrix

notation, pairs of indices are represented as a single index:

ijpp, klpq, such that 11p1, 22p2, 33p3, 23p4, 13p5 and

12p6. We thus use the representation Cpq, rather than cijkl

(eq. 1).
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We make use of the anisotropy parameters defined by

Thomsen (1986) for vertically transversely isotropic material,

eT:
C11 ÿ C33

2C33
, (B1)

dT:
C13 þ C44ð Þ2ÿ C33 ÿ C44ð Þ2

2C33 C33 ÿ C44ð Þ , (B2)

cT:
C66 ÿ C44

2C44
, (B3)

where the real part is assumed when the stiffnesses are complex.

We may use the wave speeds, eqs (C9) and (C10), to calculate

two of these parameters,

eT ¼
oqP 900ð Þ ÿ oqP 00ð Þ

oqP 00ð Þ (B4)

and

cT ¼
oqSH 900ð Þ ÿ oqSH 00ð Þ

oqSH 00ð Þ , (B5)

to first order in e.

A P P E N D I X C : W A V E S P E E D S A N D Q

We make the assumption that the mean wave is a plane harmonic

wave, u=bei k . x and substitute this into the time-harmonic

equation of motion,

L
Lxp

cipjq
Luj

Lxq
þ ou2ui ¼ 0 , (C1)

where r is the density of the matrix and v the frequency of the

propagating wave. We have

ou2dij ÿ cipjqkpkq

� �
bj ¼ 0 : (C2)

The attenuation coefficient Qx1 is given by

Qÿ1 ¼ 2
ImðkÞ
ReðkÞ

���� ���� : (C3)

For a given v, we let k=k0+ek1 and b=b0+eb1 and equate

coefficients of e0 and e1 in eq. (C2). Thus, at O(e0) and O(e1) we

have

Mijb
0
j ¼ 0 ,

Mijb
1
j ¼ Nijb

0
j ,

(C4)

where

Mij ¼ ou2dij ÿ c0
ipjqk0

pk0
q ,

Nij ¼ c0
ipjq k0

pk1
q þ k1

pk0
q

� �
þ c1

ipjqk0
pk0

q :
(C5)

The O(e0) term is just the isotropic result. To first order, the

cracks have normal (0, 0, 1)T and the rotational symmetry

of the problem ensures that the material is transversely isotropic,

so that, for a given v, we can rotate the (x1,x2) plane such that

k0 ¼ u
o

sin h, 0, cos hð ÞT (C6)

for some incident angle h, where o=oP or oS, corresponding to

quasi-P (qP) waves, or quasi-S (qS) waves, respectively. For the

qP wave, we have b0
qP=(sin h, 0, cos h)T, while for the qS waves

we have b0
qSV=(cos h, 0, xsin h)T or b0

qSH=(0, 1, 0)T, corre-

sponding to qSV and qSH waves, and we are free to choose the

magnitude of b0. Pre-multiplication of the O(e1) term with b0

yields a single equation for the components of k1,

b0
i Nijb

0
j ¼ 0 : (C7)

On the assumption that k1 is parallel to k0, this becomes an

expression for the magnitude k1 of k1.

The wave speeds, to first order, are given by

u
ReðkÞ ¼ oRe 1ÿ e

o

u
k1

� �
, (C8)

for o=oP or oS, and we take the appropriate values of k1. Thus,

the normalized wave speeds are

oqP

oP
¼1þ e

2 jþ 2kð Þ

|Re sin4h C1
11 þ cos4h C1

33 þ
1

2
sin22h C1

13 þ sin22h C1
55

� �
,

(C9)

oqSV

oS
¼ 1þ e

2k
Re

1

4
sin22h C1

11 þ C1
33 ÿ 2C1

13

ÿ �
þ cos22h C1

55

� �
,

(C10)

oqSH

oS
¼ 1þ e

2k
Re cos2h C1

44 þ sin2h C1
66

ÿ �
: (C11)

These are equivalent to Hudson (1981).

From eq. (C3), the attenuation coefficient is given by

Qÿ1 ¼ 2o

u
e Im k1

ÿ ��� �� (C12)

to first order for o=oP or oS and the appropriate k1. Thus,

Qÿ1
qP ¼

e
jþ 2k

����Im� sin4h C1
11 þ cos4h C1

33

þ 1

2
sin22h C1

13 þ sin22h C1
55

����� , (C13)

Qÿ1
qSV ¼

e
k

Im
1

4
sin22h C1

11 þ C1
33 ÿ 2C1

13

ÿ �
þ cos22h C1

55

� ����� ���� ,
(C14)

Qÿ1
qSH ¼

e
k

Im cos2h C1
44 þ sin2h C1

66

ÿ ��� �� : (C15)

A P P E N D I X D : N O N - Z E R O
C O N T R I B U T I N G T E R M S O F V

We start by defining the integral

Im,n ¼ bðkÞ
ðn=2

0

sinm h cosn h ek cos2 hdh : (D1)
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The components of Vtkrlus that contribute to Tkrus (eq. 74) are

)111111 þ )211211ð Þ ¼ 3

8
I3,2 þ

1

8
I3,0 ¼ )122122 þ )222222ð Þ , (D2)

)112112 þ )212212ð Þ ¼ 1

8
I3,2 þ

3

8
I3,0 ¼ )121121 þ )221221ð Þ , (D3)

)113113 þ )213213ð Þ ¼ 1

2
I1,4 þ

1

2
I1,2 ¼ )123123 þ )223223ð Þ , (D4)

)111122 þ )211222ð Þ ¼ ÿ 1

8
I5,0 ¼ ÿ)311322 , (D5)

)111133 þ )211233ð Þ ¼ ÿ 1

2
I3,2 ¼ )122133 þ )222233ð Þ ¼ ÿ)311333

¼ ÿ)322333 , (D6)

)131131 þ )231231ð Þ ¼ 1

2
I5,0 ¼ )132132 þ )232232ð Þ , (D7)

)133133 þ )233233ð Þ ¼ I3,2 , (D8)

)311311 ¼
3

8
I5,0 ¼ )322322 , (D9)

)312312 ¼
1

8
I5,0 ¼ )321321 , (D10)

)313313 ¼
1

2
I3,2 ¼ )323323 ¼ )331331 ¼ )332332 , (D11)

)333333 ¼ I1,4 , (D12)

and those related to the above by the symmetries

)tkrlus ¼ )tkslur ¼ )lurtks ¼ )lustkr : (D13)

A P P E N D I X E : V A R I A B L E A S P E C T
R A T I O A N D O R I E N T A T I O N

For completeness, we give an expression for the first-order

correction to the elastic constants derived by allowing both

the aspect ratio and the orientation to vary while remaining

independent of one another:

c1
ipjq ¼ ÿ

1

k
c0

kripc0
usjqTkrus , (E1)

where

Tkrus ¼ dt1dl1 þ dt2dl2ð Þ ~U11þ
8

3
dt3dl3ð1ÿ lÞ 1ÿ iuqð ÞF1

1ÿ iuqc0

� �
)tkrlus

ÿ 8

3
ð1ÿ lÞ%kr%us c0 ÿ 1ð ÞF1 ÿ

if

i
F2 ÿ F1ð Þ

� � F1

1ÿ iuqc0

| c0F1 þ 1ÿ if

i

� �
F2 ÿ F1ð Þ þ iuqPk 1ÿ iuqc0ð Þ

h iÿ1

:

(E2)
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