Complex Methods: Example Sheet 3

Part IB, Lent Term 2024
U. Sperhake

Comments are welcomed and may be sent to U.Sperhake@damtp.cam.ac.uk.
Starred questions are useful, but optional: they should not be attempted at the expense of other questions.

Fourier transforms

1. By using the relationship between the Fourier transform and its inverse, show that for real a and b with $a>0$,

$$
\int_{-\infty}^{\infty} \frac{1}{\omega^{2}+a^{2}} e^{\mathrm{i} \omega t} \mathrm{~d} \omega=\frac{\pi}{a} e^{-a|t|} \quad \text { and } \quad \int_{-\infty}^{\infty} \frac{b}{(\mathrm{i} \omega+a)^{2}+b^{2}} e^{\mathrm{i} \omega t} \mathrm{~d} \omega=2 \pi e^{-a t} \sin b t H(t)
$$

where $H(t)$ is the Heaviside step function. What are the values of the integrals when $a<0$? What happens when $a=0$?
2. Show that the convolution of the function $e^{-|x|}$ with itself is given by $f(x)=(1+|x|) e^{-|x|}$. Use the convolution theorem for Fourier transforms to show that

$$
f(x)=\frac{2}{\pi} \int_{-\infty}^{\infty} \frac{e^{\mathrm{i} k x}}{\left(1+k^{2}\right)^{2}} \mathrm{~d} k
$$

and verify this result by contour integration.
3. Let

$$
f(x)=\left\{\begin{array}{ll}
1 & |x|<\frac{1}{2} a, \\
0 & \text { otherwise }
\end{array} \quad g(x)= \begin{cases}a-|x| & |x|<a \\
0 & \text { otherwise }\end{cases}\right.
$$

Show that

$$
\widetilde{f}(k)=\frac{2}{k} \sin \frac{a k}{2} \quad \text { and } \quad \widetilde{g}(k)=\frac{4}{k^{2}} \sin ^{2} \frac{a k}{2}
$$

What is the convolution of f with itself? Use Parseval's identity to evaluate $\int_{-\infty}^{\infty}\left(\sin ^{2} x\right) / x^{2} \mathrm{~d} x$. Verify by contour integration the inversion formula for $f(x)$ for all values of x except $\pm \frac{1}{2} a$.

* Verify the inversion formula also at $x= \pm \frac{1}{2} a$.
* 4. The displacement $x(t)$ of a damped harmonic oscillator obeys the the equation

$$
\ddot{x}+2 \gamma \dot{x}+q^{2} x=f(t), \quad \text { where } \gamma>0
$$

Assuming that the Fourier transforms $\tilde{x}(\omega)$ and $\tilde{f}(\omega)$ exist, show that

$$
x(t)=\int_{-\infty}^{\infty} G\left(t-t^{\prime}\right) f\left(t^{\prime}\right) \mathrm{d} t^{\prime}, \quad \text { where } G(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{\mathrm{i} \omega t}}{q^{2}+2 \mathrm{i} \gamma \omega-\omega^{2}} \mathrm{~d} \omega
$$

Show, by differentiation under the integral sign, that

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} G(t)+2 \gamma \frac{\mathrm{~d}}{\mathrm{~d} t} G(t)+q^{2} G(t)=\delta(t)
$$

Show that for $0<\gamma<q$,

$$
G(t)=\frac{1}{p} e^{-\gamma t} \sin (p t) H(t), \quad \text { where } p=\sqrt{q^{2}-\gamma^{2}}
$$

[You may use here the results from question 1.]

Laplace transforms

5. Starting from the Laplace transform of 1 (namely s^{-1}), and using only standard properties of the Laplace transform (shifting, etc.), find the Laplace transforms of the following functions: (i) $e^{-2 t}$; (ii) $t^{3} e^{-3 t}$; (iii) $e^{3 t} \sin 4 t$; (iv) $e^{-4 t} \cosh 4 t$; (v) $e^{-t} H(t-1)$, where H is the Heaviside step function.
6. Using partial fractions and expressions for the Laplace transforms of elementary functions, find the inverse Laplace transform of $F(s)=(s+3) /\left\{(s-2)\left(s^{2}+1\right)\right\}$. Verify this result using the Bromwich inversion formula.
7. Use Laplace transforms to solve the differential equation

$$
\frac{\mathrm{d}^{3} y}{\mathrm{~d} t^{3}}-3 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} t}-y=t^{2} e^{t}
$$

with initial conditions $y(0)=1, \dot{y}(0)=0, \ddot{y}(0)=-2$.
8. Consider a linear system obeying the differential equation

$$
\ddot{y}-3 \dot{y}+2 y=u(t), \quad \dot{y}(0)=y(0)=0 .
$$

Use Laplace transforms to determine the response of the system to the signal $u(t)=t$. Determine also the response $y(t)$ to a signal $u(t)=\delta(t)$.
[For $\delta(t)$, take the Laplace transform to be $F(s)=\int_{0^{-}}^{\infty} f(t) e^{-s t} \mathrm{~d} t$, i.e. start "just left of $0^{\prime \prime}$.]
9. Solve the integral equation $f(t)+4 \int_{0}^{t}(t-\tau) f(\tau) \mathrm{d} \tau=t$ for the unknown function f. Verify your
solution.
10. The zeroth order Bessel function $J_{0}(x)$ satisfies the differential equation

$$
x J_{0}^{\prime \prime}+J_{0}^{\prime}+x J_{0}=0
$$

for $x>0$, with $J_{0}(0)=1$ (and $J_{0}^{\prime}(0)=0$ from the equation). Find the Laplace transform of J_{0} and deduce that $\int_{0}^{\infty} J_{0}(x) \mathrm{d} x=1$. Find the convolution of J_{0} with itself.
11. Use Laplace transforms to solve the heat equation $\partial T / \partial t=\partial^{2} T / \partial x^{2}$ with boundary conditions $T(x, 0)=\sin ^{3} \pi x(0<x<1), T(0, t)=T(1, t)=0(t>0)$. [Hint: $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$.]
12. Using the equality $\int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x=\frac{1}{2} \sqrt{\pi}$, find the Laplace transform of $f(t)=t^{-1 / 2}$. By integrating around a Bromwich keyhole contour, verify the inversion formula for $f(t)$. What is the Laplace transform of $t^{1 / 2}$?

* 13. The gamma and beta functions are defined for $z, w \in \mathbb{C}$ by

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t \quad \text { and } \quad \mathrm{B}(z, w)=\int_{0}^{1} t^{z-1}(1-t)^{w-1} \mathrm{~d} t
$$

when $\operatorname{Re}(z), \operatorname{Re}(w)>0$. Show that $\Gamma(z+1)=z \Gamma(z)$ and hence that $\Gamma(n+1)=n!$ if n is a non-negative integer. Using the previous question, write down the value of $\Gamma\left(\frac{1}{2}\right)$.
For a fixed value of z, find the Laplace transform of $f(t)=t^{z-1}$ in terms of $\Gamma(z)$. Find the Laplace transform of the convolution $t^{z-1} * t^{w-1}$. Hence establish that

$$
\begin{equation*}
\mathrm{B}(z, w)=\frac{\Gamma(z) \Gamma(w)}{\Gamma(z+w)} . \tag{*}
\end{equation*}
$$

The domain of Γ and B can be extended to the whole of \mathbb{C}, apart from isolated singularities, by analytic continuation. Does the relation ($*$) still hold?

