Complex Methods: Example Sheet 1

Part IB, Lent Term 2024

U. Sperhake

Comments are welcomed and may be sent to U.Sperhake@damtp.cam.ac.uk.
Starred questions are useful, but optional: they should not be attempted at the expense of other questions.

Cauchy-Riemann equations

1. (i) Where, if anywhere, in the complex plane are the following functions differentiable, and where are they analytic?

$$
f(z)=\operatorname{Im}(z) ; \quad f(z)=|z|^{2} ; \quad f(z)=\operatorname{sech} z:=\frac{1}{\cosh z} .
$$

(ii) Let $f(z)=z^{5} /|z|^{4}, z \neq 0, f(0)=0$. Show that the real and imaginary parts of f satisfy the Cauchy-Riemann equations at $z=0$, but that f is not differentiable at $z=0$.
(iii) Given smooth functions $u(x, y), v(x, y)$ we may define formally a function $g(z, \bar{z})$ by

$$
g(z, \bar{z})=u\left(\frac{1}{2}(z+\bar{z}),-\frac{1}{2} i(z-\bar{z})\right)+i v\left(\frac{1}{2}(z+\bar{z}),-\frac{1}{2} i(z-\bar{z})\right) .
$$

Using the chain rule and the Cauchy-Riemann equations, show that g is differentiable as a function of z if and only if $\partial g / \partial \bar{z}=0$, and discuss how a dependence on \bar{z} results in the nondifferentiability of f.
2. By calculation or inspection, find (as functions of z) complex analytic functions $f(z)$ whose real parts are the following:
(i) $x y$
(ii) $\sin x \cosh y$
(iii) $\log \left(x^{2}+y^{2}\right)$
(iv) $e^{y^{2}-x^{2}} \cos 2 x y$
(v) $\frac{y}{(x+1)^{2}+y^{2}}$
(vi) $\tan ^{-1}\left(\frac{2 x y}{x^{2}-y^{2}}\right)$

Deduce that the above functions are harmonic on appropriately-chosen domains, which you should specify.

* 3. By considering $w(z)=(\mathrm{i}+z) /(\mathrm{i}-z)$, show that $\phi(x, y)=\tan ^{-1}\left(\frac{2 x}{x^{2}+y^{2}-1}\right)$ is harmonic.

4. Verify that the function $\phi(x, y)=e^{x}(x \cos y-y \sin y)$ is harmonic. Find its harmonic conjugate and, by considering $\nabla \phi$ or otherwise, determine the family of curves orthogonal to the family of curves $\phi(x, y)=$ const.
Find an analytic function $f(z)$ such that $\operatorname{Re}(f)=\phi$. Can the expression $f(z)=\phi(z, 0)$ be used to determine $f(z)$ in general?

Branches of multi-valued functions

5. Show how the principal branch of $\log z$ can be used to define a branch of z^{i} which is singlevalued and analytic on the domain $\mathcal{D}=\mathbb{C} \backslash(-\infty, 0]$. Evaluate i^{i} for this branch.
Show, using polar coordinates, that the branch of z^{i} defined above maps \mathcal{D} onto an annulus which is covered infinitely often.
How would your answers change, if at all, for a different branch?
6. Exhibit three different branches of the function $z^{3 / 2}$ using at least two different branch cuts. Is it true that for $z, w \in \mathbb{C},(z w)^{3 / 2}=z^{3 / 2} w^{3 / 2}$?
How many branch points does $[z(z+1)]^{1 / 3}$ have? Draw some different choices of possible branch cuts, both in the complex plane and on the Riemann sphere.
Repeat for $\left(z^{2}+1\right)^{1 / 2}$.

* Repeat also for $[z(z+1)(z+2)]^{1 / 3}$ and $[z(z+1)(z+2)(z+3)]^{1 / 2}$.

7. Let $f(z)=\left(z^{2}-1\right)^{1 / 2}$, and consider two different branches of the function $f(z)$:

$$
\begin{aligned}
& f_{1}(z) \text { : branch cut }(-\infty,-1] \cup[1, \infty), \text { with } f_{1}(x)=-\mathrm{i} \sqrt{1-x^{2}} \text { for real } x \in(-1,1) \\
& f_{2}(z) \text { : branch cut }[-1,1], \text { with } f_{2}(x)=+\sqrt{x^{2}-1} \text { for real } x>1
\end{aligned}
$$

Find the limiting values of f_{1} and f_{2} above and below their respective branch cuts. Prove that f_{1} is an even function, i.e., $f_{1}(z)=f_{1}(-z)$, and that f_{2} is odd.

Conformal mappings

8. How does the disc $|z-1|<1$ transform under the mapping $z \mapsto z^{-1}$?

Use the identity

$$
\frac{z}{(z-1)^{2}}=\left(\frac{1}{1-z}-\frac{1}{2}\right)^{2}-\frac{1}{4}
$$

to show that the map $f(z)=z /(z-1)^{2}$ is a one-to-one conformal mapping of the disc $|z|<1$ onto the domain $\mathbb{C} \backslash\left(-\infty,-\frac{1}{4}\right]$.
9. Consider the complex plane partitioned into eight open regions using as boundaries the real axis, the imaginary axis and the unit circle. Show that the map $z \mapsto(z-1) /(z+1)$ permutes these regions, and find the permutation.
What is the action of $z \mapsto(z-\mathrm{i}) /(z+\mathrm{i})$ on these regions?
10. Find conformal mappings f_{i} of \mathcal{U}_{i} onto \mathcal{V}_{i} for each of the following cases. If the mapping is a composition of several functions, provide a sketch for each step. \mathcal{D} denotes the unit disc $|z|<1$.
(i) \mathcal{U}_{1} is the angular sector $\{z: 0<\arg z<\alpha\}, \mathcal{V}_{1}=\{z: 0<\operatorname{Im}(z)<1\}$.
(ii) $\mathcal{U}_{2}=\left\{z: \operatorname{Re}(z)<0,-\frac{\pi}{2}<\operatorname{Im}(z)<\frac{\pi}{2}\right\}, \mathcal{V}_{2}$ is the quadrant $\{z: \operatorname{Re}(z)>0, \operatorname{Im}(z)>0\}$.
(iii) $\mathcal{U}_{3}=\mathcal{D}, \mathcal{V}_{3}=\mathcal{D} \backslash(-1,0]$.

* (iv) \mathcal{U}_{4} is the open region bounded between two circles $\{z:|z|<1,|z+\mathrm{i}|>\sqrt{2}\}, \mathcal{V}_{4}=\mathcal{D}$.

Laplace's equation

11. Consider the half-strip $\mathcal{H}=\left\{z:-\frac{\pi}{2}<\operatorname{Re}(z)<\frac{\pi}{2}, \operatorname{Im}(z)>0\right\}$, the strip $\mathcal{S}=\{z: 0<\operatorname{Im}(z)<$ $\pi\}$, and the upper half-plane (UHP) $\{z: \operatorname{Im}(z)>0\}$. Show that $g(z)=e^{z}$ maps \mathcal{S} onto the UHP and that $h(z)=\sin z$ maps \mathcal{H} onto the UHP.
Find a conformal map $f: \mathcal{H} \rightarrow \mathcal{S}$. Hence find a function $\phi(x, y)$ which is harmonic on the half-strip \mathcal{H} with the following limiting values on its boundary $\partial \mathcal{H}$:

$$
\phi(x, y)= \begin{cases}0 & \text { on } \partial \mathcal{H} \text { in the LHP }(x<0) \\ 1 & \text { on } \partial \mathcal{H} \text { in the } \operatorname{RHP}(x>0)\end{cases}
$$

Give ϕ as a function of x and y. Is there only one such function?

* 12. Using conformal mapping(s), find a solution to Laplace's equation in the upper half-plane $\{(x, y): y>0\}$ with boundary conditions

$$
\phi(x, 0)= \begin{cases}1 & x \in[-1,1] \\ 0 & \text { otherwise }\end{cases}
$$

[Find a map f of the upper half-plane onto itself that makes the boundary conditions easier to deal with.]

