# Complex Methods: Example Sheet 2 

Part IB, Lent Term 2024
U. Sperhake

Comments are welcomed and may be sent to U.Sperhake@damtp.cam.ac.uk.
Starred questions are useful, but optional: they should not be attempted at the expense of other questions.

## Series expansions and singularities

1. Find the first two non-vanishing coefficients in the series expansion about the origin of each of the following functions, assuming principal branches when there is a choice. You may make use of standard expansions for $\log (1+z)$, etc.
(i) $z / \log (1+z)$
(ii) $(\cos z)^{1 / 2}-1$
(iii) $\log \left(1+e^{z}\right)$
(iv) $e^{e^{z}}$

State the range of values of $z$ for which each series converges.
How would your answers differ if you assumed branches different from the principal branch?
2. Let $a, b$ be complex constants, $0<|a|<|b|$. Use partial fractions to find the Laurent expansions of $1 /\{(z-a)(z-b)\}$ about $z=0$ in each of the regions $|z|<|a|,|a|<|z|<|b|$ and $|z|>|b|$.
3. Find the first three terms of the Laurent expansion of $f(z)=\frac{1}{\sin ^{2} z}$ valid for $0<|z|<\pi$.

* Show that the function $g(z)=f(z)-z^{-2}-(z+\pi)^{-2}-(z-\pi)^{-2}$ has only removable singularities in $|z|<2 \pi$. Explain how to remove them to obtain a function $G(z)$ analytic in that region. Find a Taylor Series for $G(z)$ about the origin and explain why it must be convergent in $|z|<2 \pi$. Hence, or otherwise, find the three non-zero central terms of the Laurent expansion of $f(z)$ valid for $\pi<|z|<2 \pi$.

4. Show that if $f(z)$ has a zero of order $M$ and $g(z)$ a zero of order $N$ at $z=z_{0}$, then $f(z) / g(z)$ has a zero of order $M-N$ if $M>N$, a removable singularity if $M=N$, and a pole of order $N-M$ if $M<N$. Show also that $1 / f(z)$ has a pole of order $N$ if and only if $f(z)$ has a zero of order $N$.
5. Write down the location and type of each of the singularities of the following functions:
(i) $\frac{1}{z^{3}(z-1)^{2}}$
(ii) $\tan z$
(iii) $z \operatorname{coth} z$
(iv) $\frac{e^{z}-e}{(1-z)^{3}}$
(v) $\exp (\tan z)$
(vi) $\sinh \frac{z}{z^{2}-1}$
(vii) $\log \left(1+e^{z}\right)$
(viii) $\tan \left(z^{-1}\right)$

## Integration and residues

6. Evaluate $\int z \mathrm{~d} z$ along the straight line from -1 to +1 , and along the semicircular contour in the upper half-plane between the same two points; and evaluate $\oint_{\gamma} \bar{z} \mathrm{~d} z$ when $\gamma$ is the circle $|z|=1$, and when $\gamma$ is the circle $|z-1|=1$.
7. (i) Show that if $f(z)$ and $g(z)$ are analytic, and $g$ has a simple zero at $z=z_{0}$, the residue of $f(z) / g(z)$ at $z=z_{0}$ is $f\left(z_{0}\right) / g^{\prime}\left(z_{0}\right)$. In particular, show that $f(z) /\left(z-z_{0}\right)$ has residue $f\left(z_{0}\right)$.
(ii) Prove the formula for the residue of a function $f(z)$ that has a pole of order $N$ at $z=z_{0}$ :

$$
\lim _{z \rightarrow z_{0}}\left\{\frac{1}{(N-1)!} \frac{\mathrm{d}^{N-1}}{\mathrm{~d} z^{N-1}}\left(\left(z-z_{0}\right)^{N} f(z)\right)\right\}
$$

(iii) Find the residues of the poles in question 5.
8. Evaluate, using Cauchy's theorem or the residue theorem,
(i) $\oint_{\gamma_{1}} \frac{\mathrm{~d} z}{1+z^{2}}$
(ii) $\oint_{\gamma_{2}} \frac{\mathrm{~d} z}{1+z^{2}}$
(iii) $\oint_{\gamma_{3}} \frac{e^{z} \cot z \mathrm{~d} z}{1+z^{2}} *$ (iv) $\oint_{\gamma_{4}} \frac{z^{3} e^{1 / z} \mathrm{~d} z}{1+z}$
where $x=\operatorname{Re}(z), y=\operatorname{Im}(z), \gamma_{1}$ is the elliptical contour $x^{2}+4 y^{2}=1, \gamma_{2}$ is the circle $|z|=\sqrt{2}$, $\gamma_{3}$ is the circle $|z-(2+\mathrm{i})|=\sqrt{2}$ and $\gamma_{4}$ is the circle $|z|=2$, all traversed anti-clockwise.
9. By integrating the function $z^{n}(z-a)^{-1}\left(z-a^{-1}\right)^{-1}$ around the unit circle and applying the residue theorem, evaluate

$$
\int_{0}^{2 \pi} \frac{\cos n \theta}{1-2 a \cos \theta+a^{2}} \mathrm{~d} \theta
$$

where $a$ is real, $a>1$, and $n$ is a non-negative integer.

* Obtain the same result using Cauchy's integral formula instead of the residue theorem.


## The calculus of residues

10. Evaluate $\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{1+x+x^{2}}$.
11. By integrating around a keyhole contour, show that

$$
\int_{0}^{\infty} \frac{x^{a-1} \mathrm{~d} x}{1+x}=\frac{\pi}{\sin \pi a} \quad(0<a<1) .
$$

Explain why the given restrictions on the value of $a$ are necessary.

* 12. By integrating around a contour involving the real axis and the line $z=r e^{2 \pi \mathrm{i} / n}$, evaluate $\int_{0}^{\infty} \mathrm{d} x /\left(1+x^{n}\right), n \geq 2$. Check (by change of variable) that your answer agrees with that of the previous question.

13. Establish the following:

$$
\begin{array}{ll}
\text { (i) } \int_{0}^{\infty} \frac{\cos x}{\left(1+x^{2}\right)^{3}} \mathrm{~d} x=\frac{7 \pi}{16 e} & \text { (ii) } \int_{0}^{\infty} \frac{x^{2}}{\cosh x} \mathrm{~d} x=\frac{\pi^{3}}{8} \\
\text { (iii) } \int_{0}^{\infty} \frac{\log x}{1+x^{2}} \mathrm{~d} x=0 & \text { * (iv) } \int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x=\frac{\pi}{2}
\end{array}
$$

[For part (ii), use a rectangular contour. For part (iii), integrate $(\log z)^{2} /\left(1+z^{2}\right)$ around a keyhole, or $(\log z) /\left(1+z^{2}\right)$ along the real axis (or both). What goes wrong with $(\log z) /\left(1+z^{2}\right)$ around a keyhole?]

* 14. Let $P(z)$ be a non-constant polynomial. Consider the contour integral $I=\oint_{\gamma}\left(P^{\prime}(z) / P(z)\right) \mathrm{d} z$. Show that, if $\gamma$ is a contour that encloses no zeros of $P$, then $I=0$.
Evaluate the limit of $I$ as $R \rightarrow \infty$, where $\gamma$ is the circle $|z|=R$, and deduce that $P$ has at least one zero in the complex plane.

15. By considering the integral of $(\cot z) /\left(z^{2}+\pi^{2} a^{2}\right)$ around a suitable large contour, prove that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{n^{2}+a^{2}}=\frac{\pi}{a} \operatorname{coth} \pi a
$$

provided that $\mathrm{i} a$ is not an integer. By considering a similar integral prove also that, if $a$ is not an integer,

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(n+a)^{2}}=\frac{\pi^{2}}{\sin ^{2} \pi a}
$$

Find an expression for $\sum_{n=1}^{\infty} \frac{1}{n^{2}+a^{2}}$ and take the limit as $a \rightarrow 0$ to deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

