Complex Methods: Example Sheet 1

Part IB, Lent Term 2024 U. Sperhake

Comments are welcomed and may be sent to U.Sperhake@damtp.cam.ac.uk. Starred questions are useful, but optional: they should not be attempted at the expense of other questions.

Cauchy-Riemann equations

Where, if anywhere, in the complex plane are the following functions differentiable, and where are they analytic?

$$f(z) = \operatorname{Im}(z); \qquad f(z) = |z|^2; \qquad f(z) = \operatorname{sech} z \coloneqq \frac{1}{\cosh z}.$$

- (ii) Let $f(z) = z^5/|z|^4$, $z \neq 0$, f(0) = 0. Show that the real and imaginary parts of f satisfy the Cauchy–Riemann equations at z = 0, but that f is not differentiable at z = 0.
- (iii) Given smooth functions u(x,y), v(x,y) we may define formally a function $g(z,\bar{z})$ by

$$g(z,\bar{z})=u\big(\tfrac{1}{2}(z+\bar{z}),-\tfrac{1}{2}i(z-\bar{z})\big)+iv\big(\tfrac{1}{2}(z+\bar{z}),-\tfrac{1}{2}i(z-\bar{z})\big).$$

Using the chain rule and the Cauchy–Riemann equations, show that g is differentiable as a function of z if and only if $\partial g/\partial \bar{z}=0$, and discuss how a dependence on \bar{z} results in the nondifferentiability of f.

2. By calculation or inspection, find (as functions of z) complex analytic functions f(z) whose real parts are the following:

(ii)
$$\sin x \cosh y$$

(ii)
$$\sin x \cosh y$$
 (iii) $\log(x^2 + y^2)$

(iv)
$$e^{y^2-x^2}\cos 2xy$$

(v)
$$\frac{y}{(x+1)^2 + y^2}$$

(iv)
$$e^{y^2-x^2}\cos 2xy$$
 (v) $\frac{y}{(x+1)^2+y^2}$ (vi) $\tan^{-1}\left(\frac{2xy}{x^2-y^2}\right)$

Deduce that the above functions are harmonic on appropriately-chosen domains, which you should specify.

- * 3. By considering w(z) = (i+z)/(i-z), show that $\phi(x,y) = \tan^{-1}\left(\frac{2x}{x^2+y^2-1}\right)$ is harmonic.
 - **4.** Verify that the function $\phi(x,y) = e^x(x\cos y y\sin y)$ is harmonic. Find its harmonic conjugate and, by considering $\nabla \phi$ or otherwise, determine the family of curves orthogonal to the family of curves $\phi(x, y) = \text{const.}$

Find an analytic function f(z) such that $Re(f) = \phi$. Can the expression $f(z) = \phi(z,0)$ be used to determine f(z) in general?

Branches of multi-valued functions

5. Show how the principal branch of $\log z$ can be used to define a branch of z^i which is singlevalued and analytic on the domain $\mathcal{D} = \mathbb{C} \setminus (-\infty, 0]$. Evaluate i^i for this branch.

Show, using polar coordinates, that the branch of z^i defined above maps \mathcal{D} onto an annulus which is covered infinitely often.

1

How would your answers change, if at all, for a different branch?

6. Exhibit three different branches of the function $z^{3/2}$ using at least two different branch cuts. Is it true that for $z, w \in \mathbb{C}$, $(zw)^{3/2} = z^{3/2}w^{3/2}$?

How many branch points does $[z(z+1)]^{1/3}$ have? Draw some different choices of possible branch cuts, both in the complex plane and on the Riemann sphere.

Repeat for $(z^2 + 1)^{1/2}$.

- * Repeat also for $[z(z+1)(z+2)]^{1/3}$ and $[z(z+1)(z+2)(z+3)]^{1/2}$.
- 7. Let $f(z) = (z^2 1)^{1/2}$, and consider two different branches of the function f(z):

$$f_1(z)$$
: branch cut $(-\infty, -1] \cup [1, \infty)$, with $f_1(x) = -i\sqrt{1 - x^2}$ for real $x \in (-1, 1)$;

$$f_2(z)$$
: branch cut $[-1,1]$, with $f_2(x) = +\sqrt{x^2-1}$ for real $x > 1$.

Find the limiting values of f_1 and f_2 above and below their respective branch cuts. Prove that f_1 is an even function, i.e., $f_1(z) = f_1(-z)$, and that f_2 is odd.

Conformal mappings

8. How does the disc |z-1| < 1 transform under the mapping $z \mapsto z^{-1}$? Use the identity

$$\frac{z}{(z-1)^2} = \left(\frac{1}{1-z} - \frac{1}{2}\right)^2 - \frac{1}{4}$$

to show that the map $f(z)=z/(z-1)^2$ is a one-to-one conformal mapping of the disc |z|<1 onto the domain $\mathbb{C}\setminus(-\infty,-\frac{1}{4}]$.

9. Consider the complex plane partitioned into eight open regions using as boundaries the real axis, the imaginary axis and the unit circle. Show that the map $z \mapsto (z-1)/(z+1)$ permutes these regions, and find the permutation.

What is the action of $z \mapsto (z - i)/(z + i)$ on these regions?

- **10.** Find conformal mappings f_i of \mathcal{U}_i onto \mathcal{V}_i for each of the following cases. If the mapping is a composition of several functions, provide a sketch for each step. \mathcal{D} denotes the unit disc |z| < 1.
 - (i) \mathcal{U}_1 is the angular sector $\{z: 0 < \arg z < \alpha\}$, $\mathcal{V}_1 = \{z: 0 < \mathsf{Im}(z) < 1\}$.
 - (ii) $\mathcal{U}_2 = \{z : \mathsf{Re}(z) < 0, \ -\frac{\pi}{2} < \mathsf{Im}(z) < \frac{\pi}{2}\}, \ \mathcal{V}_2 \text{ is the quadrant } \{z : \mathsf{Re}(z) > 0, \ \mathsf{Im}(z) > 0\}.$
 - (iii) $\mathcal{U}_3 = \mathcal{D}$, $\mathcal{V}_3 = \mathcal{D} \setminus (-1, 0]$.
 - * (iv) \mathcal{U}_4 is the open region bounded between two circles $\{z:|z|<1,\;|z+\mathrm{i}|>\sqrt{2}\,\}$, $\mathcal{V}_4=\mathcal{D}$.

Laplace's equation

11. Consider the half-strip $\mathcal{H}=\{z:-\frac{\pi}{2}<\mathsf{Re}(z)<\frac{\pi}{2},\ \mathsf{Im}(z)>0\}$, the strip $\mathcal{S}=\{z:0<\mathsf{Im}(z)<\pi\}$, and the upper half-plane (UHP) $\{z:\mathsf{Im}(z)>0\}$. Show that $g(z)=e^z$ maps \mathcal{S} onto the UHP and that $h(z)=\sin z$ maps \mathcal{H} onto the UHP.

Find a conformal map $f: \mathcal{H} \to \mathcal{S}$. Hence find a function $\phi(x,y)$ which is harmonic on the half-strip \mathcal{H} with the following limiting values on its boundary $\partial \mathcal{H}$:

$$\phi(x,y) = \begin{cases} 0 & \text{on } \partial \mathcal{H} \text{ in the LHP } (x < 0), \\ 1 & \text{on } \partial \mathcal{H} \text{ in the RHP } (x > 0). \end{cases}$$

Give ϕ as a function of x and y. Is there only one such function?

* 12. Using conformal mapping(s), find a solution to Laplace's equation in the upper half-plane $\{(x,y):y>0\}$ with boundary conditions

$$\phi(x,0) = \begin{cases} 1 & x \in [-1,1], \\ 0 & \text{otherwise.} \end{cases}$$

[Find a map f of the upper half-plane onto itself that makes the boundary conditions easier to deal with.]